Pathway to Generalist Robots:

Scaling Law, Data Flywheel, and Humanlike Embodiment

Yuke Zhu

November 8th, 2023

TEXAS Robotics

Internal Combustion Engine

Steam Turbine

Alexandria, 10-70 AD) Turbine (Taqi al-Din, 1551) (Thomas Savery, 1698)

Specialist technology working in limited conditions

Aeolipile (Heron of Rudimentary Steam Savery Steam Pump

Alexandria, 10-70 AD) Turbine (Taqi al-Din, 1551) (Thomas Savery, 1698)

Watt's Steam Engine (James Watt, 1764)

Internal Combustion Engine

Steam Turbine

Generalist technology leading to widespread adoption

Aeolipile (Heron of Rudimentary Steam Savery Steam Pump

Alexandria, 10-70 AD) Turbine (Taqi al-Din, 1551) (Thomas Savery, 1698)

Internal Combustion Engine

Steam Turbine

Further specialization in various problem domains

Alexandria, 10-70 AD) Turbine (Taqi al-Din, 1551) (Thomas Savery, 1698)

Large Language Models

semantic parsing sentiment analysis

summarization information extraction

Large Language Models

Recipe for Building Generalist Robot Models

Scaling Law

Powerful robot learning models that scale with data and compute

Data Flywheel

New mechanism to collect massive training data

Generalist Robot Model

Humanlike Embodiment

Humanoid robot platform for broad applications

Recipe for Building Generalist Robot Models

Scaling Law

Powerful robot learning models that scale with data and compute

Data Flywheel

New mechanism to collect massive training data

Hardware

Humanlike Embodiment

Humanoid robot platform for broad applications

Key Idea: Skills as APIs and Scaling Law

invoking parameterized skills type & selected primitive parameters policy task observations rewards library of skill APIs

Skills as APIs

(Nasiriany et al. ICRA 2022)

Soroush Nasiriany

Key Idea: Skills as APIs and Scaling Law

Skills as APIs

(Nasiriany et al. ICRA 2022)

Scaling Law for Language Models

(Kaplan et al. 2020; Hoffmann et al. 2022)

Raw visual observation

Yifeng Zhu

Raw visual observation

General object proposals

Yifeng Zhu

Large vision model trained on Internet-scale image datasets

Yifeng Zhu

Encoding object visual appearances and their spatial locations

Yifeng Zhu

Using transformers to select task-relevant objects and reason about their relations

What if we can prompt a household robot to ...

generalist robot agent for multi-task learning and zero-shot generalization

VIMA: Visuo-Motor Attention model

- Transformer encoder-decoder;
- Encodes multimodal prompts with a frozen language model;
- Object-centric representations for visual observations
- Predicts skill APIs given the prompt and interaction history.

Data scalability from 0.1% to full dataset

VIMA-GPT

Data scalability from 0.1% to full dataset

MUTEX

"Please take a look at the top drawer of the cabinet, which is open; you'll find the granola bar there."

Speech Instructions

"Search for and hold the handle of the uppermost drawer. Gradually and attentively open the drawer. Find the snack bar and grab it with your hand. Place the snack bar inside the drawer. Drop the snack bar."

The granola bar has been kindly placed within the top drawer of the cabinet, left open.

Text Instructions

- Slowly and carefully pull the drawer open.
- Grab the granola bar with your gripper.
- Place the granola bar inside the open drawer.
- Release the granola bar.

Recipe for Building Generalist Robot Models

Scaling Law

Powerful robot learning models that scale with data and compute

Generalist Robot Model

Data

Data Flywheel

New mechanism to collect massive training data

Humanlike Embodiment

Humanoid robot platform for broad applications

Key Idea: Robot Learning Data Flywheel

Huihan Liu

Robot Deployment

Robot Deployment

Relabel abnormal states before interventions

Sort by a dataset curation strategy

Reduce memory to a fixed size

Reweight samples for imitation learning

Round 1 Deployment

† Green masks indicate human intervention.

Intervention Distribution

Round 3 Deployment

Intervention Distribution

Recipe for Building Generalist Robot Models

Scaling Law

Powerful robot learning models that scale with data and compute

Data Flywheel

New mechanism to collect massive training data

Generalist Robot Model

Humanlike Embodiment

Humanoid robot platform for broad applications

Humanlike Embodiment: Generalist Humanoid Robot

Generalist Robot Model

Draco3 Humanoid

Team

Luis Sentis

Humanlike Embodiment: Generalist Humanoid Robot

Humanlike Embodiment: Generalist Humanoid Robot

Policy deployments in simulation and real world

Loco-manipulation (sim): 92% success rate

Bimanual manipulation (real): 90% success rate

Pathway to Generalist Robots

Pathway to Generalist Robots

Algorithms: Scaling up robot learning models with skill
 APIs and massively multi-task training

 Data: Building a data flywheel in real-world deployments through human-in-the-loop robot autonomy

Hardware: Humanoid robots as a generalist robot
 platform to develop human-level physical intelligence

UT Robot Perception & Learning Lab

Mission statement: building general-purpose robot autonomy in the wild

