
Visual Affordance Learning for Robot Manipulation

Yuke Zhu
Toyota Research Institute, August 2021

Structured
Environments

Fixed Set of
Tasks

Pre-programmed
Procedures

Traditional Form of Robot Automation

Natural
Environments

Ever-Changing
Tasks

Human
Involvement

General-Purpose Robot Autonomy: Our North Star Goal

[Bohg et al. ICRA 2018]

[Gibson 1979; Bajcsy 1988; Ballard 1991; Espiau et al. 1992; Hutchinson et al. 1996; Hamel & Mahony 2002; Kragic & Christensen 2002;
Jonschkowski & Brock 2015; Levine et al. 2016; Agrawal et al. 2016; Bojarski et al. 2016; Finn & Levine 2017; Florence et al. 2018]

[Sa et al. IROS 2014] [Levine et al. JMLR 2016]

The Perception-Action Loop
A key challenge in robot autonomy is to close the perception-action loop.

[Levine et al. JMLR 2016] [Bohg et al. ICRA 2018][Sa et al. IROS 2014]

Perceive

Act
Perceive

Act

Act

Perceive

The Perception-Action Loop
A key challenge in robot autonomy is to close the perception-action loop.

[Gibson 1979; Bajcsy 1988; Ballard 1991; Espiau et al. 1992; Hutchinson et al. 1996; Hamel & Mahony 2002; Kragic & Christensen 2002;
Jonschkowski & Brock 2015; Levine et al. 2016; Agrawal et al. 2016; Bojarski et al. 2016; Finn & Levine 2017; Florence et al. 2018]

The Perception-Action Loop

Conventional Computer Vision Physically-Grounded Robot Perception

[Detectron - Facebook AI Research] [Zeng et al., IROS 2018]

Object Perception
“What makes a chair a chair?”

By visual attributes
https://www.theuncomfortable.com/

Object Perception
“What makes a chair a chair?”

By functional properties

“What makes a chair a chair is its
ability to be sat on.”

Zhu Xi’s Li (理)Aristotle’s Ontology

Affordances are possibilities for actions
that the environment affords to the

agent. (Gibson, 1977)

[Gibson 1979; Kirklik 1993; Zaff 1995; Stoytchev 2015; Amant 1999; Bousmalis 2018; Detry 2011; Zhu et al. 2017; Mahler 2017; Nagarajan 2020;
Ugur 2007; Dang 2020; Fang 2018; Song 2010; Zeng 2018; Abel 2014; Abel 2015; Cruz 2016; Khetarpal 2020; Ardon 2020; Mandikal 2020]

Object Perception
“What makes a chair a chair?”

[Gibson 1979; Kirklik 1993; Zaff 1995; Stoytchev 2015; Amant 1999; Bousmalis 2018; Detry 2011; Zhu et al. 2017; Mahler 2017; Nagarajan 2020;
Ugur 2007; Dang 2020; Fang 2018; Song 2010; Zeng 2018; Abel 2014; Abel 2015; Cruz 2016; Khetarpal 2020; Ardon 2020; Mandikal 2020]

Affordance Learning in Robotics

Semantic Affordance
[Zhu et al. 2014, Varadarajan & Vincze 2012] [Katz et al. 2013; Do et al. 2018]

Detection & Segmentation
[Hart et al. 2015; Pohl et al. 2020]

Affordance Template

Prior methods focus on learning from human supervision and building staged pipelines.

Visual Affordance Learning
Bridging visual perception and robot action through visual affordance

Perception ActionVisual
Affordance

learning signals

scene abstractions

Visual Affordance Learning
Bridging visual perception and robot action through visual affordance

Planning long-horizon manipulation

tasks with skill affordances

Learning grasp affordance

with implicit representations

[“GIGA” Jiang et al. RSS 2021] [“Deep Affordance Foresight” Xu et al. ICRA21]

Visual Affordance Learning
Bridging visual perception and robot action through visual affordance

Planning long-horizon manipulation

tasks with skill affordances

Learning grasp affordance

with implicit representations

[“GIGA” Jiang et al. RSS 2021] [“Deep Affordance Foresight” Xu et al. ICRA21]

6-DoF Robotic Grasping in Clutter

• Important modules in robot manipulation
• Bin Picking
• Part Assembly
• Logistics

• Output: 6-DoF grasp pose (3D position and
orientation)

• Input: Partial point cloud of workspace

How to Predict Grasps

Geometry Analysis

[Miller et al. 2003, Goldfeder et al. 2007,
Hübner et al. 2008, Diankov et al. 2008]

• Analytical solution

• Require full 3D model

End-to-End Deep Learning

[Mahler et al. 2017, Morrison et al. 2018,
Liang et al. 2019, Breyer et al. 2020]

• High grasp performance

• Limited generalization

[Bohg et al. 2011, Varley et al. 2017,
Lundell et al. 2019]

Reconstruction → Grasp

• Working with visual input

• Information bottleneck

Affordance and geometry reasoning are not isolated

Predict affordance of
reconstructed part

Affordance

Reconstruct
graspable region

Geometry

Likelihood of grasp success
and grasp parameters

Overview

Input TSDF GIGA

Grasp affordance

3D reconstruction

Implicit Neural Representations for 3D Shapes

• Functions that map from coordinate to
quantities (SDF, occupancy).

• Functions are parametrized with neural
networks.

• Shape bound is defined by level set of the
parametrized functions.

DeepSDF, Park et al. CVPR 2019

neural
network

visual
feature

query
coordinate

Implicit Neural Representations: Advantages

• Continuous & memory-efficient • End-to-end differentiable • Adaptively allocating
representation resources

OccNets, Mescheder et al. CVPR 2019 OccNets, Mescheder et al. CVPR 2019 NSVF, Liu et al. NeurIPS 2020

Structured Implicit Functions

OccNets, Mescheder et al. CVPR 2019 ConvONets, Peng et al. ECCV 2020

• Structured feature grid
• Local features linearly sampled

from the feature grid
• Fine-grained local details

• Single global feature
• Implicit function conditioned on

global feature
• Overly smooth reconstruction

Global implicit function Structured implicit function

GIGA Architecture

3D Conv

Input TSDF Structured feature grids

Projection

Aggregation 𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

2D U-Nets

Projected 2D features3D feature grid

GIGA Architecture

𝑥

𝑦

𝑧
Grasp center
(𝑥, 𝑦, 𝑧) Affordance

Implicit
Functions

q

<latexit sha1_base64="OnFnKB83dxh9t32j2hSsVIBInWk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo4kXjxCIo8ENmR26IWR2dl1ZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSzvzSRBP6JDyUPOqLFS47FfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldlr1K+blRKtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/ANszjPM=</latexit>

w

<latexit sha1_base64="vZCHE/t7iJJd03U7aLqTPFbIMR4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo4kXjxCIo8ENmR26IWR2dnNzKyGEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldlr1K+blRKtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AORLjPk=</latexit>

grasp quality

gripper width
Local feature

Query point
(𝑥′, 𝑦′, 𝑧′)

Geometry
Implicit

Function

0
1

Occupancy probability

Shared feature grids

Self-Supervised Data Collection
• Grasp affordance labels from physical trials in simulation.

Packed scene Pile scene

• 3D geometry labels from ground-truth object meshes.

• Geometry learning facilitates affordance learning

Quantitative Comparison

• Continuity of implicit function enables higher performance

55

60

65

70

75

80

Grasp Success Rate ↑ Declutter Rate ↑

VGN (Breyer et al. 2020)

GIGA-Aff

GIGA

GIGA (High-Res)

Packed: 30x

Piled: 30x

Geometry Learning Facilitates Occluded Grasps

success
failure

VGN (Breyer et al.)

GIGA

Reconstruction Focuses on Graspable Parts

GIGAGIGA-GeoGround truth

40

60

80

GIGA-Detach GIGA GIGA-Geo

IoU IoU-Grasp

15.6

8.1

4.0

Affordance
Only

Reconstruction
Only

Affordance and
Reconstruction

GIGA: Summary

Code and models are available at https://sites.google.com/view/rpl-giga2021

• Synergies between affordance and geometry
Better grasp prediction, especially in occluded regions

3D reconstruction focuses on action-relevant parts

• Structured implicit neural representation
Continuous and compact representation for both affordance and geometry

Combine voxel grids with neural implicit functions

Visual Affordance Learning
Bridging visual perception and robot action through visual affordance

Planning long-horizon manipulation

tasks with skill affordances

Learning affordance landscape

with implicit representations

[“GIGA” Jiang et al. RSS 2021] [“Deep Affordance Foresight” Xu et al. ICRA21]

Classical notion of affordance is not suitable for planning

Classical notion of affordance is not suitable for planning

feasible? YES

feasible? YES

Classical affordance: whether an action is feasible
No way to choose actions with respect to a long-horizon task goal

enables hooking
red cube? YES

enables fetching
red cube? NO

enables grasping
red cube? YES

enables placing
on target? YES

Our new affordance: will an action make future actions feasible?
Classical affordance: whether an action is feasible

Classical notion of affordance is not suitable for planning

Choose actions that enable the subsequent steps in the task plan

Skill Affordances

skill affordance set
state distribution

transition function

Z0
Grasp

Hook

𝜃!

𝜃"

𝜃#
A⇡,✓(s)

(⇡, ✓)
s

Affordance function:

Whether state is in
the affordance set of

grasp(𝜃) hook(𝜃) grasp(𝜃) …Parameterized skill plan

Xu et al. “Deep Affordance Foresight” ICRA 2021

Verifying that a plan is executable with affordances

…Cplan({⇡1,⇡2, ...,⇡N}) =
X

s2S

ZN�1(s)A⇡N (s)

ZN�1

How likely is this plan executable by the robot?
The plan is executable if every skill in the plan is afforded.

Z0

grasp(𝜃)
Z2

grasp(𝜃)

Z1

hook(𝜃)

grasp(𝜃) hook(𝜃) grasp(𝜃) …Parameterized skill plan

skill affordance set
state distribution

transition function

Probability that a plan is executable:

affordance likelihood
Cplan({(⇡i, ✓i)}Ni=1) =

X

s2S

ZN�1(s)A⇡N ,✓N (s)
state distribution

Sg⇡N…

We denote all plans directed at goal as

Given a goal g and all valid plans P, we define goal-directed plans of g as:

Pg ⇢ P such that 8{(⇡i, ✓i)}Ni=1 2 Pg,A⇡N ,✓N ✓ Sgg

We define a goal as a condition function that checks whether a state
satisfies the goal. We denote the set of states that satisfies as .

g 2 G
Sgg

Any plan that ends with a skill whose affordance set is a subset of are
goal-directed plans for .

Sg
g

Planning towards a Goal

Cplan({(⇡i, ✓i)}Ni=1) =
X

s2S

ZN�1(s)A⇡N ,✓N (s)

Probability that a plan is executable:

Search for goal-directed plans that are most likely executable:

task goal. This enables our learned affordance and dynamics
models to be shared and reused among different tasks to
improve data efficiency and task performance.

III. METHOD

The primary technical contributions of this work are (1)
a new form of affordances suitable for multi-step planning
and (2) a method for learning to plan with the affordances
of parameterized motor skills [4]. Here we first lay out the
decision making problem setup, then describe the affordance-
based planning problem formulation, and finally present the
learning-to-plan method Deep Affordance Foresight.

A. Problem Setup
We consider partially observable domains with observation

space O, state space S, parameterized skills ⇧ (described
later), and transition dynamics T : S ⇥ ⇧ ! Dist(S). We
assume a finite set of goals G. Each g 2 G is a binary
condition function g : S ! {0, 1} indicating if a state is in
a goal state set Sg . The objective is to reach the goal by the
end of an episode.

Following prior work [4], we define a parameterized
skill [11] by an policy ⇡(s, ✓) modulated by a set of
parameters ✓ 2 RD. For example, a grasping skill (⇡) can be
parameterized by 3D grasping positions (✓), and the policy
can execute a planned grasping motion. An important feature
of motion planning-based skills that we leverage in this work
is that we can check if a skill is feasible to execute before
executing it. The feasibility can be determined through robot
kinematic constraints or if a skill motion plan would result in
unintended collision between the robot and the environment.
For example, in the setup shown in Fig.1, grasping the red
cube directly is infeasible due to the kinematic constraint
defined by the virtual wall, and grasping the blue cube would
collide the gripper with the pipe, which is also infeasible.

Skill feasibility checkers are commonly used to prune
skill samples in solving a larger task-and-motion-planning
(TAMP) problem [22, 27, 28, 30, 44, 45]. TAMP methods
typically require knowledge of ground truth states and an
environment dynamics model. Instead, we leverage skill
feasibilities to develop a method that can learn to plan in
an environment with unknown dynamics.

B. Planning with Affordances
Here we formally define our affordance representation and

introduce a planning problem setup based on affordances.
Definition 1 (Affordance A): Given a skill (⇡, ✓), we de-

fine an affordance as A⇡,✓ = {s 2 S|(⇡, ✓) is feasible at s}.
We use A⇡,✓(s) = [(s,⇡, ✓) 2 A⇡,✓] to denote if state s
affords (⇡, ✓).

To formalize a planning problem using A, we first show
how to compute the probability of plan completion from
some initial state distribution. A length-N plan p belongs
to the set PN = {(⇡i, ✓i)}Ni=1|(⇡i, ✓i) 2 ⇧, N 2 Z+}. A
particular plan p 2 PN is then a sequence of parametrized
skills {(⇡1, ✓1), . . . , (⇡N , ✓N)}. Without loss of generality,
we assume fixed plan length and omit the subscript N . Given
a plan p, we denote the induced state distribution at each

step i as Zi(·; p). Given an initial state distribution Z0(·; p),
Zi>0(·; p) can be expressed recursively as:

Zi(s
0; p) /

X

s2S

T (s0|s,⇡i, ✓i)Zi�1(s; p)A⇡i,✓i(s) (1)

where (⇡i, ✓i) is the skill at step i of plan p. We can
compute the probability of completing the plan p (being able
to execute each skill in the plan) starting from Z0 as:

Cplan(p = {(⇡1, ✓1), . . . ,(⇡N , ✓N)}) =
X

s2S

ZN�1(s; p)A⇡N ,✓N (s) (2)

Next we show how to construct plans towards a goal g 2 G.
The key idea is to reinterpret g using affordance. Recall that
g is a binary function on whether a state belongs to its goal
state set Sg . We say that a plan p = {(⇡i, ✓i)}Ni=1 is directed
towards goal g if the last skill in the plan can be executed
in a goal state, i.e., AN ✓ Sg .

Definition 2 (Goal-directed plans Pg): Given a goal g 2 G
and its goal state set Sg , we define the goal-directed plans of
g as Pg ✓ P such that 8{(⇡i, ✓i)}Ni=1 2 Pg,A⇡N ,✓N ✓ Sg .

Finally, the problem of searching for a best skill plan
towards goal g 2 G is:

argmax
p2Pg

Cplan(p) (3)
While it is possible to find exact optimal solutions by
computing Eq. (3) from state space S and transition function
T , we aim at realistic domains in which we have access to
neither. In the following, we present a method that learns to
plan in an unknown environment by modeling affordances.

C. Deep Affordance Foresight (DAF)
We base our learning-to-plan method on a model-based

reinforcement learning (MBRL) formulation. To behave in
an environment with unknown dynamics, an MBRL agent
needs to learn both a dynamics model and a cost function to
predict plan-induced future states and evaluate plan costs.
Learning the complete model of a large environment in
observation space (e.g., predicting future images) is still an
open challenge [3, 17, 19, 39]. A more effective approach is
to build partial models [43] based on rewards or some task-
relevant quantities [5, 14, 24, 40]. For example, PlaNet [24]
combines the dynamics and cost modeling by predicting
multi-step future rewards through a learned dynamics model.

Our method can be viewed as building a partial model of
the environment based on affordances. Comparing to prior
works that rely on task-specific quantities such as rewards,
our affordance representation is task-agnostic: a grasping
skill is afforded regardless of the task goal. This allows
our method to share learned affordance models among plans
with different goals, comparing favorably to standard MBRL
methods that must learn different cost estimates per goal.
Affordance models also offer better estimates of plan costs
for model-predictive control (described next) compared to
methods that rely on estimating the final reward for planning.

Concretely, we jointly train a latent dynamics model and
an affordance prediction model. The latent dynamics model
predicts future latent states conditioning on sampled skill
plans. The affordance model evaluates skill affordances both
at the current and future predicted latent states. We use

How do we plan in a partially-observed environment with unknown dynamics?

Planning with Affordance

Learning to Plan with Deep Affordance Foresight (DAF)

…

fA

ftrans

⇡2

✓2

a2

Ĉplan =
NY

i

aiPlan executable likelihood:

ot

current
observation

fenc

latent state

✓1

parameterized skill
in the plan

a1affordance
prediction

fA
affordance
prediction

model

ftrans
latent transition model

✓1

goal-directed
plan of skills

⇡2 ⇡N

✓N✓2

… ⇠ Pg

Xu et al. “Deep Affordance Foresight” ICRA 2021

44

ot

…

…

…

execute skill

DAF with Model-Predictive Control (MPC)

current
observation

Learning Through Exploration

model-predictive control (MPC) to plan in the learned latent
space and evaluate the proposed plans by estimating plan
completion probabilities (Eq. (3)) from the predicted affor-
dances. Given a set of parameterized motor skills and their
affordance functions, our method iteratively collects data
from environment using planning and trains the two models
on the gathered data. Here we describe the components.

Latent dynamics model. We consider experience se-
quences {(ot,⇡t, ✓t, at)}Tt=1, environment observation ot, a
skill (⇡i, ✓i) that the robot attempted to execute at time
t, and the resulting binary affordance value at. Following
PlaNet [24], we project observation ot to a latent encoding
zt using an observation encoder zt = fenc(ot). The en-
coder can be a multi-layer perception for low-dimensional
observations and deep CNN for image observations. We
make a simplified assumption that the latent dynamics is
deterministic [7] and construct a deterministic transition
model ẑt+1 = ftrans(zt,⇡t, ✓t). We also explore a recurrent
transition model ht+1 = ftrans(ht, zt,⇡t, ✓t) with decoder
ẑt+1 = fdec(ht+1) that shows better empirical performance
on long-horizon tasks.

Algorithm 1 PLANWITHAFFORDANCE

hyperparameters: planning horizon H , num. samples N
inputs:

z = fenc(o) . observation encoder
ẑt+1 = ftrans(zt,⇡t, ✓t) . latent transition model
ât = fA(zt,⇡t, ✓t) . affordance model
⇡t ⇠ f⇡(zt) . skill skeleton proposal model
o . current environment observation
✓ ⇠ param(⇡) . random skill parameter sampler
Pg . set of goal-directed plans for goal g
start

plans [] . sampled plans
affs [] . step-wise affordances
z1 fenc(o) . encode observation to latent
z1:N1 repeat(z1, N) . repeat latent N times
for i [1, ..., H] do

⇡1:N
i
⇠ f⇡(z1:Ni

) . sample skill skeletons
✓1:N
i
⇠ param(⇡1:N

i
) . sample parameters

a1:N
i

= fA(zi,⇡1:N
i

, ✓1:N
i

) . compute affordance
plans plans [(⇡1:N

i
, ✓1:N

i
)

affs affs [a1:N
i

z1:N
i+1 ftrans(z1:Ni

,⇡1:N
i

, ✓1:N
i

) . forward dynamics
end for

for k [1, ..., N] do

(⇡1:H , ✓1:H) plans[k] . k-th plan in plans
a1:H affs[k] . step-wise affordances

ck
(
�
Q

H

t=1 at if (⇡1:H , ✓1:H) 2 Pg (Eq. (4))

1 otherwise
end for

k argmink={1...N}(ck) . get the lowest-cost plan
⇡⇤, ✓⇤ plans[k][0] . first skill of the chosen plan
return ⇡⇤, ✓⇤

Learning dynamics by predicting affordances. Given
latent experiences {(zt,⇡t, ✓t, at)}Tt=1, we train a binary

classifier ât = fA(zt,⇡t, ✓t) to predict whether a latent
state zt affords the skill (⇡t, ✓t). We train the affordance
model jointly with the latent dynamics model. The simplest
way is to learn from one-step transitions: predicting ât
and ât+1 from (zt,⇡t, ✓t) and (ftrans(zt,⇡t, ✓t),⇡t+1, ✓t+1),
respectively. However, as shown in [5, 24], the latent dy-
namics model learned from one-step transitions is often not
accurate enough for long-horizon planning. Hence we adopt
the overshooting [5] technique and optimize ftrans and fA
over multi-step affordance predictions.

Evaluating plans with approximate models. Given a
pair of learned deterministic dynamics model ftrans and
affordance model fA, the approximate form of Eq. (2) with
respect to an initial latent state z1 is:

Ĉplan(p = {(⇡i, ✓i)}Ni=1) =
NY

i=1

fA(zi,⇡i, ✓i) (4)

where zi = ftrans(zi�1, ✓i�1,⇡i�1) for i > 1.
Planning and execution with MPC. We use a standard

model-predictive control (MPC) strategy to plan and execute
skills with the learned latent dynamics and affordance mod-
els. Given a goal g, the MPC planner optimizes:

argmin
⇡,✓

C({(zi,⇡i, ✓i)}Hi=1), (5)

with plan cost function C, goal-directed plans (⇡1:H , ✓1:H) 2
Pg , and the latent sequences z1:H generated by ftrans over a
planning horizon H . We use the negative of the approximate
plan completion probability in Eq. (4) as the plan cost.

The hybrid discrete-continuous skill plans present a large
search space. To accelerate planning, we additionally train
a skill skeleton proposal model ⇡t ⇠ f⇡(zt) that captures
the distribution of feasible discrete skill choices given a
latent state zt. Given the sampled discrete skills, we use a
naı̈ve sampling-based strategy to optimize Eq. (5) over the
continuous skill parameter spaces. We defer more sophisti-
cated strategies such as CEM [24, 41] and gradient-based
optimizations [5] to future work. Our agent executes plans
using receding-horizon control: execute the first skill in a
chosen plan and then replan from the new observation. We
present the full planning algorithm in Algorithm 1.

IV. EXPERIMENTS

Our experiments seek to validate the primary claims
that (1) our affordance representation supports long-horizon
planning of challenging manipulation tasks, (2) our method
can outperform reward-based latent planning methods [24],
(3) the task-agnostic latent transition and affordance models
facilitate knowledge sharing among multiple tasks, and (4)
our method can plan directly with raw image input. We
conduct evaluations in two simulated environments: a Tool-
Use environment (Fig. 1) for analyzing the key traits of our
method and a Kitchen (Fig. 4) environment that features
complex visual scenes and tasks that require handling non-
rigid dynamics of liquid-like objects.

A. Tool-Use Domain

Task setup The task design is primarily inspired by [26,
45]. The environments as shown in Fig. 1 are simulated using

Experience Sequences

Human-in-the-Loop Imitation Learning using Remote Teleoperation

Ajay Mandlekar1, Danfei Xu⇤1, Roberto Martín-Martín⇤1, Yuke Zhu2, Li Fei-Fei1, Silvio Savarese1

Abstract— Imitation Learning is a promising paradigm for
learning complex robot manipulation skills by reproducing
behavior from human demonstrations. However, manipulation
tasks often contain bottleneck regions that require a sequence
of precise actions to make meaningful progress, such as a robot
inserting a pod into a coffee machine to make coffee. Trained
policies can fail in these regions because small deviations
in actions can lead the policy into states not covered by
the demonstrations. Intervention-based policy learning is an
alternative that can address this issue – it allows human
operators to monitor trained policies and take over control
when they encounter failures. In this paper, we build a data
collection system tailored to 6-DoF manipulation settings, that
enables remote human operators to monitor and intervene on
trained policies. We develop a simple and effective algorithm
to train the policy iteratively on new data collected by the
system that encourages the policy to learn how to traverse bot-
tlenecks through the interventions. We demonstrate that agents
trained on data collected by our intervention-based system and
algorithm outperform agents trained on an equivalent number
of samples collected by non-interventional demonstrators, and
further show that our method outperforms multiple state-of-
the-art baselines for learning from the human interventions on
a challenging robot threading task and a coffee making task.
Additional results and videos at https://sites.google.
com/stanford.edu/iwr

I. INTRODUCTION

Imitation Learning (IL) is a promising paradigm for learn-
ing complex manipulation skills by reproducing behaviors
from human demonstrations [27, 33, 41]. Unlike interactive
learning techniques, such as reinforcement learning, which
generate large amounts of training data via autonomous
exploration, the efficacy of IL is bounded by the cost of
human demonstrations. This cost limits the amount of data
available to train IL models. Consequently, models trained
by IL can suffer from covariate shift: small errors in actions
can bring the learner to unseen states that the learner has
not been trained for. To address this covariate shift problem,
DAGGER-style methods [18, 23, 35] have an expert relabel
dataset samples collected by the trained agent with actions
that the expert would have taken. This allows training data
to include samples that a trained agent is likely to encounter.

For real-world robotic tasks, however, DAGGER-style data
relabeling is often infeasible. For example, a 30-second
manipulation task with 20 hz robot control would require
a human to relabel 600 state samples for every trajectory
collected by the robot. Moreover, the human needs to estimate
the correct robot action that should have been taken in each
state. This kind of offline relabeling requires significant human
effort and is prone to incorrect action labels [21]. Instead, it

⇤ equal contribution,1 Stanford Vision & Learning Lab, 2 The University
of Texas at Austin.

�i

�i+1

�i �i

Policy
Execution

Dataset

Policy
Failure

Human Intervenes
Remotely

Policy Resumes
Task Execution

New Policy

Fig. 1: Human-in-the-Loop Policy Learning with Human Inter-
ventions. Manipulation tasks often contain bottleneck regions that
require a series of precise actions to traverse successfully. Models
trained on an offline set of human demonstrations easily fail in these
regions due to action errors that compound. To address this issue, we
built a system where a human operator observes a policy attempting
to solve a manipulation task and intervenes when necessary to help
solve the task. During an intervention, the human operator takes
control of the arm from the policy, moves the robot arm into a state
where the policy is likely to succeed, and then returns control to
the policy. All data is aggregated into a dataset and the policy is
re-trained on the new collected data. This process repeats.

is more natural for humans to annotate actions in the loop,
i.e. monitor policy execution and take over control when
intervention is needed [4, 18, 37].

However, intervention-based learning has mostly been
limited to 2D driving domains [18, 37] where an agent must
learn a policy to stay on the road. Both the data collection
and the policy learning are straightforward in this domain –
humans can easily provide intervention actions in 2D, and the
domain is tolerant to action error, since there is a large set of
actions that keep the agent on the road. By contrast, in 6-DoF
robot manipulation settings, certain regions of the state space
can require precise sequences of actions to make meaningful
task progress. These regions are much less tolerant to error,
and a small deviation means the difference between success
and failure. We call such regions bottlenecks.

Consider the coffee making task shown in Fig. 1, where
the robot must carefully insert the pod into the machine
slot. States where the pod is close to the container form
a bottleneck, since only a particular sequence of actions
lead to successful insertion and any deviation will cause the
pod to collide with the rim. Tasks with such bottlenecks
are ideal testbeds for intervention-based learning, because
small inaccuracies in the output actions can make IL agents
susceptible to making mistakes in these regions.

Making human interventions feasible for robot manipula-

Plan ⇡, ✓
Selected Skill

Model
Fitting

fenc
fA

ftrans

Experiments: Tool-Use + Stacking

Results: Tool-Use

tool-use (blue cube)tool-use (red cube)

DAF (no RNN)DAF PlaNet (Hafner et al. 2018) Plan Skeleton

tool-use + stacking

Sample Rollouts: Tool-Use + Stacking

DAF (Ours)PlaNet

coffee beans
dispenser

tea
dispenser

coffee
machine

Experiments: Kitchen

…

• Affordances for fetching the mug is shared among the two tasks.
• Our method should be able to learn the task much faster & better

Experiments: Kitchen

get tea

DAF (image) PlaNet (image) plan skeleton

get coffee

Results: Kitchen

PlaNet

Rollouts: Kitchen (Coffee)

DAF (Ours)

DAF is reactive and can recover from mistakes

DAF PlaNet

DAF-transfer PlaNet-transferbase task: get tea transfer task: get coffee

Transfer learned affordances

Deep Affordance Foresight: Summary

• New notion of skill affordance

action abstraction that supports long-horizon planning

estimated from visual observations

• Latent-space planning algorithm
DAF can plan through raw perception and complex

non-rigid dynamics

Visual Affordance Learning
Bridging visual perception and robot action through visual affordance

Planning long-horizon manipulation

tasks with skill affordances

Learning grasp affordance

with implicit representations

[“GIGA” Jiang et al. RSS 2021] [“Deep Affordance Foresight” Xu et al. ICRA21]

Visual Affordance Learning
Bridging visual perception and robot action through visual affordance

human-centered
(human environments are

shaped by affordance)

physically-grounded
(informative representation

for robot actions)

task-agnostic
(inherent properties that

facilitate knowledge transfer)

Architectures of Robot Manipulation

pixels

world state

world state

torques

perception

Classical Robot Learning
(pre 2010)

decision
making

pixels

torques

deep

neural

network

Deep Robot Learning
(2010-now)

pixels

torques

New Frontier

intermediate
abstractions

perception

decision
making

Acknowledgement

Danfei Xu

Ajay Mandlekar Roberto Martín-Martín Fei-Fei Li Silvio Savarese

Soroush NasirianyZhenyu Jiang Yifeng Zhu

Kuan Fang

Maxwell Svetlik

https://rpl.cs.utexas.edu/UT Robot Perception and Learning Lab

https://rpl.cs.utexas.edu/

Visual Affordance Learning
Bridging visual perception and robot action through visual affordance

Planning long-horizon manipulation

tasks with skill affordances

Learning affordance landscape

with implicit representations

[“GIGA” Jiang et al. RSS 2021] [“Deep Affordance Foresight” Xu et al. ICRA21]

