Pathway to Generalist Robots: Scaling Law, Data Flywheel, and Humanlike Embodiment

Yuke Zhu

November 8th, 2023

UT Robot Perception & Learning Lab

Generalist Robot Models

Specialist Robots

Watt's Steam Engine (James Watt, 1764)

Aeolipile (Heron of
Alexandria, 10–70 AD)Rudimentary Steam
Turbine (Taqi al-Din, 1551)Savery Steam Pump
(Thomas Savery, 1698)

Internal Combustion Engine

Steam Turbine

Specialist technology working in limited conditions

Watt's Steam Engine (James Watt, 1764)

Internal Combustion Engine

Steam Turbine

Generalist technology leading to widespread adoption

Aeolipile (Heron ofRudimentary SteamSavery Steam Pump Alexandria, 10–70 AD) **Turbine** (Taqi al-Din, 1551) (Thomas Savery, 1698)

Internal Combustion Engine

Steam Turbine

Further specialization for various problem domains

Aeolipile (Heron ofRudimentary SteamSavery Steam Pump Alexandria, 10–70 AD) **Turbine** (Taqi al-Din, 1551) (Thomas Savery, 1698)

Internal Combustion Engine

Steam Turbine

Large Language Models

summarization

REVIEWS 1. Smells amazing! A perfect purchase :) 2. Must buy! Super amazing. 3. Quite satisfactory	LYZER	POSITIVE (81%)
REVIEWS 1. A decent purchase 2. Quite okayish! Smells average 3. Could have been better in lot terms	timent ana	NEUTRAL (88%)
REVIEWS 1. An absolute waste of money. 2. Total waste of money 3. Terrible smell, not worth buytng	SEN.	

sentiment analysis

Barack Oban	na was born in Hawaii.
tured Information	Information Extraction
	was born in

information extraction

Large Language Models

semantic parsing

summarization

REVIEWS 1. Smells amazing! A perfect purchase :) 2. Must buy! Super amazing. 3. Quite satisfactory		OSITIVE (81%
REVIEWS 1. A decent purchase 2. Quite okayish! Smells average 3. Could have been better in lot terms		EUTRAL (88%
REVIEWS 1. An absolute waste of money. 2. Total waste of money 3. Terrible smell, not worth buytng	SEN.	

sentiment analysis

Barack Oban	na was born in Hawaii."
	Information Extraction
	was born
Barack Obama	was born in

information extraction

Recipe for Building Generalist Robot Models

Scaling Law

Powerful robot learning models that scale with data and compute

Data

Data Flywheel

New mechanism to collect massive training data

Algorithms

Generalist **Robot Model**

Hardware

Humanlike Embodiment

Humanoid robot platform for broad applications

Recipe for Building Generalist Robot Models

Scaling Law

Powerful robot learning models that scale with data and compute

New mechanism to collect massive training data

Data

Generalist **Robot Model**

Hardware

Humanlike Embodiment

Humanoid robot platform for broad applications

Key Idea: Skills as APIs and Scaling Law

library of skill APIs

Skills as APIs

(Nasiriany et al. ICRA 2022)

Soroush Nasiriany

Key Idea: Skills as APIs and Scaling Law

library of skill APIs

Skills as APIs

(Nasiriany et al. ICRA 2022)

Scaling Law for Language Models

(Kaplan et al. 2020; Hoffmann et al. 2022)

Raw visual observation

Yifeng Zhu

Raw visual observation

General object proposals


```
Yifeng Zhu
```


arge vision model trained on Internet-scale image datasets

object proposals

Raw visual observation

Yifeng Zhu

Object-centric representation

Encoding object visual appearances and their spatial locations

Yifeng Zhu

and reason about their relations

It learns to make coffee without additional 50 annotations on human demonstrations.

Policy Input

Massively Multi-Task Robot Learning for Model Scaling What if we can prompt a household robot to ... Recite the first law of robotics Input Prompt: Bring me Do this 0 ~0₀ .

Output: A robot may not injure a human being

[Credit: Jay Alammar]

generalist robot agent for multi-task learning and zero-shot generalization

Massively Multi-Task Robot Learning for Model Scaling VIMA: Visuo-Motor Attention model

- Transformer **encoder-decoder**; ullet
- Encodes multimodal prompts lacksquarewith a frozen language model;
- **Object-centric** representations for visual observations
- Predicts skill APIs given the \bullet prompt and interaction history.

Rearrange to this
Prompt Tokens
History Tokens

"VIMA: General Robot Manipulation with Multimodal Prompts." Jiang et al. ICML 2023

Data scalability from 0.1% to full dataset

Data scalability from 0.1% to full dataset

vimalabs.github.io

Rutav Shah

[Shah et al. CoRL 2023]

Recipe for Building Generalist Robot Models

Scaling Law

Powerful robot learning models that scale with data and compute

Data

Data Flywheel

New mechanism to collect massive training data

Generalist Robot Model

Hardware

Humanlike Embodiment

Humanoid robot platform for broad applications

Key Idea: Robot Learning Data Flywheel

How can we ensure trustworthy deployment?

Wider Deployments

More Capable

Robots

More Training Data

How can robots learn continually with more data?

Better Models

Huihan Liu

"Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment." (Sirius) Liu et al. RSS 2023

Huihan Liu

"Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment." (Sirius) Liu et al. RSS 2023

Human provides a intervention

Robot takes control again

"Model-Based Runtime Monitoring with Interactive Imitation Learning." Liu et al. 2023

~

FRANKA

Relabel **abnormal states** before interventions

Sort by a **dataset curation** strategy

Reduce memory to a **fixed size**

Reweight samples for imitation learning

Round 1 Deployment

† Green masks indicate human intervention.

Intervention Distribution

Round 3 Deployment

Intervention Distribution

Recipe for Building Generalist Robot Models

Scaling Law

Powerful robot learning models that scale with data and compute

Data Flywheel

New mechanism to collect massive training data

Humanlike Embodiment

Humanoid robot platform for broad applications

Humanlike Embodiment: Generalist Humanoid Robot

Generalist **Robot Model**

Draco3 Humanoid

Team

Mingyo Seo

Luis Sentis

Humanlike Embodiment: Generalist Humanoid Robot

human teleoperation

state machine

"Deep Imitation Learning for Humanoid Loco-manipulation through Human Teleoperation." Seo et al. Humanoids 2023

task demonstrations

Humanlike Embodiment: Generalist Humanoid Robot Policy deployments in simulation and real world

Loco-manipulation (sim): 92% success rate

Bimanual manipulation (real): 90% success rate

Pathway to Generalist Robots

Generalist **Robot Model**

Generalist Robot Models

Data

Pathway to Generalist Robots

- **Algorithms:** Scaling up robot learning models with skill \bullet APIs and massively multi-task training
- **Data:** Building a data flywheel in real-world deployments through human-in-the-loop robot autonomy
- Hardware: Humanoid robots as a generalist robot platform \bullet to develop human-level physical intelligence

rpl.cs.utexas.edu

UT Robot Perception & Learning Lab

Mission statement: building general-purpose robot autonomy in the wild

rpl.cs.utexas.edu

Acknowledgement:

NVIDIA.