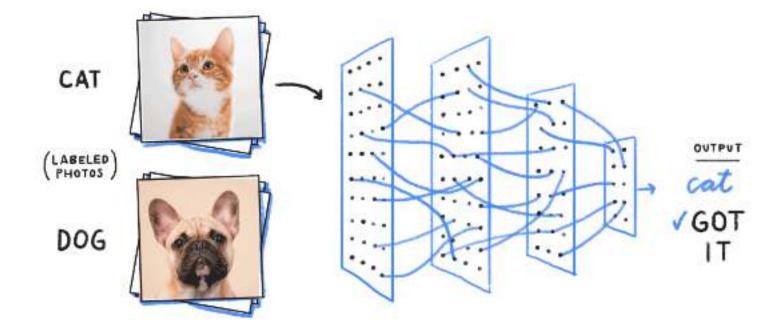
Learning How-To Knowledge from the Web

Yuke Zhu IROS 2019

Advances in Artificial Intelligence

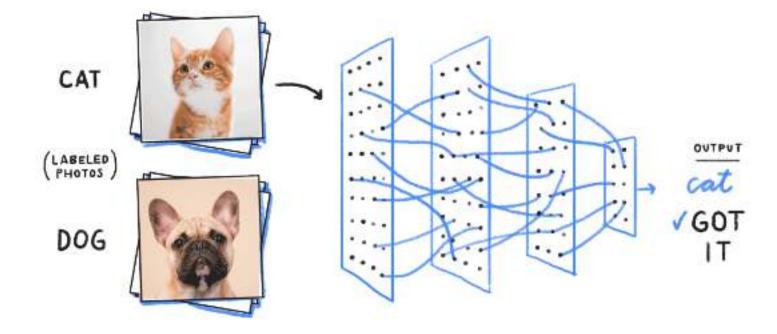


Visual Recognition

Machine Translation

Question Answering

The Unsung Hero: Web Data



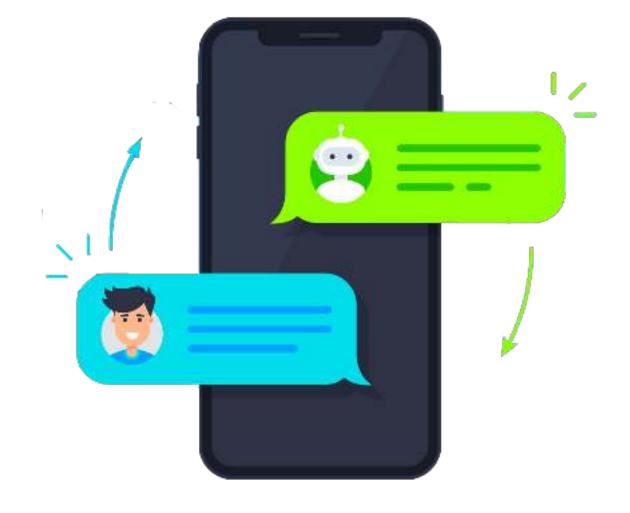
Visual Recognition

ImageNet [Deng et al. 2009]

14 million web images annotated by AMT workers Machine Translation

Google NMT [Wu et al. 2016]

WMT En→Fr dataset with 36M sentence pairs



Question Answering

SQuAD QA Dataset

[Rajpurkar et al. 2016]

100,000+ questions posed by crowdworkers on a set of Wikipedia articles

The Unsung Hero: Web Data

What's the role of web data in improving robot intelligence?

Traditional form of automation

Intelligent robots in real world

What knowledge do we need for robotics?

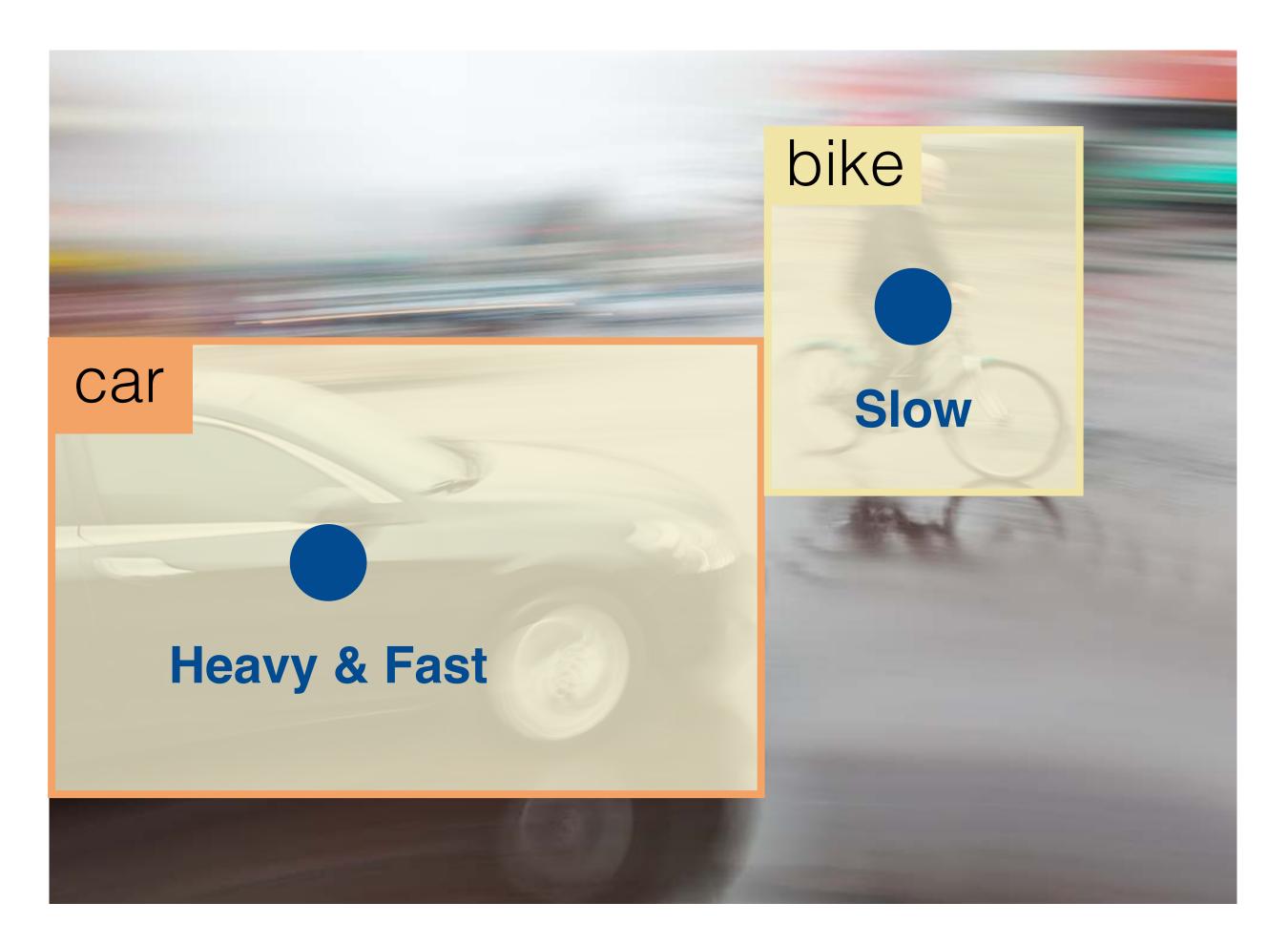
"To accelerate or to brake?"

What knowledge do we need for robotics?

Declarative knowledge Understanding the world

 Describes facts of the world

Easy to articulate (conscious)



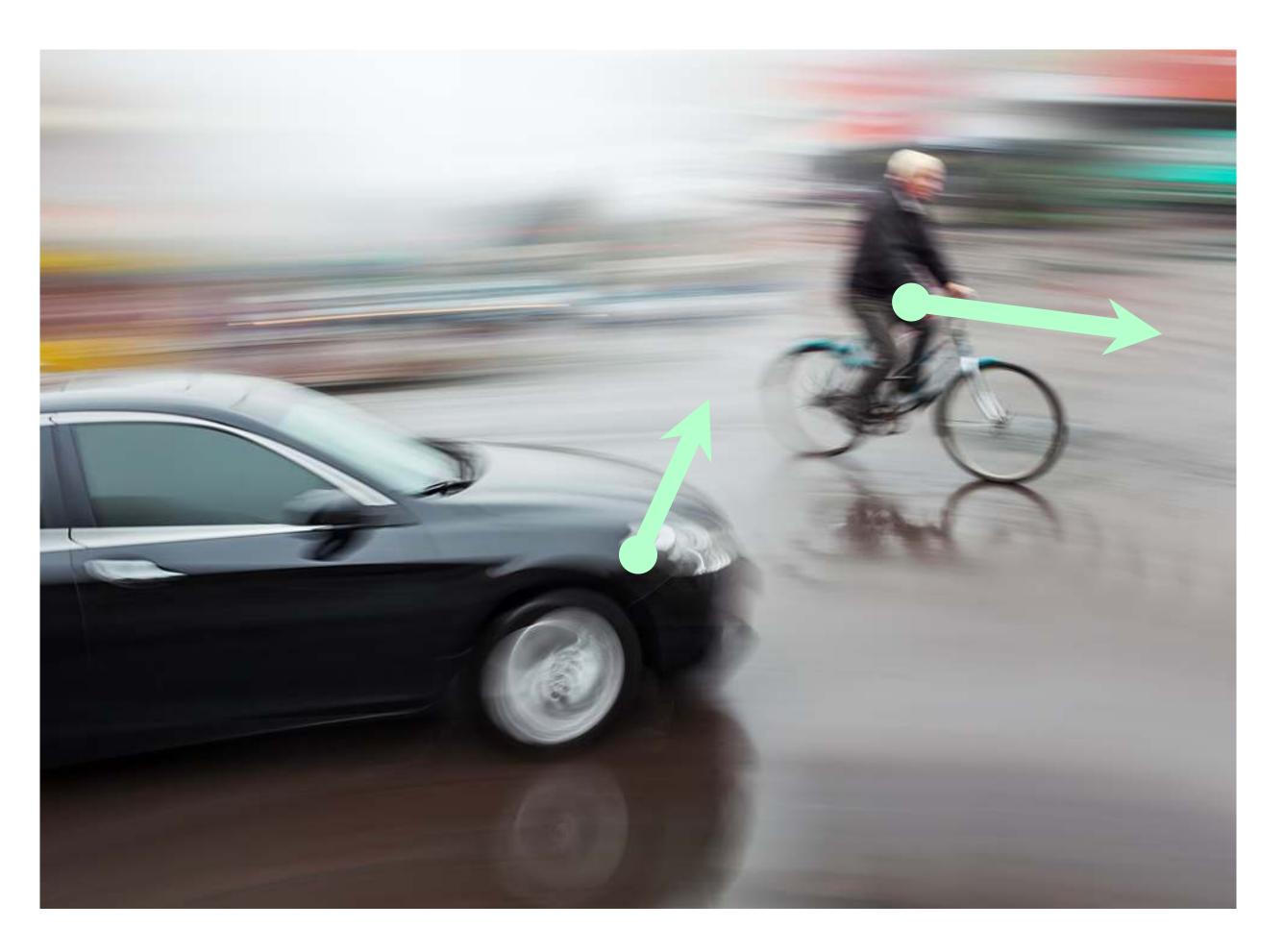
Knowledge of "That-Is"

What knowledge do we need for robotics?

Declarative knowledge Understanding the world

Describes facts of the world

Easy to articulate (conscious)



Procedural knowledge Interacting with the world

- Describes how to perform tasks
- Hard to pinpoint (unconscious)

Knowledge of "How-To"

Declarative Knowledge ("That-Is")

Understanding the World

Robotics

Interacting with the World

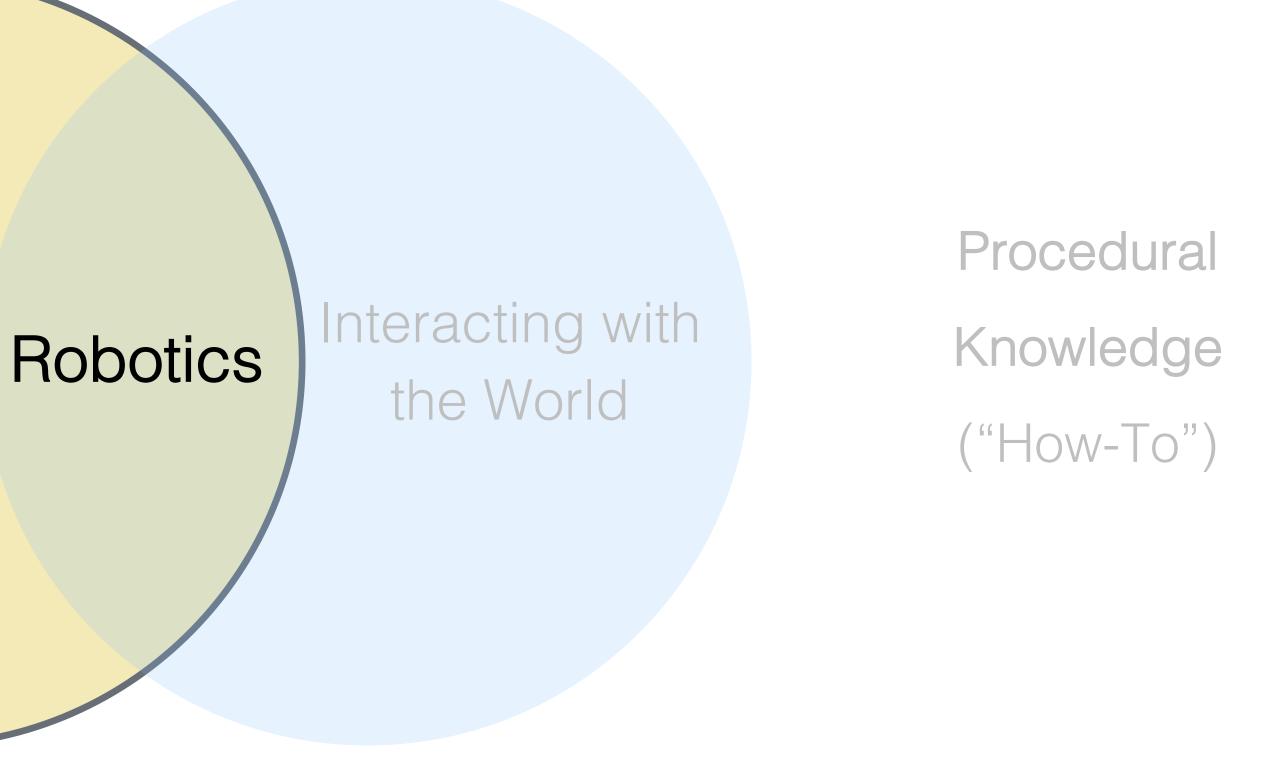
Procedural Knowledge ("How-To")

Learning Declarative ("That-Is") Knowledge from the Web

Declarative Knowledge ("That-Is")

Understanding the World

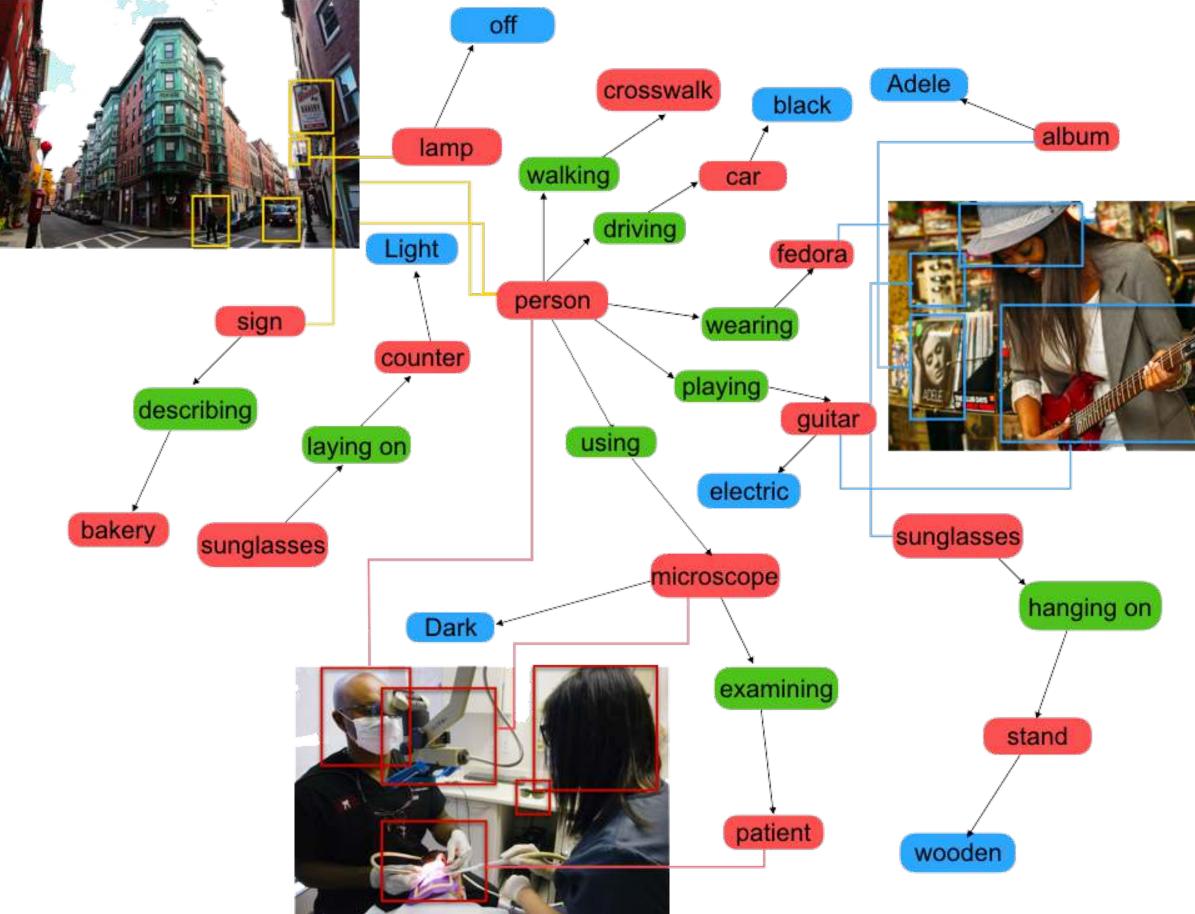
Understanding the world is the cornerstone of interacting with the world.



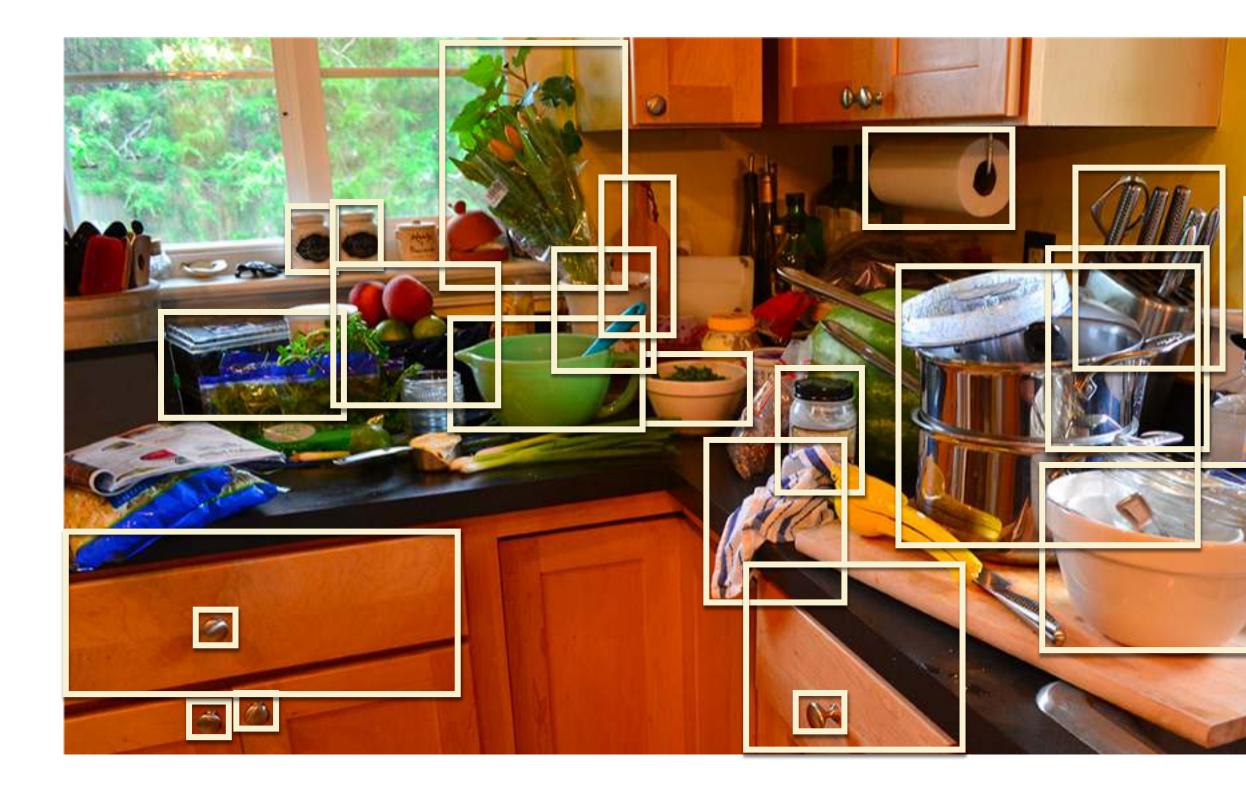
The Visual Genome Project

A large-scale visual knowledge base of structured image concepts

Krishna, Zhu, Groth, Johnson, Hata, Kravitz, Chen, Kalantidis, Li, Shamma, Bernstein, and Fei-Fei, IJCV 2017



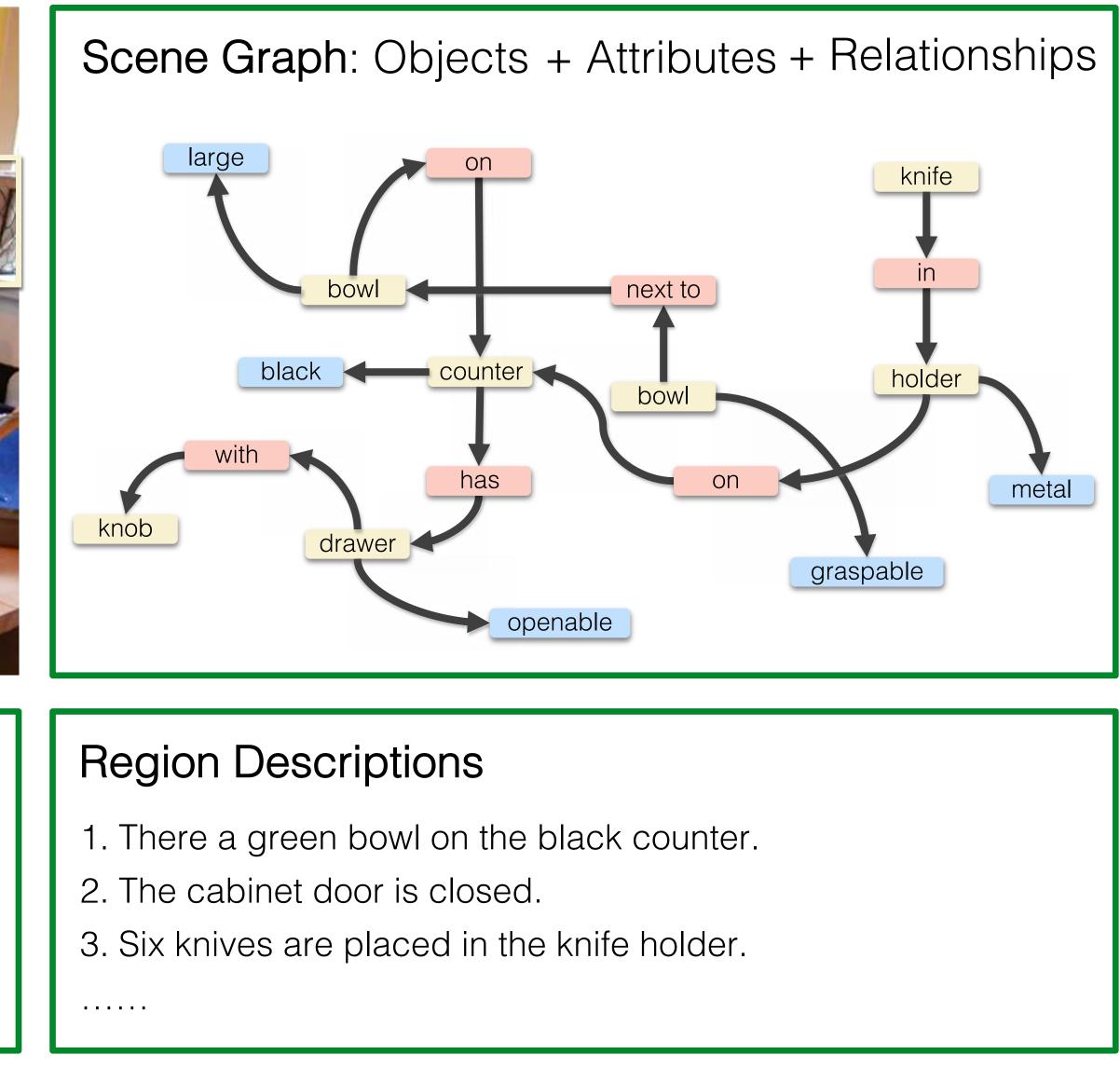
Visual Genome



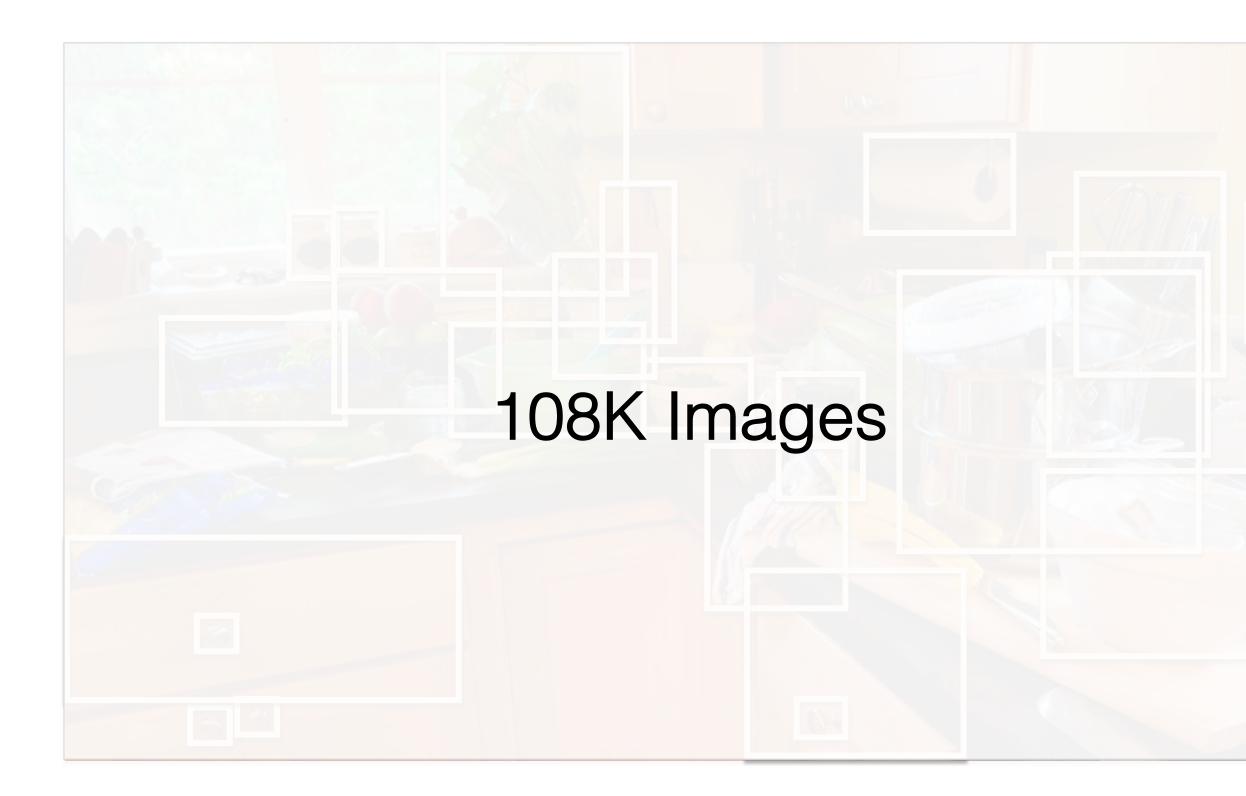
Questions

- 1. Q: What's the color of the counter? A: Black.
- 2. Q: How many drawers can you see? A: Two.
- 3. Q: What's the material of the pots? A: Metal.

.



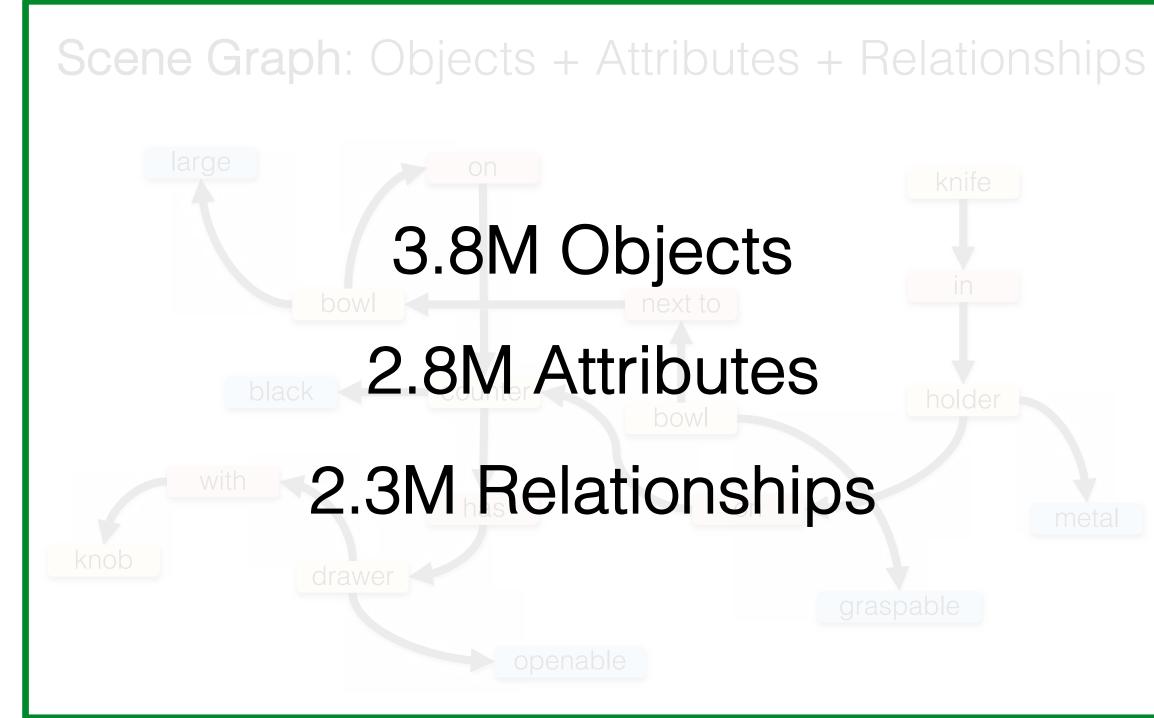
Visual Genome



Questions

1. Q: What's the color of the other? At Hack 2. Q: How many drawers can you see? A. Wo.

3. Q: What's the material of the pots? A: Metal.



Region Descriptions

1. There a green bowl on the black counter. 2. The **5.4M Region Descriptions**

Visual Genome

An ontology of visual concepts

two ceramic jars

green onions sitting on the counter

wooden drawer is closed

Johnson et al. CVPR'16; Krishna, Zhu, et al. IJCV'17

knives in a holder

0.03

04

a big white bowl

A: In the daytime.

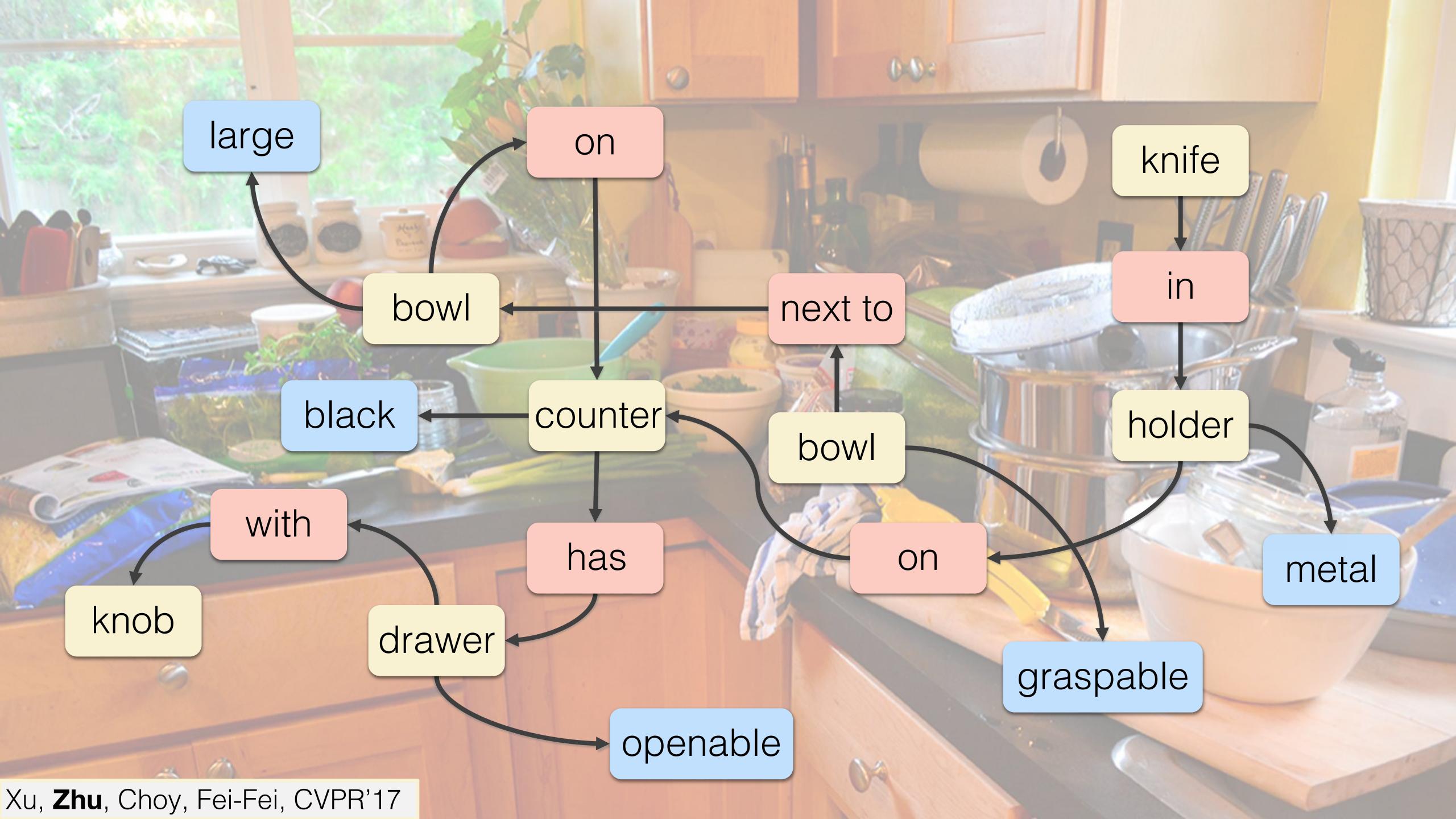
Q: What color is the countertop?

Zhu et al. CVPR'16, Zhu et al. CVPR'17

Q: When was the picture taken?

0.03

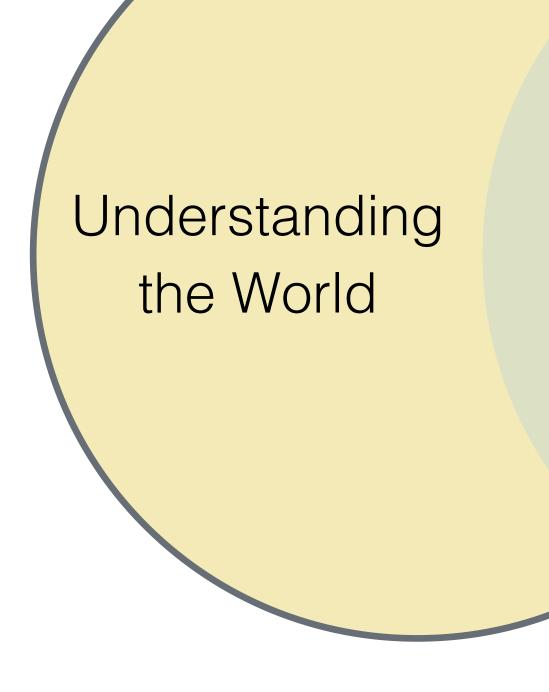
Q: How many drawer knobs can you see?



Visual Genome learns Declarative Knowledge from the web.

We built a large-scale visual knowledge base via online crowdsourcing.

Declarative Knowledge ("That-Is")



Interacting with the World

Procedural Knowledge ("How-To")

Learning Procedural Knowledge needs new methodology.

It is hard to pinpoint and difficult to verbally described.

Declarative Knowledge ("That-Is")

Understanding the World

Interacting with the World

Procedural Knowledge ("How-To")

Learning Procedural ("How-To") Knowledge from the Web

Three Key Questions

What's a good representation of procedural knowledge?

How do we learn procedural knowledge from the web?

How can robots take advantage of such knowledge?

Part I: Learning from Video Demonstrations

Part II: Learning from Crowd Teleoperation

Part I: Learning from Video Demonstrations

Part II: Learning from Crowd Teleoperation

Web videos supply massive knowledge of how to solve new tasks.

10 🗭

THEVERGE TECH - SCIENCE - CULTURE - CARS - REVIEWS - LONGFORM VIDED MORE - 🛛 f 🎔 🔊 🔔 🔍

TECH VOUTUBE CULTURE

Half of YouTube viewers use it to learn how to do things they've never done

Some of us are on there just to pass the time, though By Patricia Hernandez | @xpatriciah | Nov 7, 2018, 12:36pm EST

🛉 🔰 🕝 SHARE

how to

how to make slime

how to tie a tie

how to draw

how to basic

how to get boogie down dance

how to cake it

how to train your dragon 3

how to get the galaxy skin in fortnite

how to make slime without glue

how to solve a rubik's cube

Report search predictions

NOVEMBER 7, 2018

N Y 10 🖯

Many Turn to YouTube for Children's Content, News, How-To Lessons

An analysis of videos suggested by the site's recommendation engine finds that users are directed toward progressively longer and more popular content

BY AARON SMITH, SKYE TOOR AND PATRICK VAN KESSEL

(MaaHoo Studio/Getty Images)

Humans learn efficiently from video demonstrations.

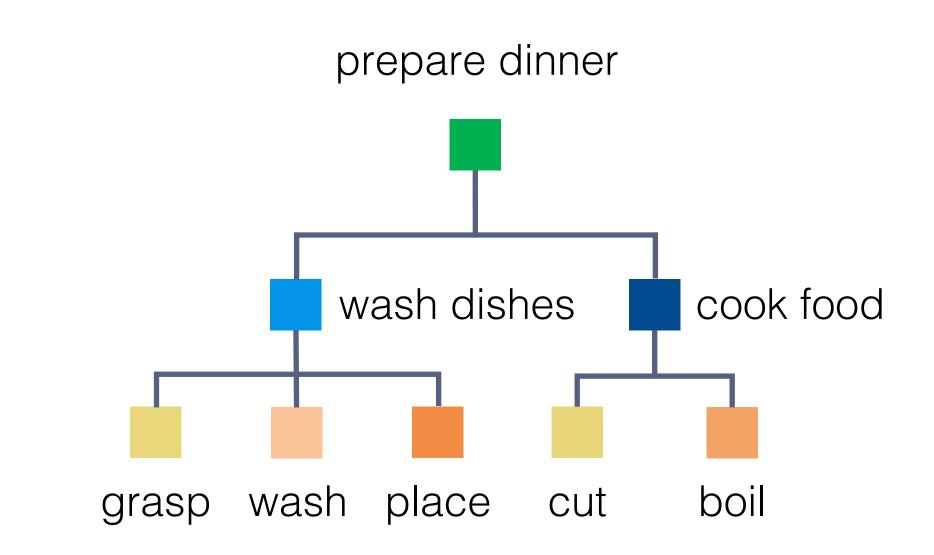
Imitation of Televised Models by Infants Andrew N. Meltzoff, *Child Development* 1988

Babies (14-24 months) can learn by imitating demonstrations from the TV screen.

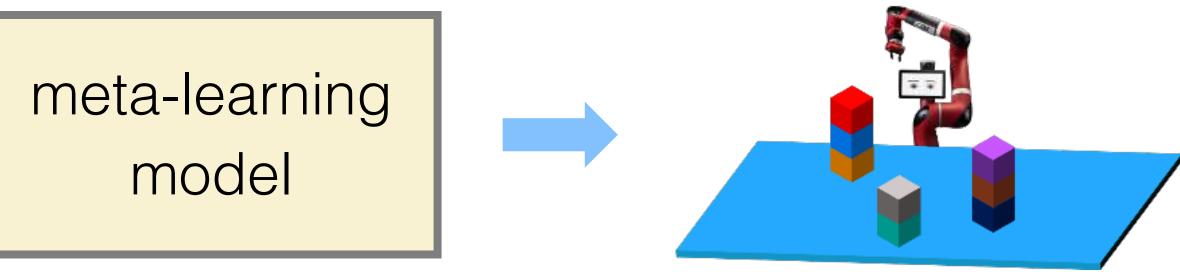
Meltzoff & Moore 1977; Meltzoff & Moore 1989, Meltzoff 1988

Our Goal: Learning procedural knowledge as compositional task structures from video demonstrations of a task

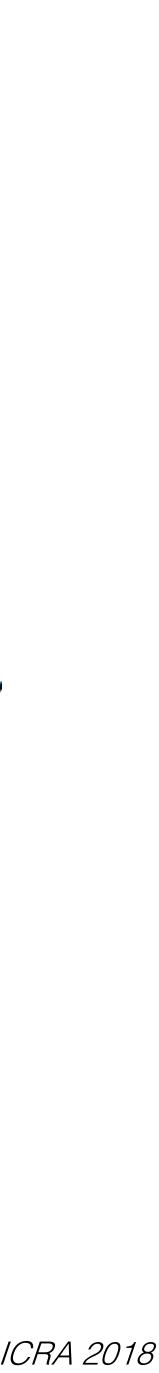
prepare dinner

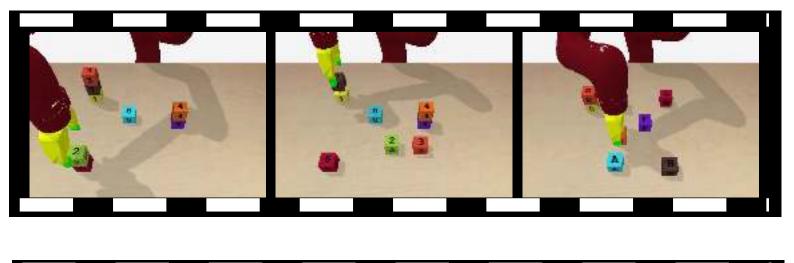


single video demonstration



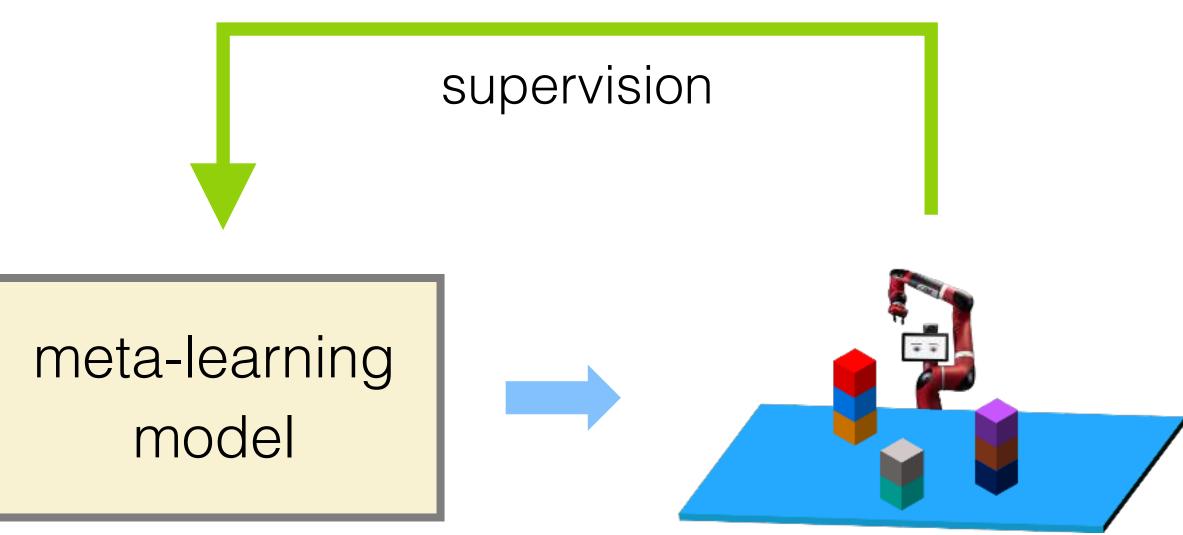
policy for the demonstrated task



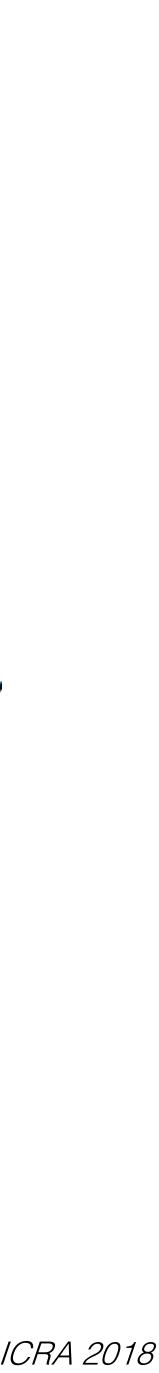


. . .

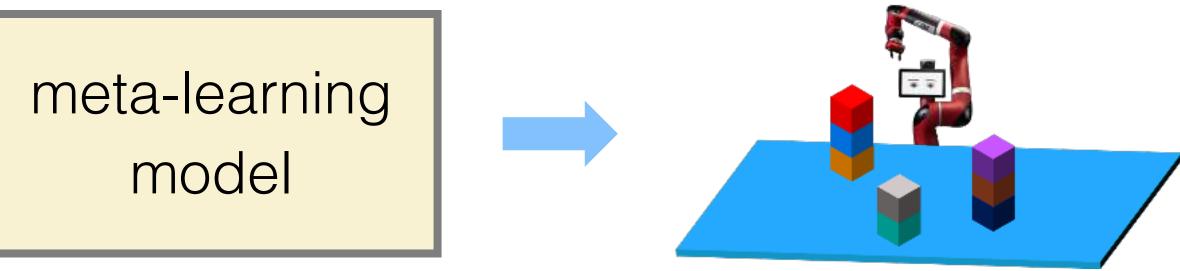
a lot of training videos (seen tasks)



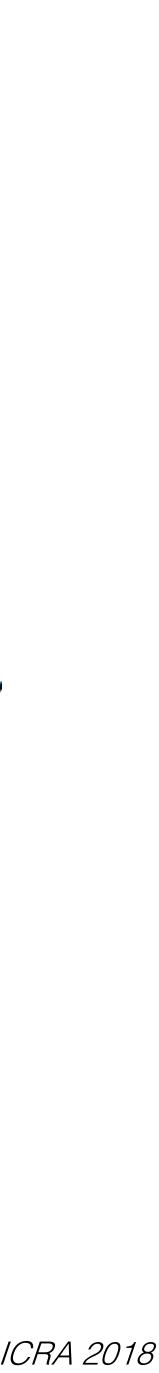
policy for the demonstrated task

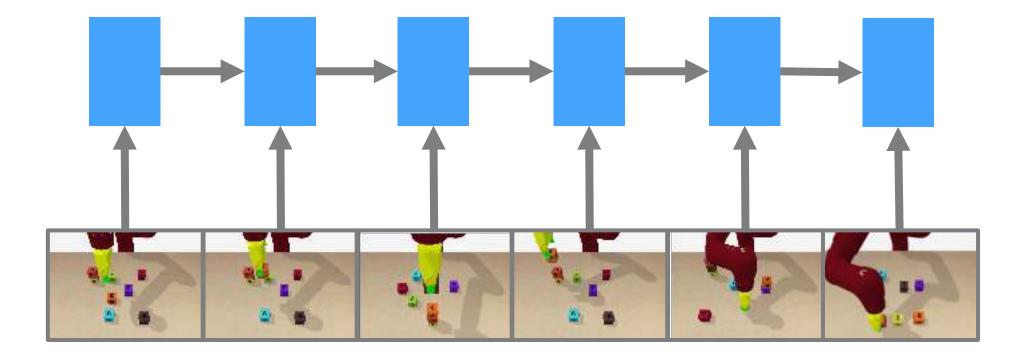


single test video (unseen task)



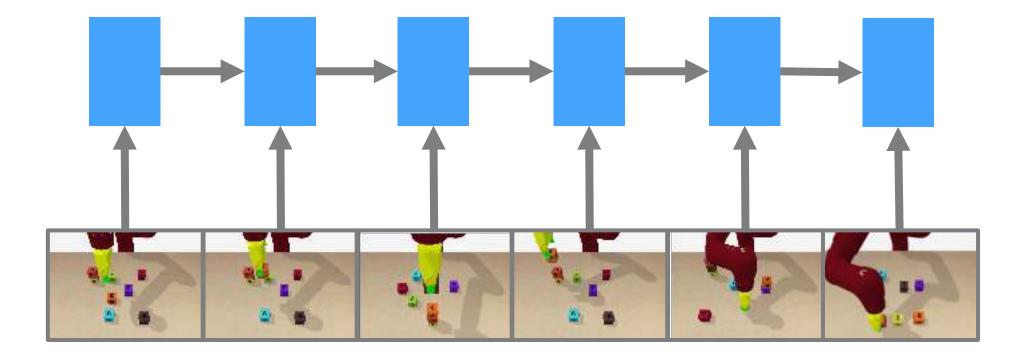
policy for the demonstrated task





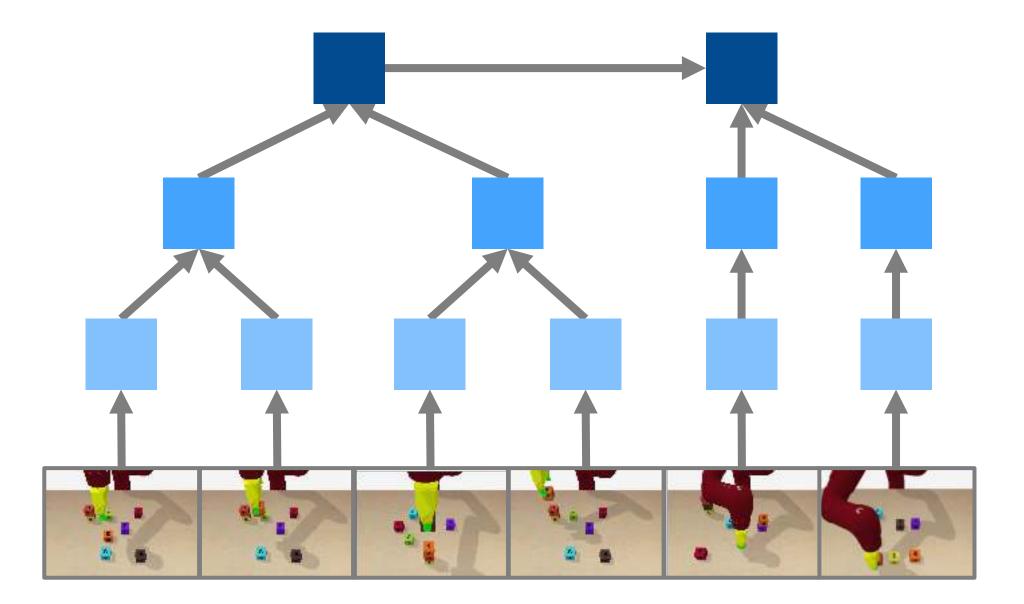
[Duan et al. 17; Finn et al. 2017; Wang et al. 2017; Yu et al. 2018]

modeling demonstration as a **flat sequence**



[Duan et al. 17; Finn et al. 2017; Wang et al. 2017; Yu et al. 2018]

modeling demonstration as a **flat sequence**



modeling demonstration as a **compositional structure**



Neural Task Programming (NTP): Hierarchical Policy Learning as Neural Program Induction



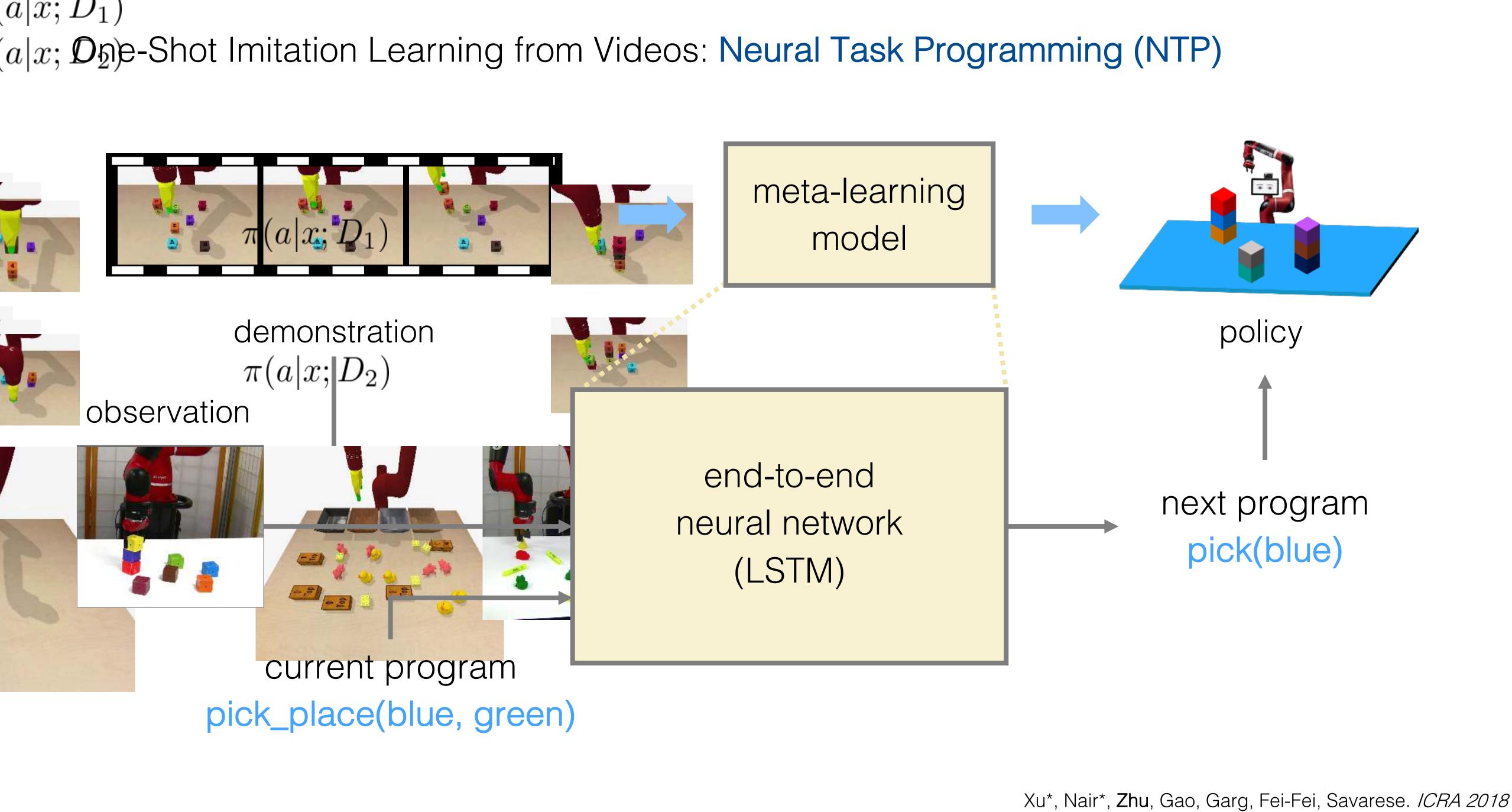
Move_to (Blue)

Grip (Blue)

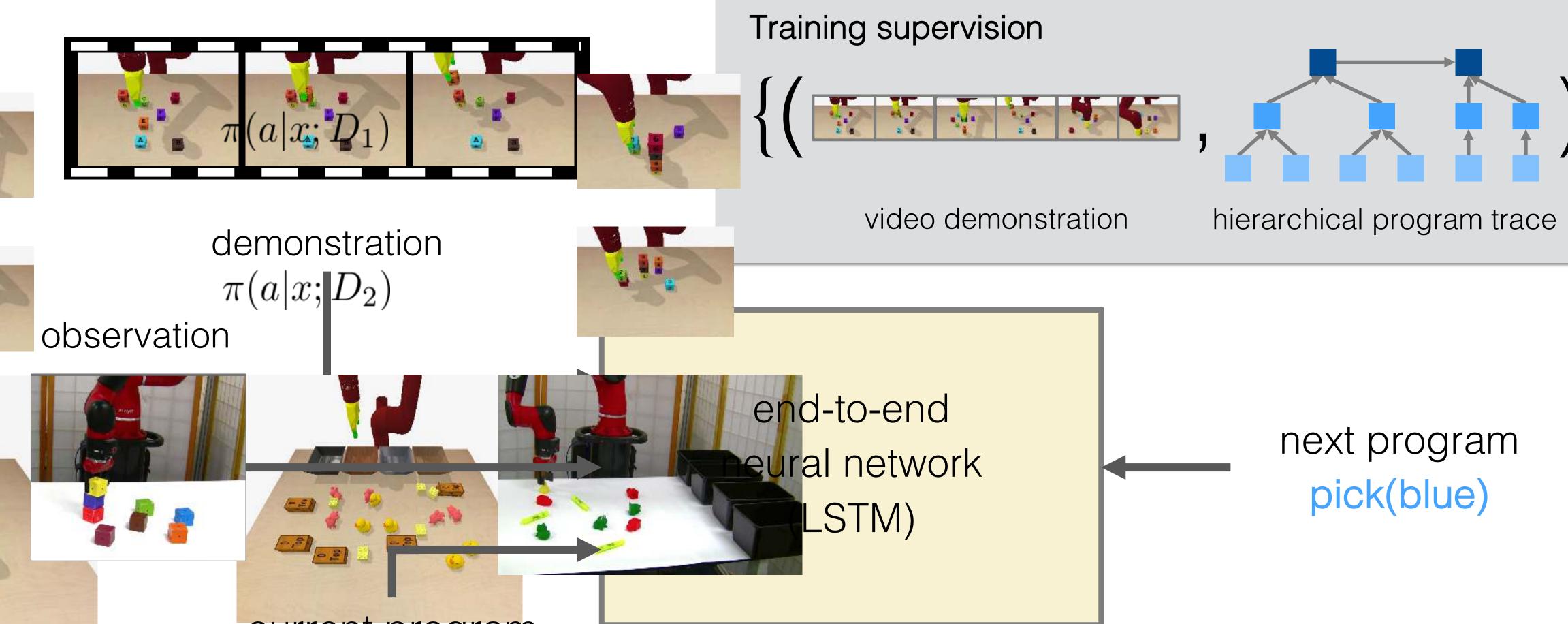
Move_to (Red)

• • •

$(a|x;D_1)$



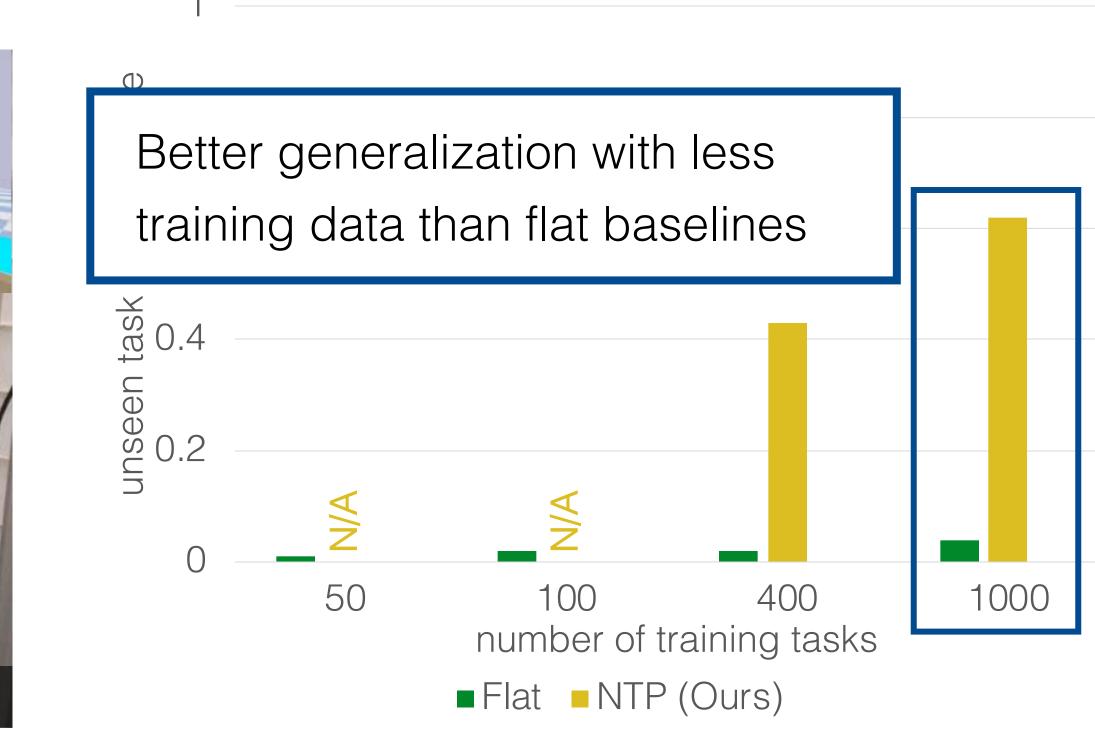
$(a|x;D_1)$ $(a|x; D_{2})$ = Shot Imitation Learning from Videos: Neural Task Programming (NTP)



current program pick_place(blue, green)

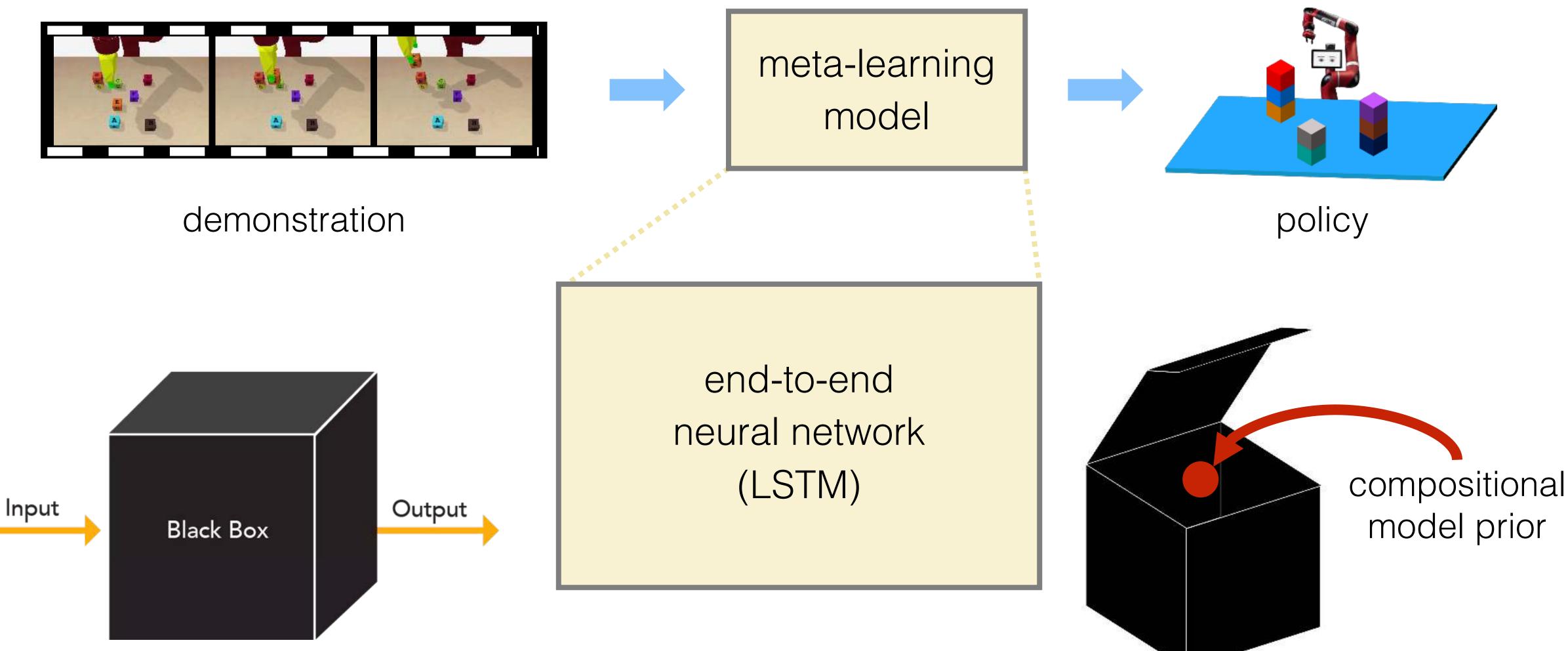
One-Shot Imitation Learning from Videos: Neural Task Programming (NTP)

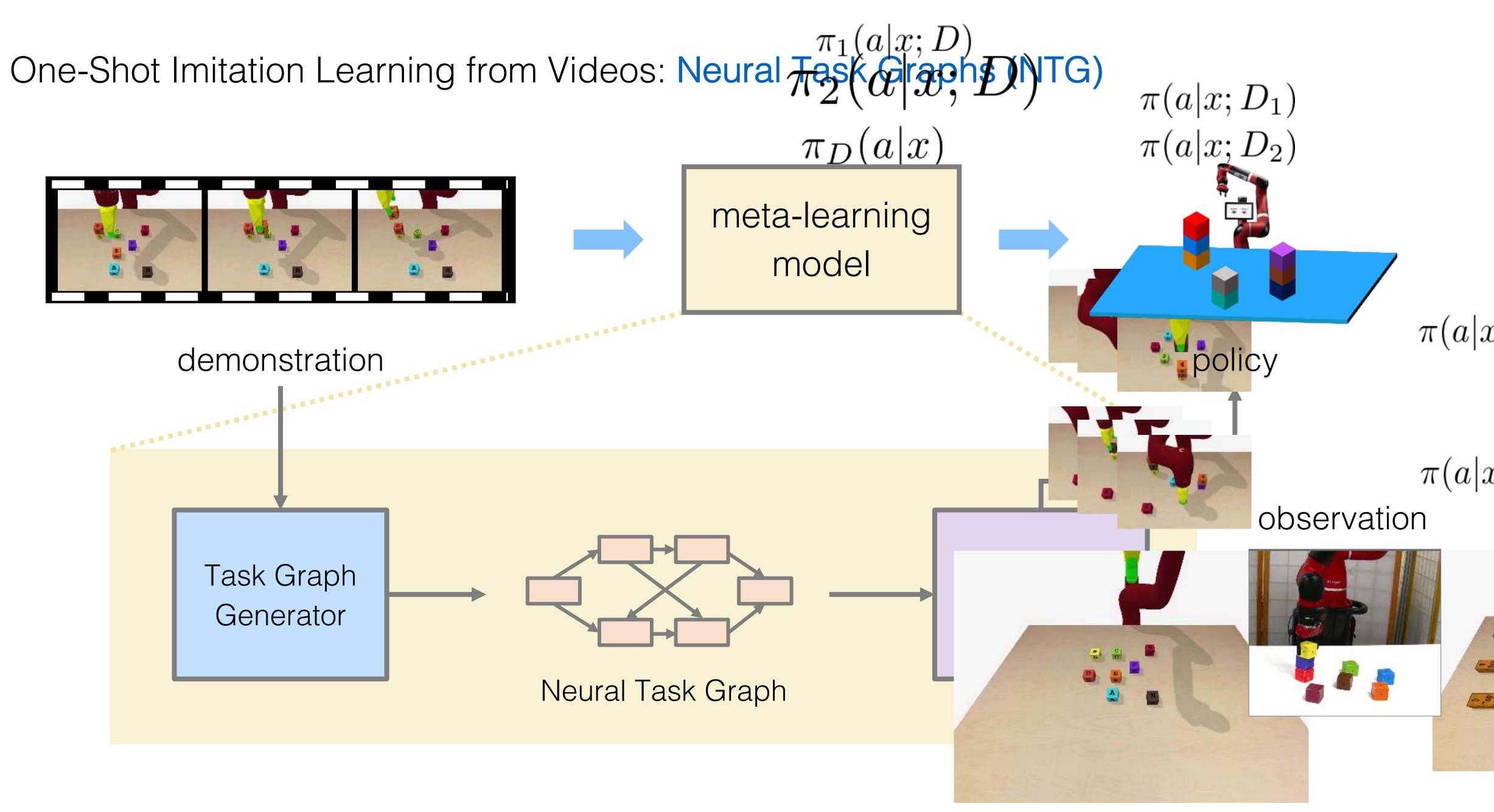
Qualitative



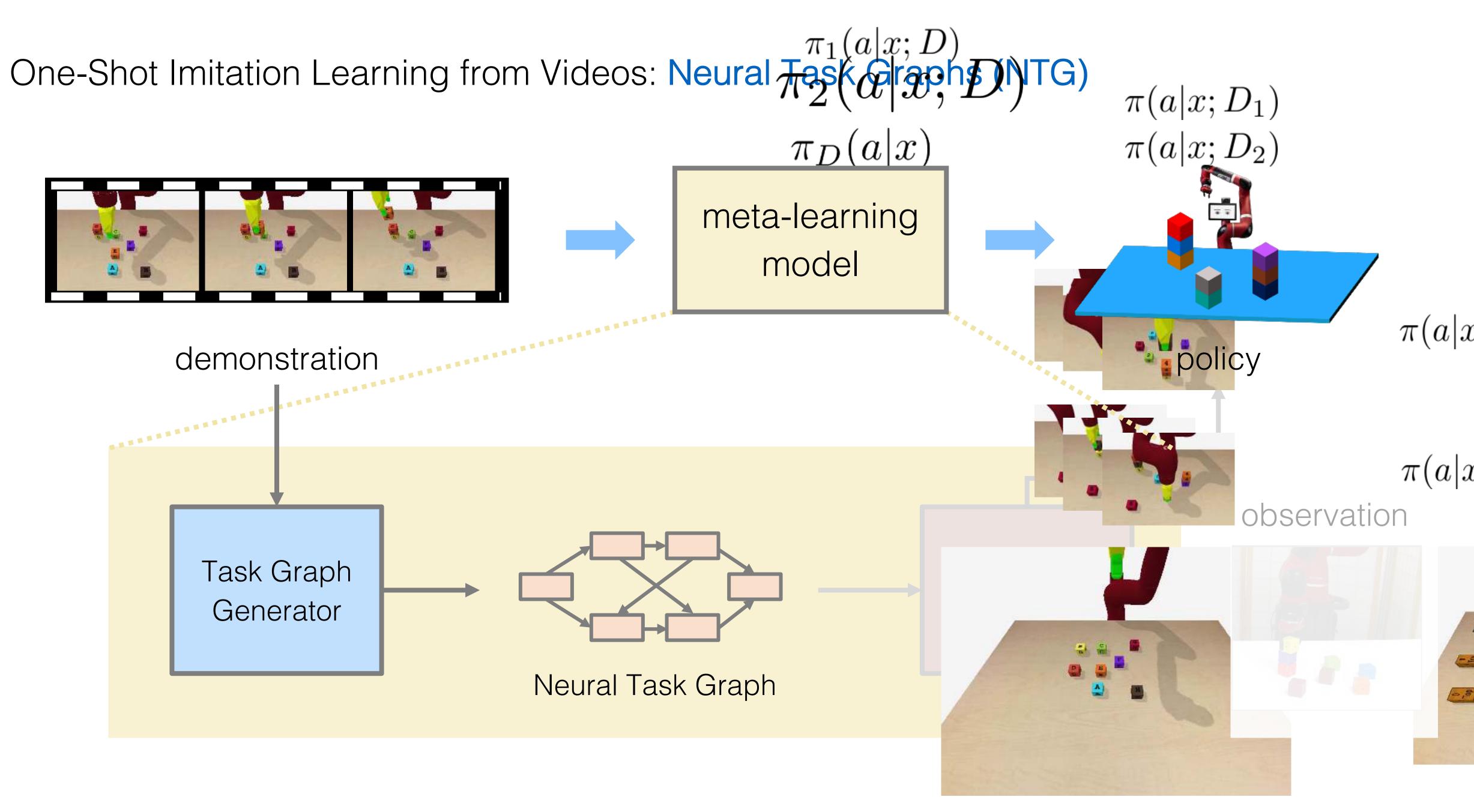
Quantitative (the higher the better)

One-Shot Imitation Learning from Videos: Neural Task Programming (NTP)

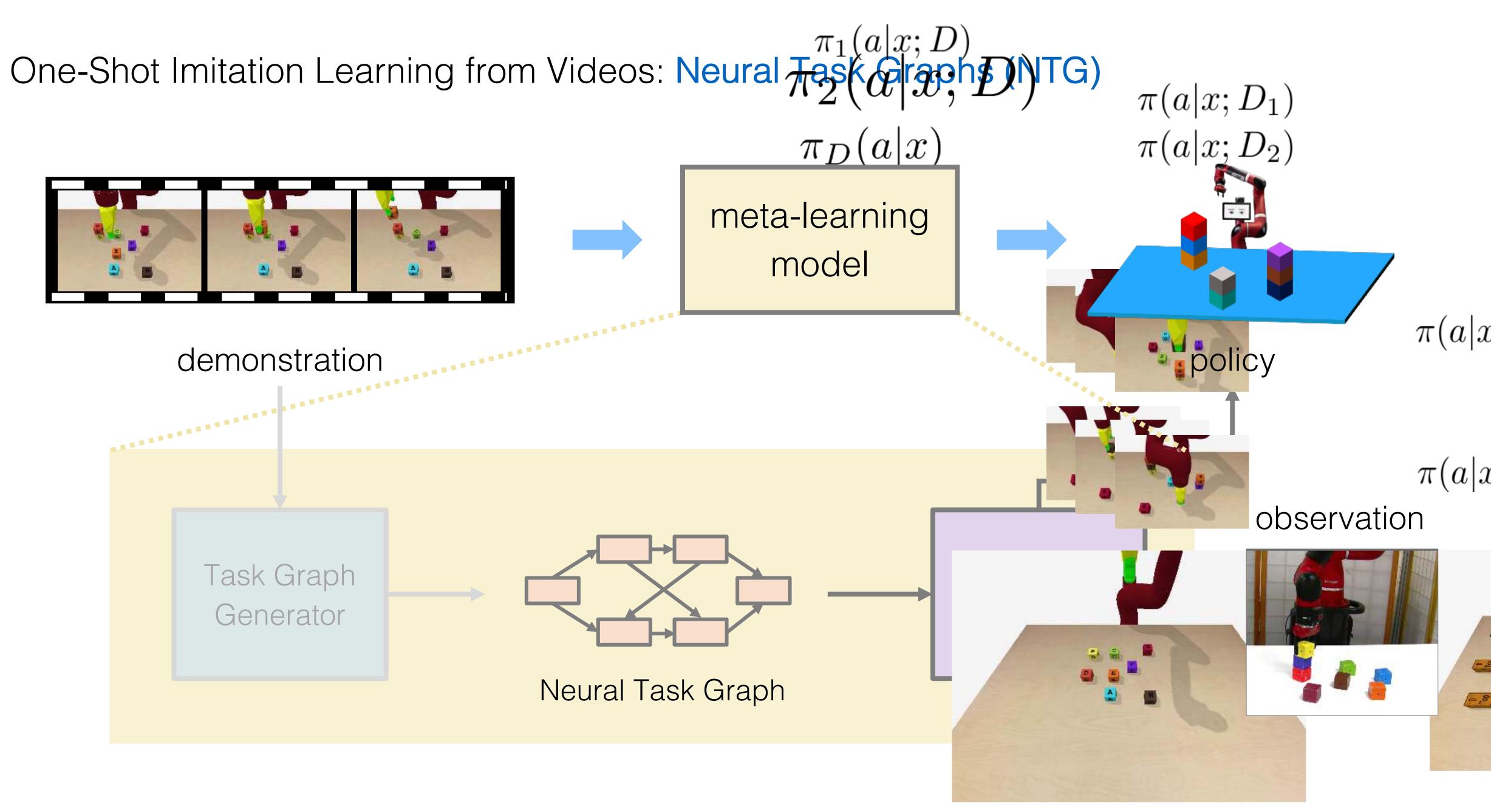




Huang*, Nair*, Xu*, Zhu, Garg, Fei-Fei, Savarese, Niebles. CVPR 2019

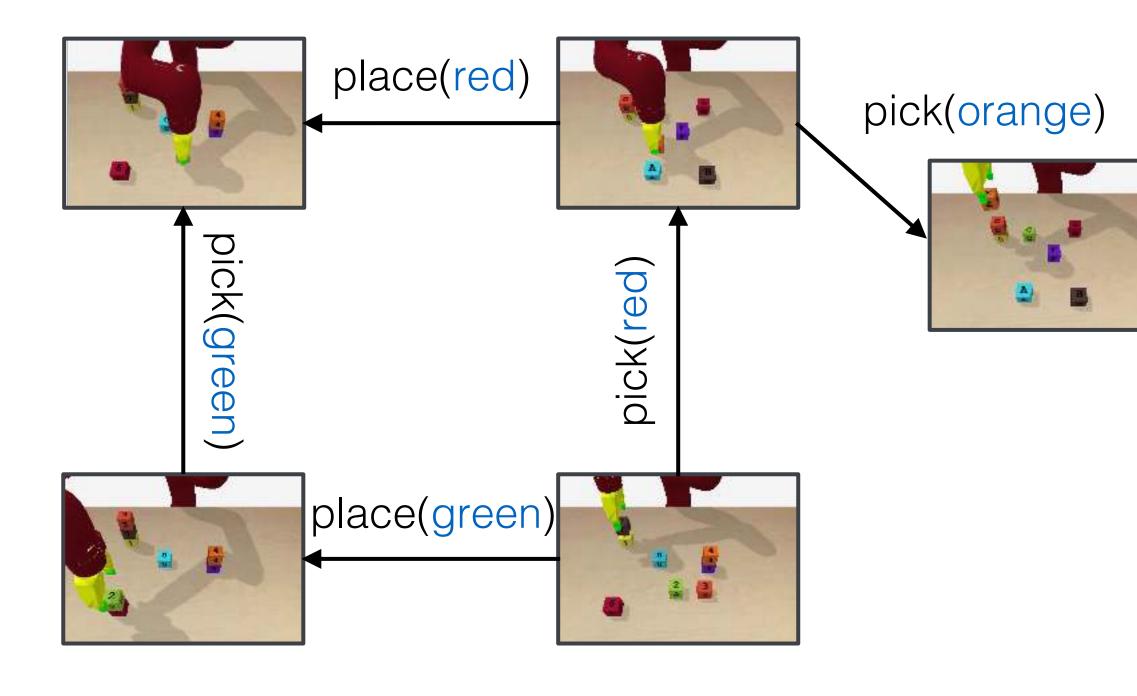


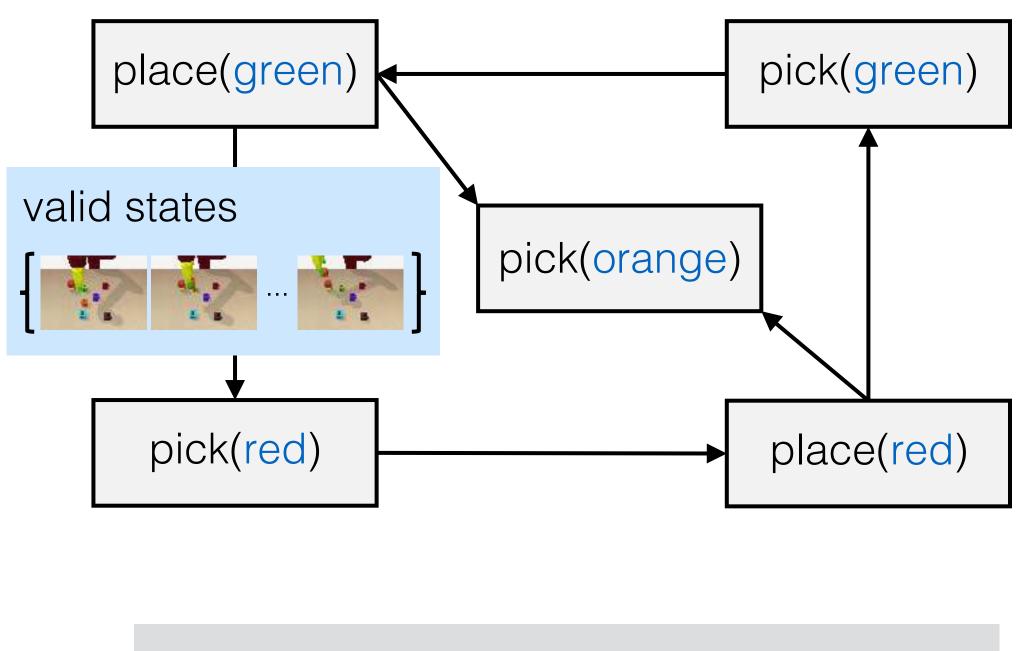
Huang*, Nair*, Xu*, Zhu, Garg, Fei-Fei, Savarese, Niebles. CVPR 2019



One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)

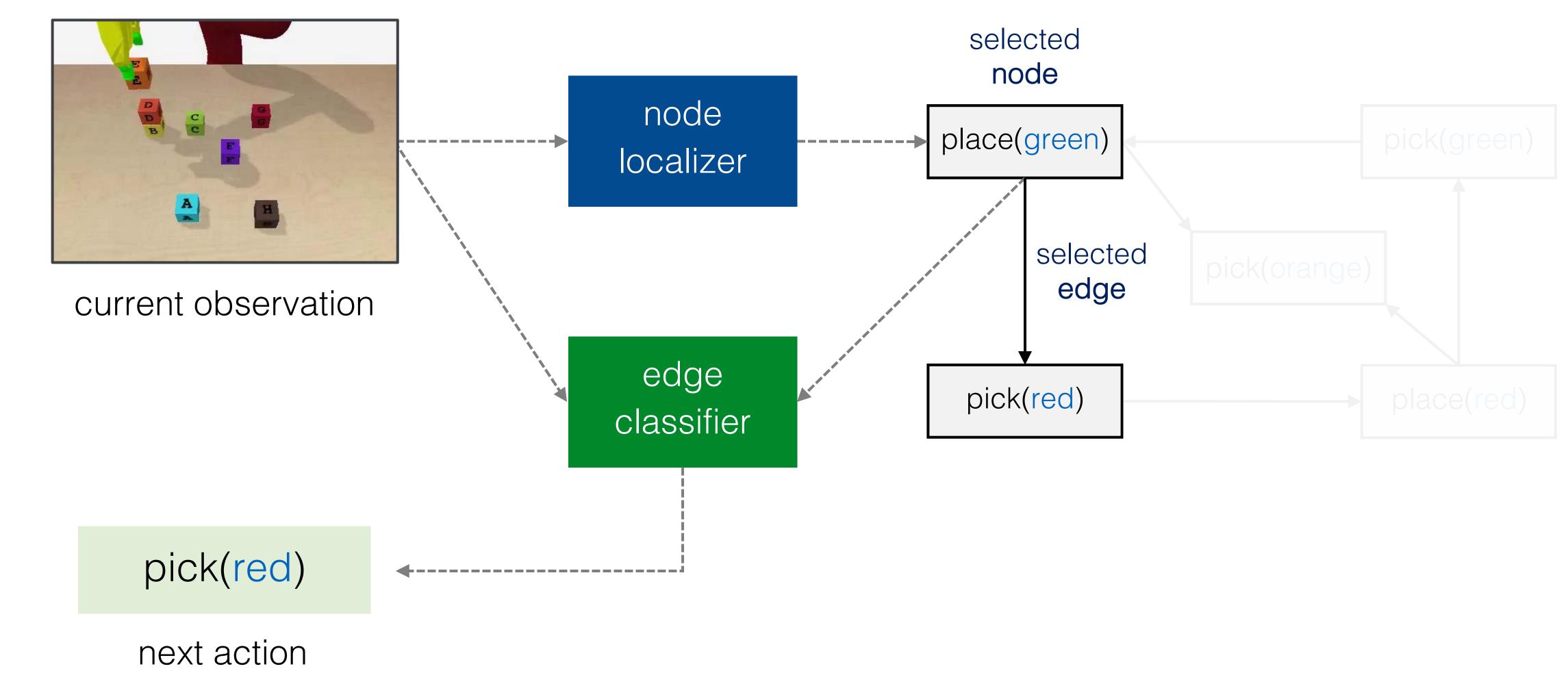
Task Graph

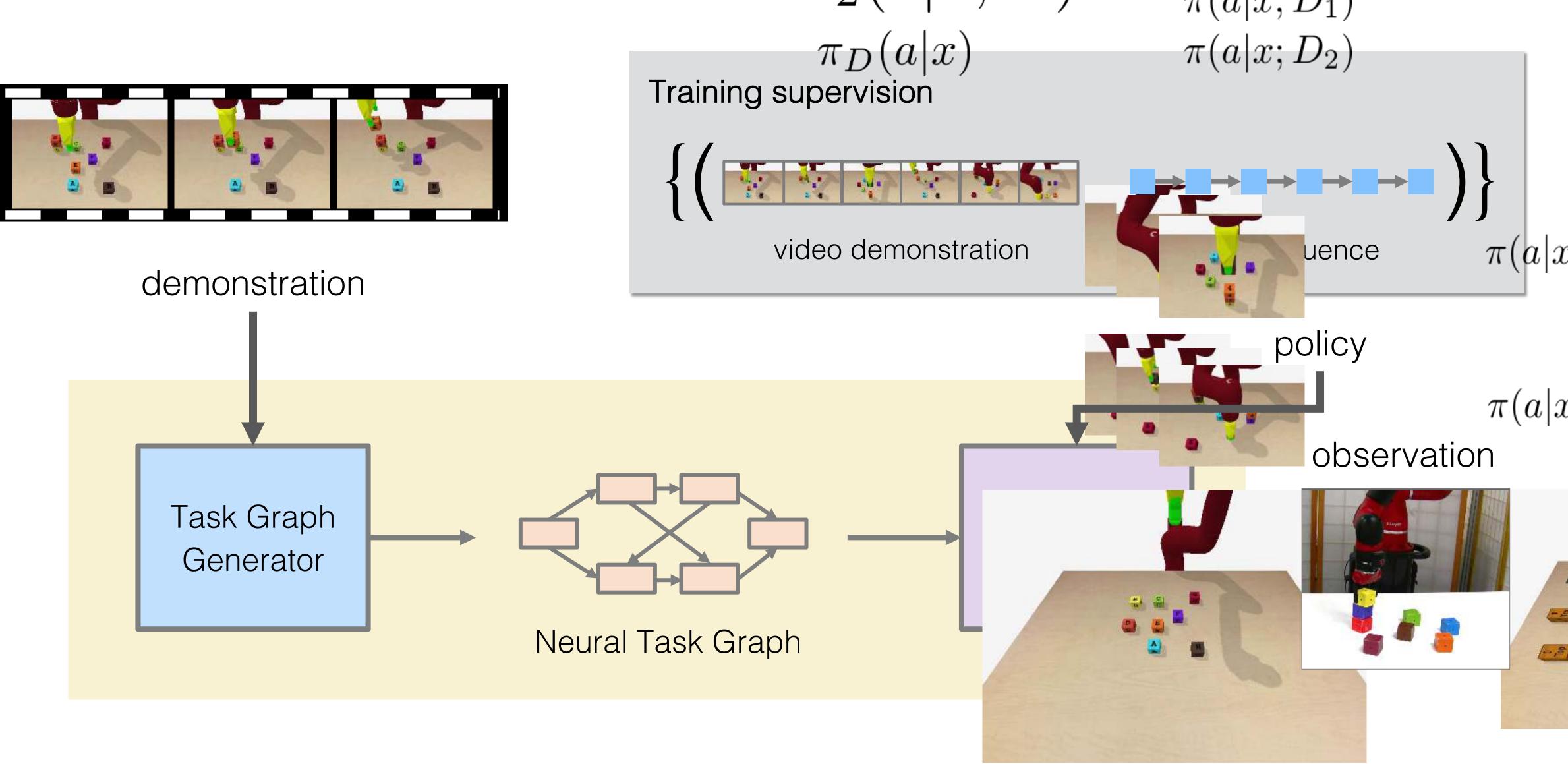




NodesActionsfiniteEdgesStates (Preconditions)

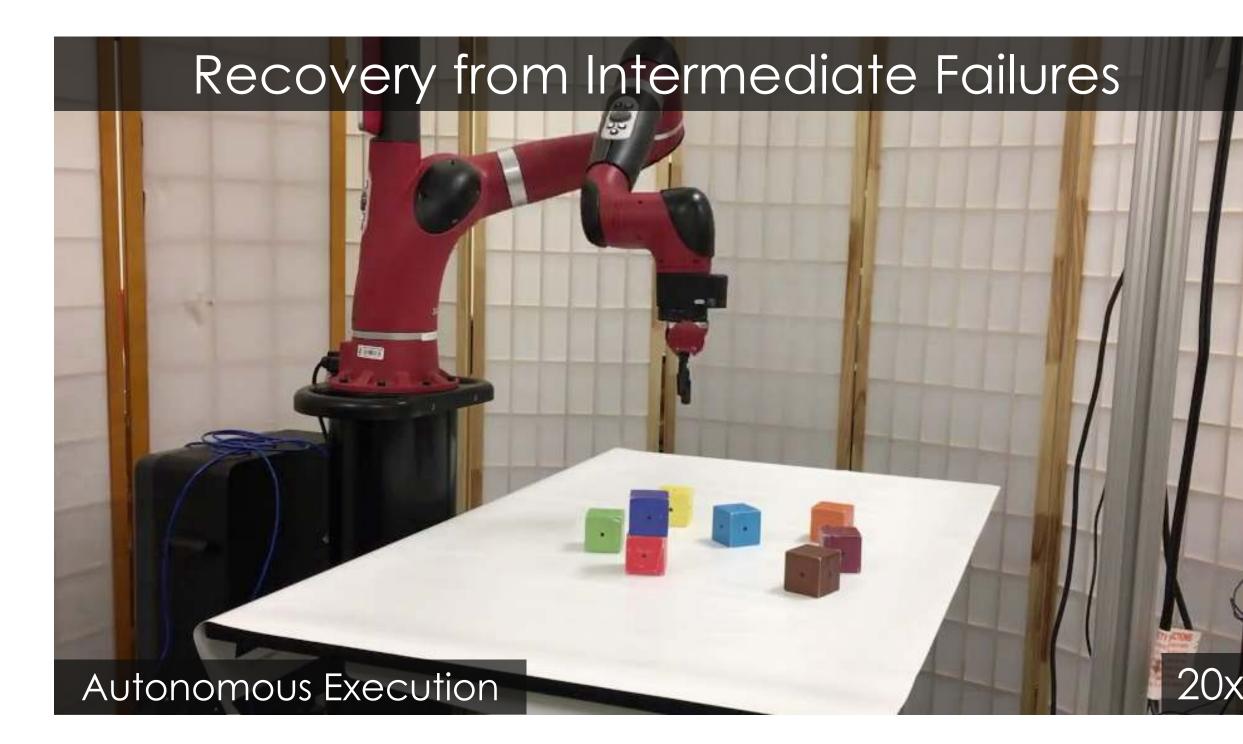
One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)



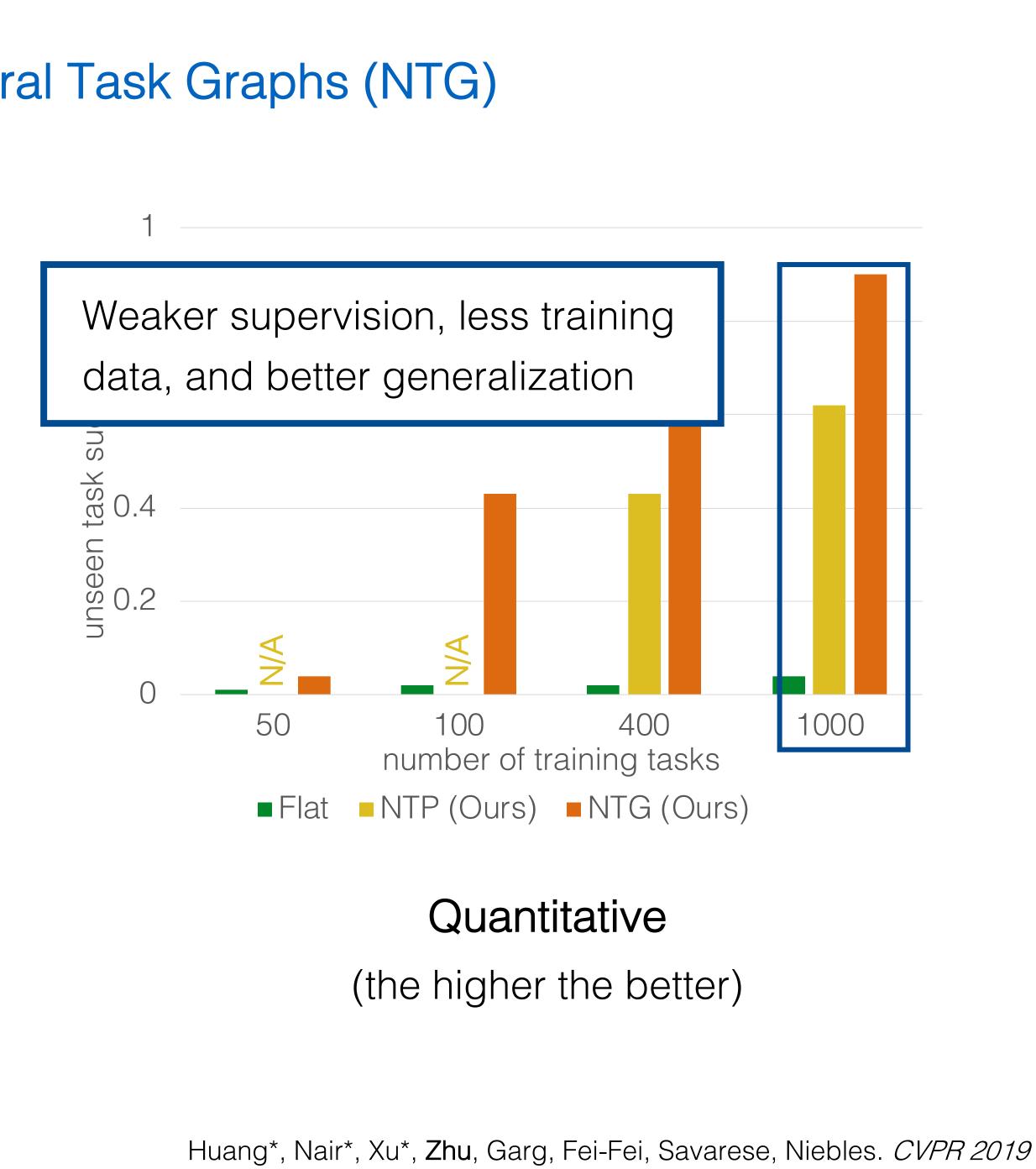


 $\pi(a|x;D_1)$ $\pi(a|x;D_2)$

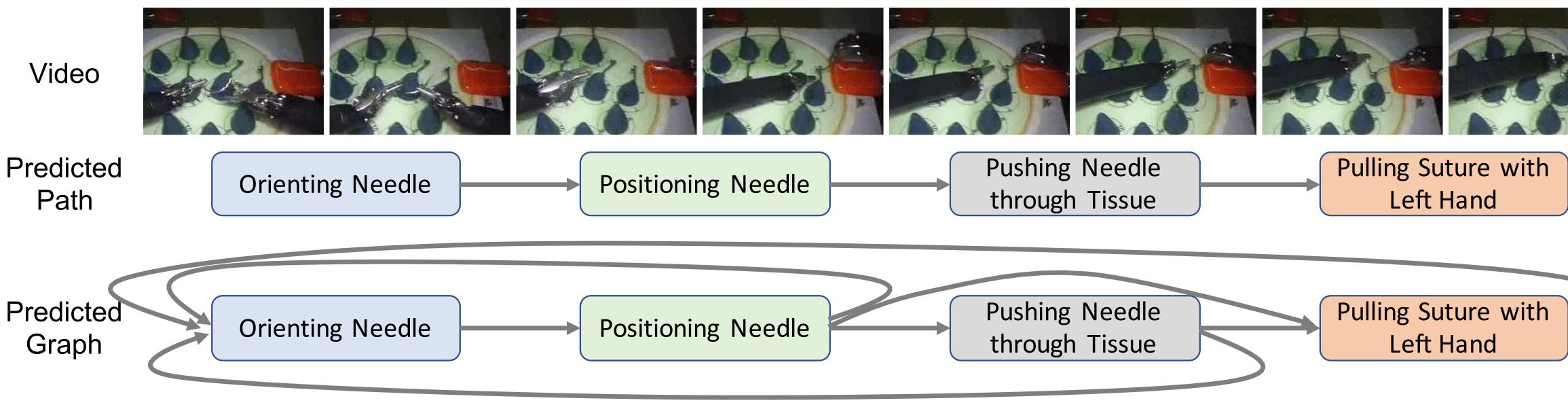
One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)



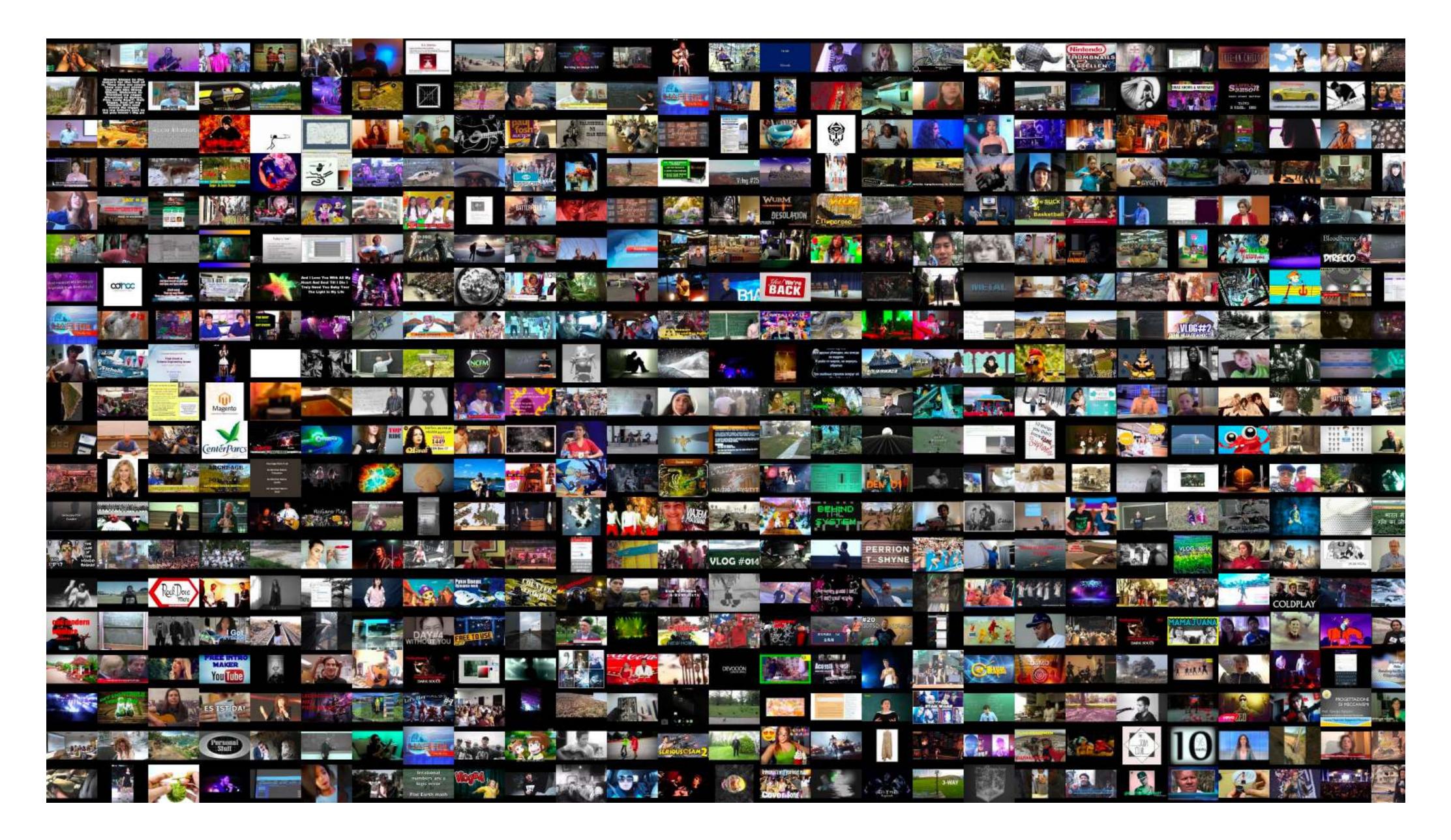
Qualitative



One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)

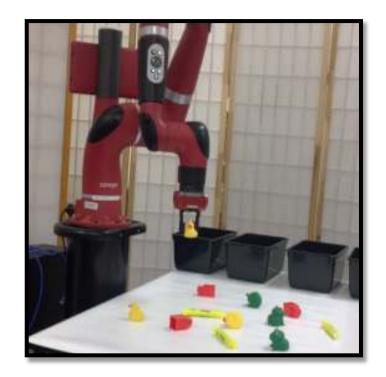


Applying NTG to the real-world surgical video dataset JIGSAWS

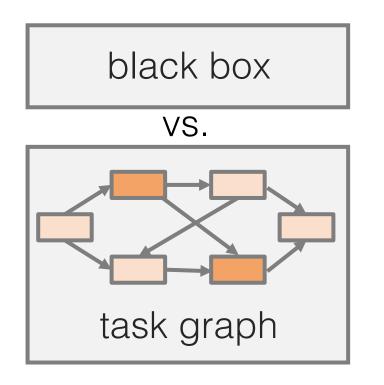


Next Goal: Learning task knowledge from web videos

Summary - Part I



Extracting how-to knowledge about the **compositional task** structure of complex tasks from video demonstrations



Meta-learning models with compositional priors generalize better than black-box models

NTP and NTG learn how-to knowledge in the form of compositional task structures while motor skills are abstracted away.

prepare dinner

modeled as pre-defined "API calls"

NTP and NTG learn how-to knowledge in the form of compositional task structures while motor skills are abstracted away.

Manually defining motor skills is intractable. We need to learn from data.

How can we collect data for learning motor skills from the web?

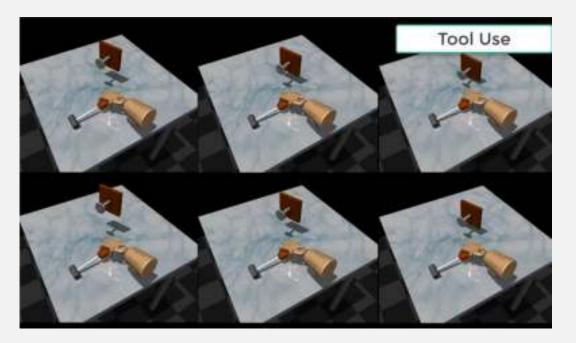
Part I: Learning from Video Demonstrations

Part II: Learning from Crowd Teleoperation

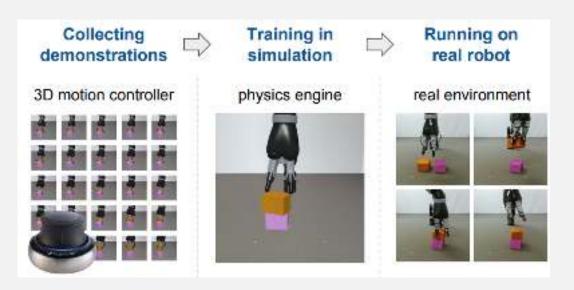
Data is critical for learning robot motor skills.

Imitation Learning

Rajeswaran et al. 2018: 25 demos



Zhu et al. 2018: 30 demos



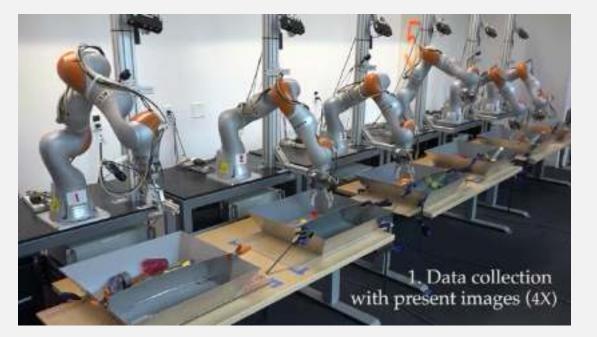
Finn et al. 2017: 30 demos

Vecerik et al. 2017: 100 demos

Large demonstration datasets is hard to collect. Humans need to **demonstrate** not **label**.

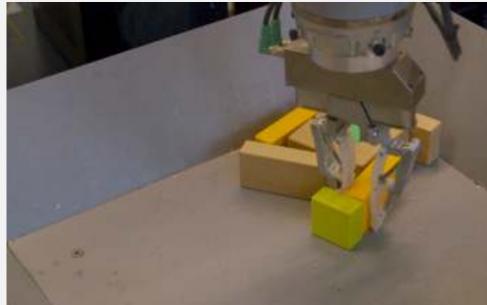
Reinforcement & Self-Supervised Learning

Levine et al. 2016



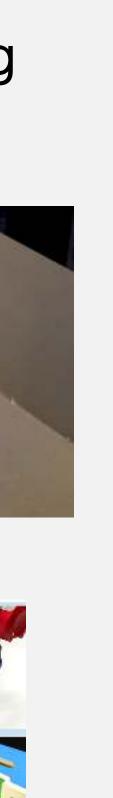
Pinto et al. 2016

Kalashnikov et al. 2018



Fang et al. 2018

Data can be low quality due to lack of expert.

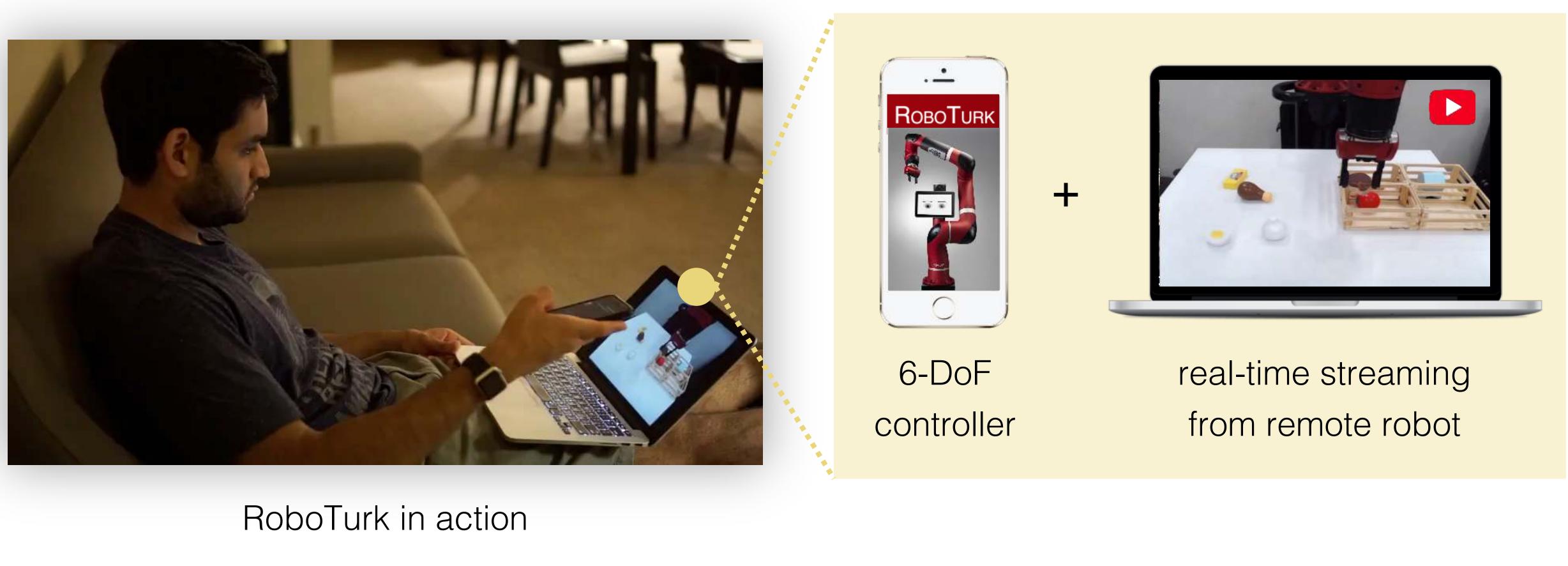


Data is critical for learning robot skills.

How to scale up high-quality human supervision for robotics?

Provide a natural way for <u>anyone</u> to provide demonstrations

Web-based Crowd Teleoperation with RoboTurk RoboTurk: Crowdsourcing Platform for Large-Scale Demonstration Collection



roboturk.stanford.edu

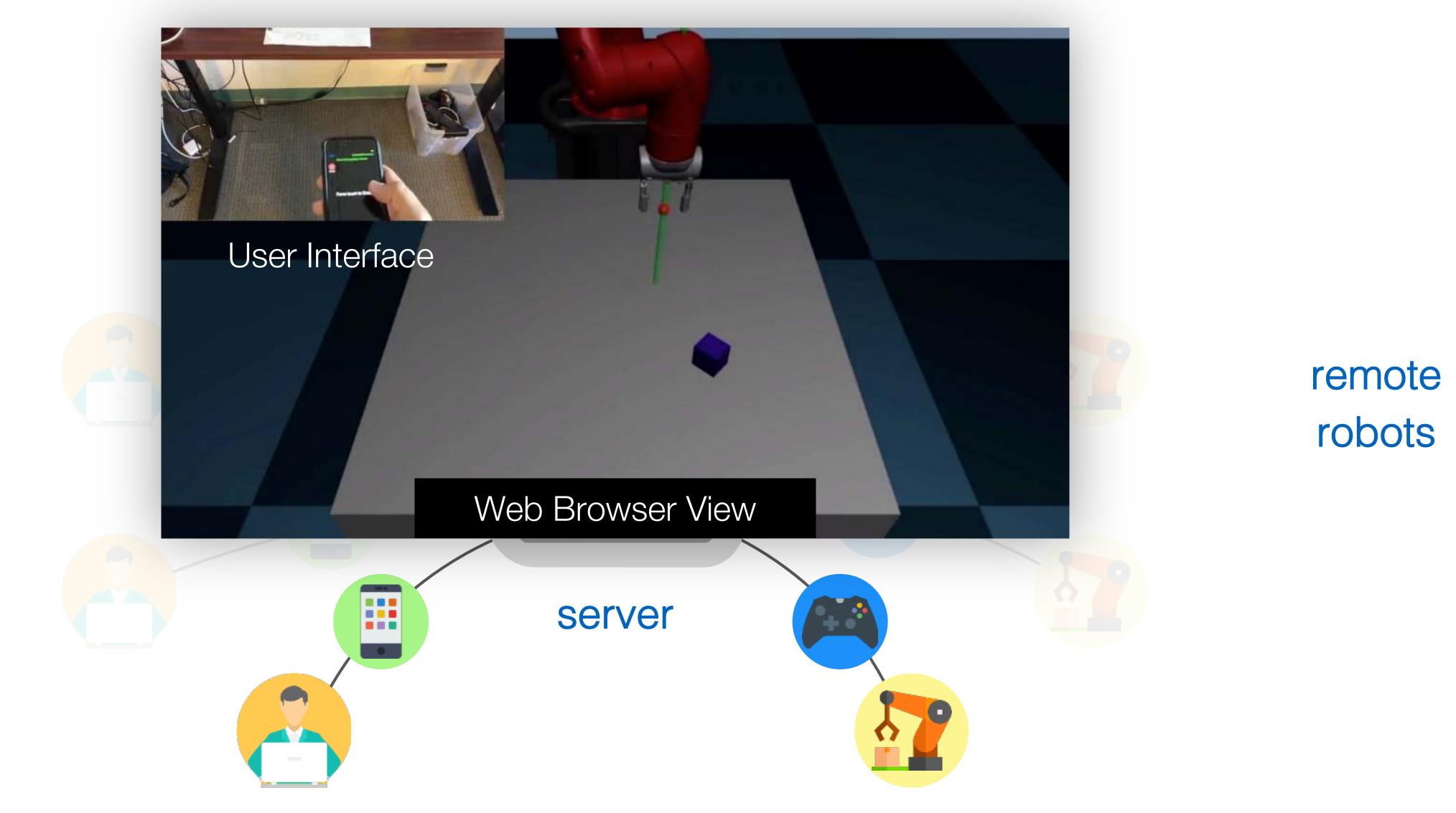
Mandlekar, Zhu, Garg, Booher, Spero, Tung, Gao, Emmons, Gupta, Orbay, Savarese, Fei-Fei, CoRL 2018

Web-based Crowd Teleoperation with RoboTurk

roboturk.stanford.edu

Mandlekar, Zhu, Garg, Booher, Spero, Tung, Gao, Emmons, Gupta, Orbay, Savarese, Fei-Fei, CoRL 2018

Web-based Crowd Teleoperation with RoboTurk



cloud users

roboturk.stanford.edu

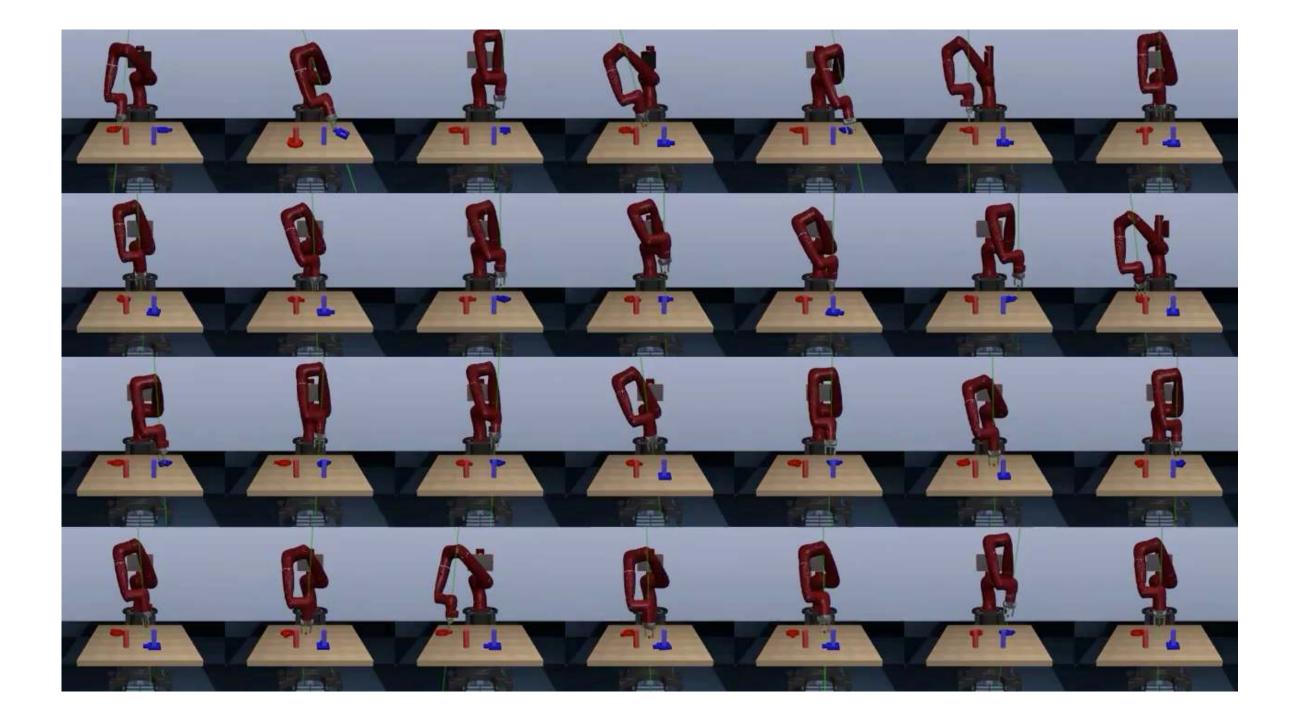
Mandlekar, Zhu, Garg, Booher, Spero, Tung, Gao, Emmons, Gupta, Orbay, Savarese, Fei-Fei, CoRL 2018

Web-based Crowd Teleoperation with RoboTurk

RoboTurk Pilot Dataset

137.5 hours of demonstrations 22 hours of total platform usage 2218 successful demonstrations

surreal.stanford.edu roboturk.stanford.edu



teleoperated demonstrations

Zhu*, Fan*, Zhu, Liu, Zeng, Gupta, Creus-Costa, Savarese, Fei-Fei, CoRL 2018 Mandlekar, Zhu, Garg, Booher, Spero, Tung, Gao, Emmons, Gupta, Orbay, Savarese, Fei-Fei, CoRL 2018

Policy Learning from Teleoperated Demonstrations Learning from the Masses

Bin Picking (Can)

Nut Assembly (Round)

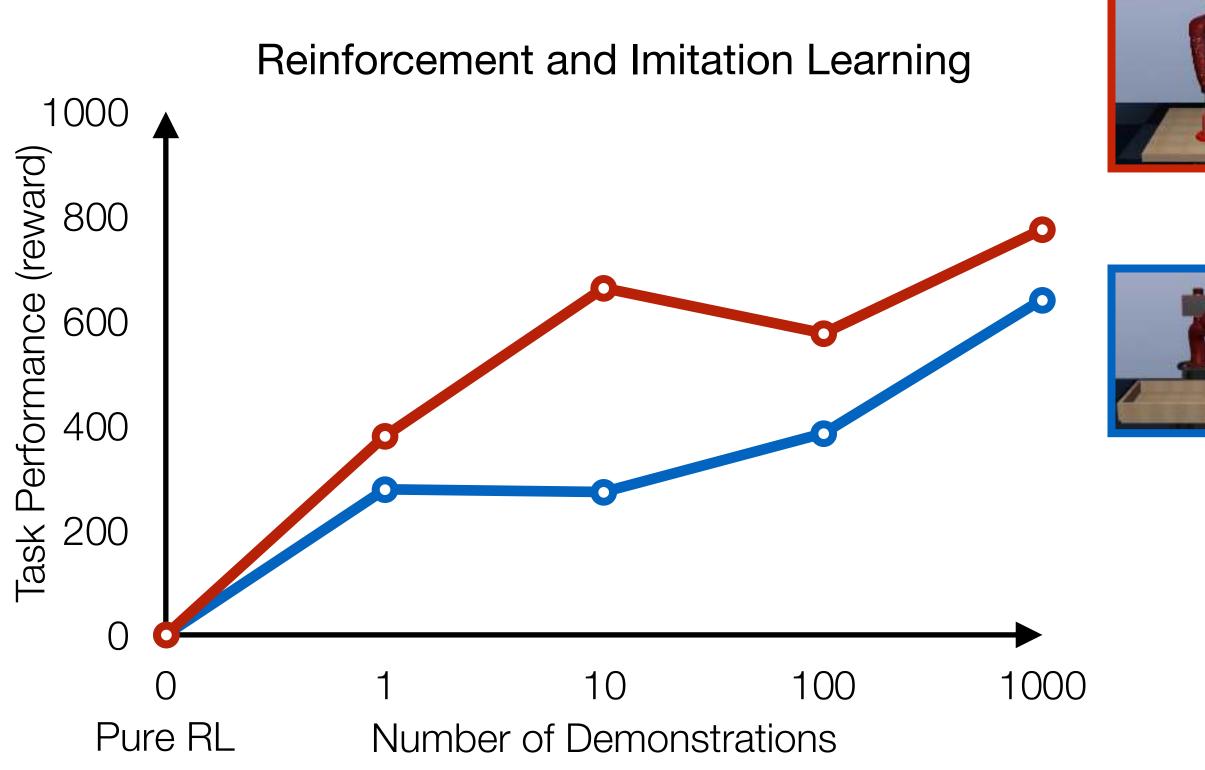
Reinforcement and Imitation Learning: Data

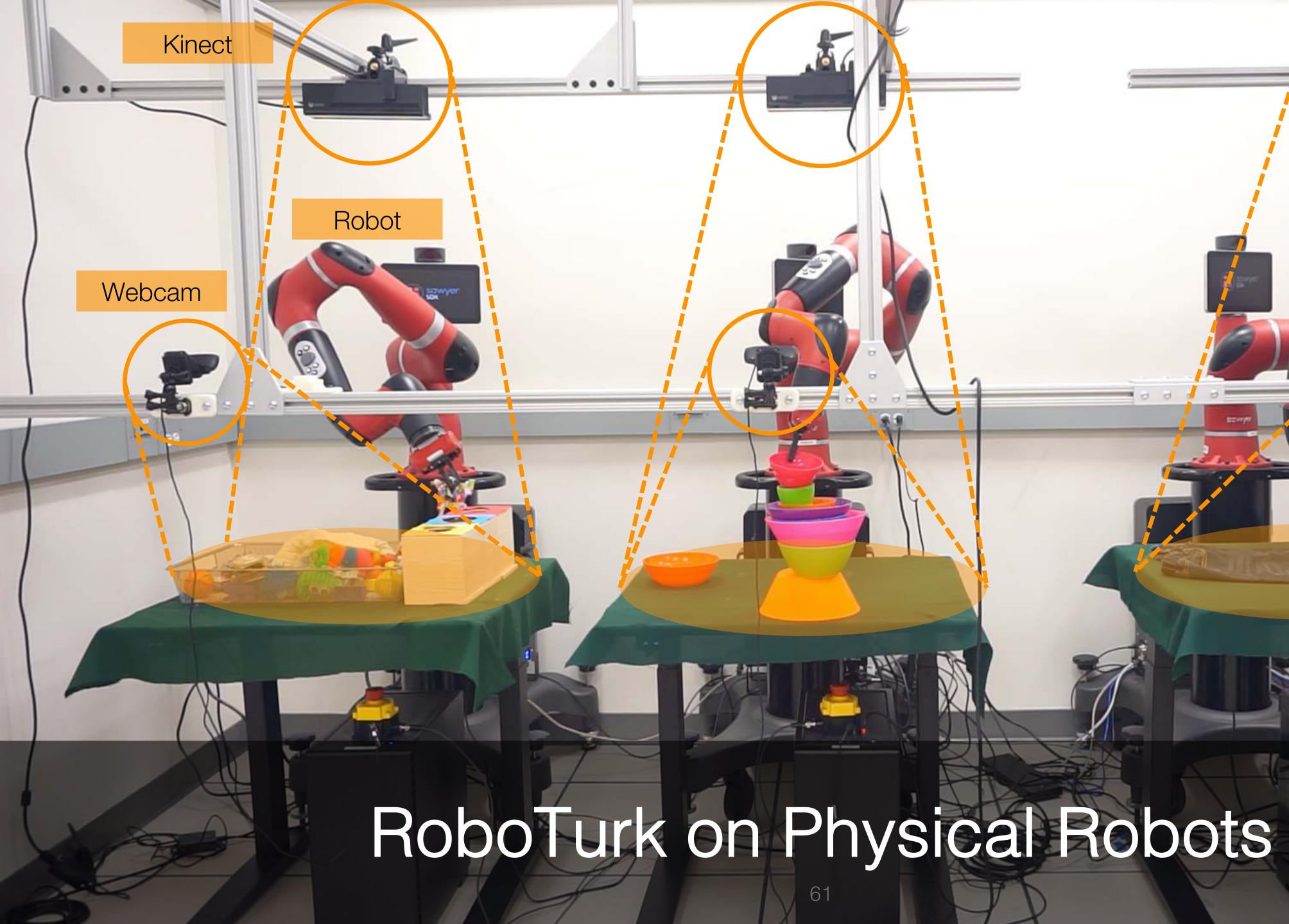
RoboTurk Pilot Dataset

137.5 hours of demonstrations 22 hours of total platform usage 2218 successful demonstrations

surreal.stanford.edu roboturk.stanford.edu

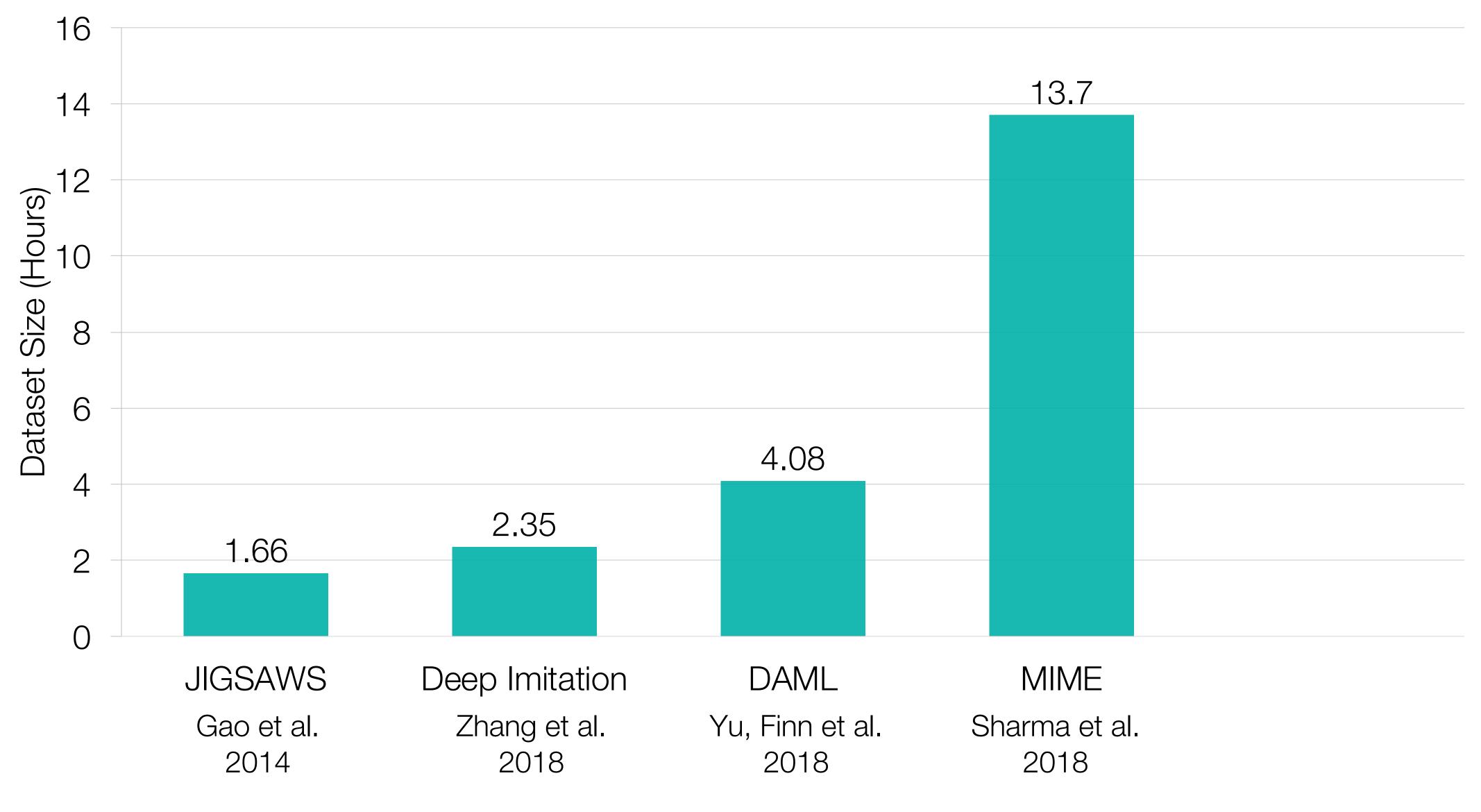
Zhu*, Fan*, Zhu, Liu, Zeng, Gupta, Creus-Costa, Savarese, Fei-Fei, CoRL 2018 Mandlekar, Zhu, Garg, Booher, Spero, Tung, Gao, Emmons, Gupta, Orbay, Savarese, Fei-Fei, CoRL 2018





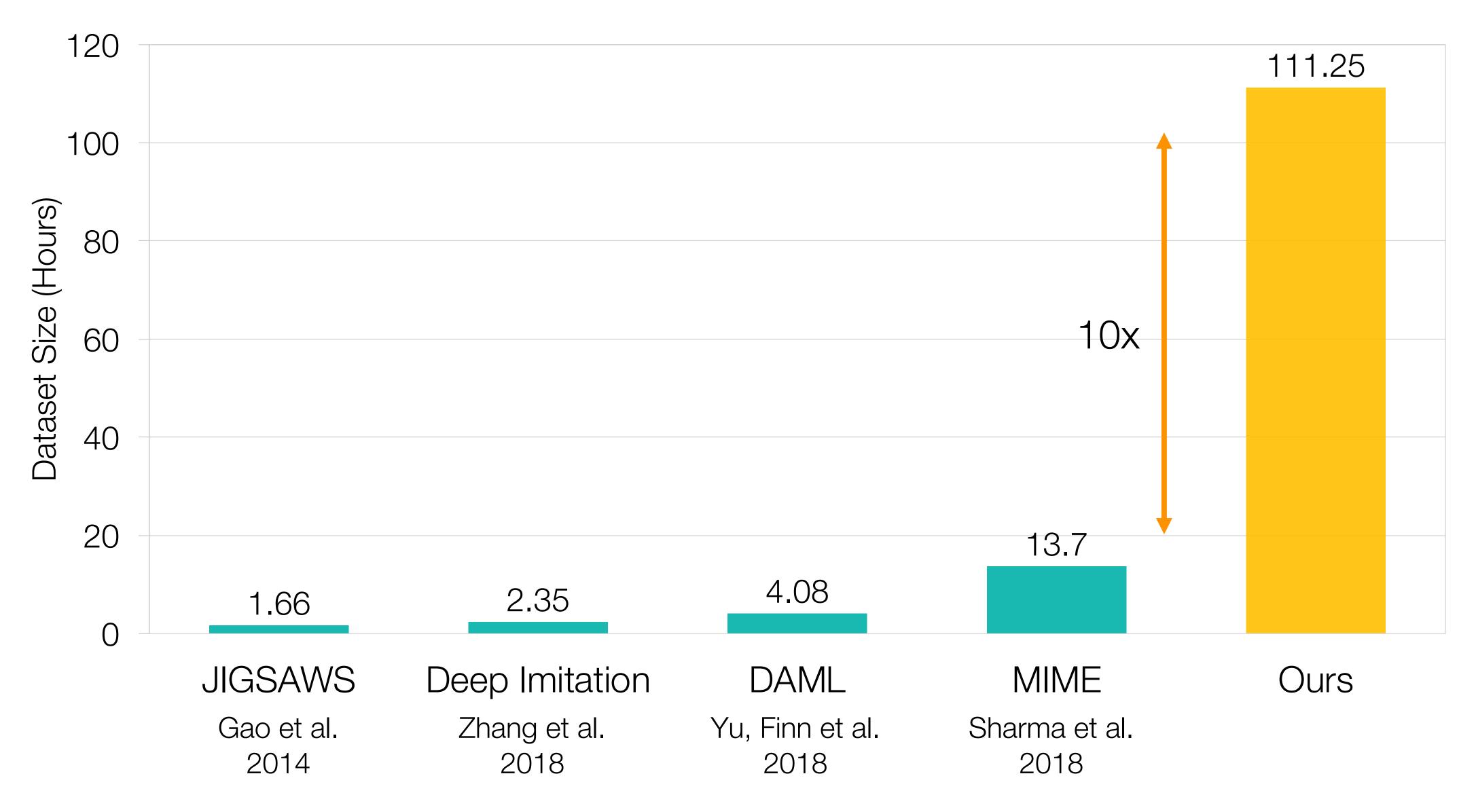
Scalable Data Collection

Dataset Size Comparison

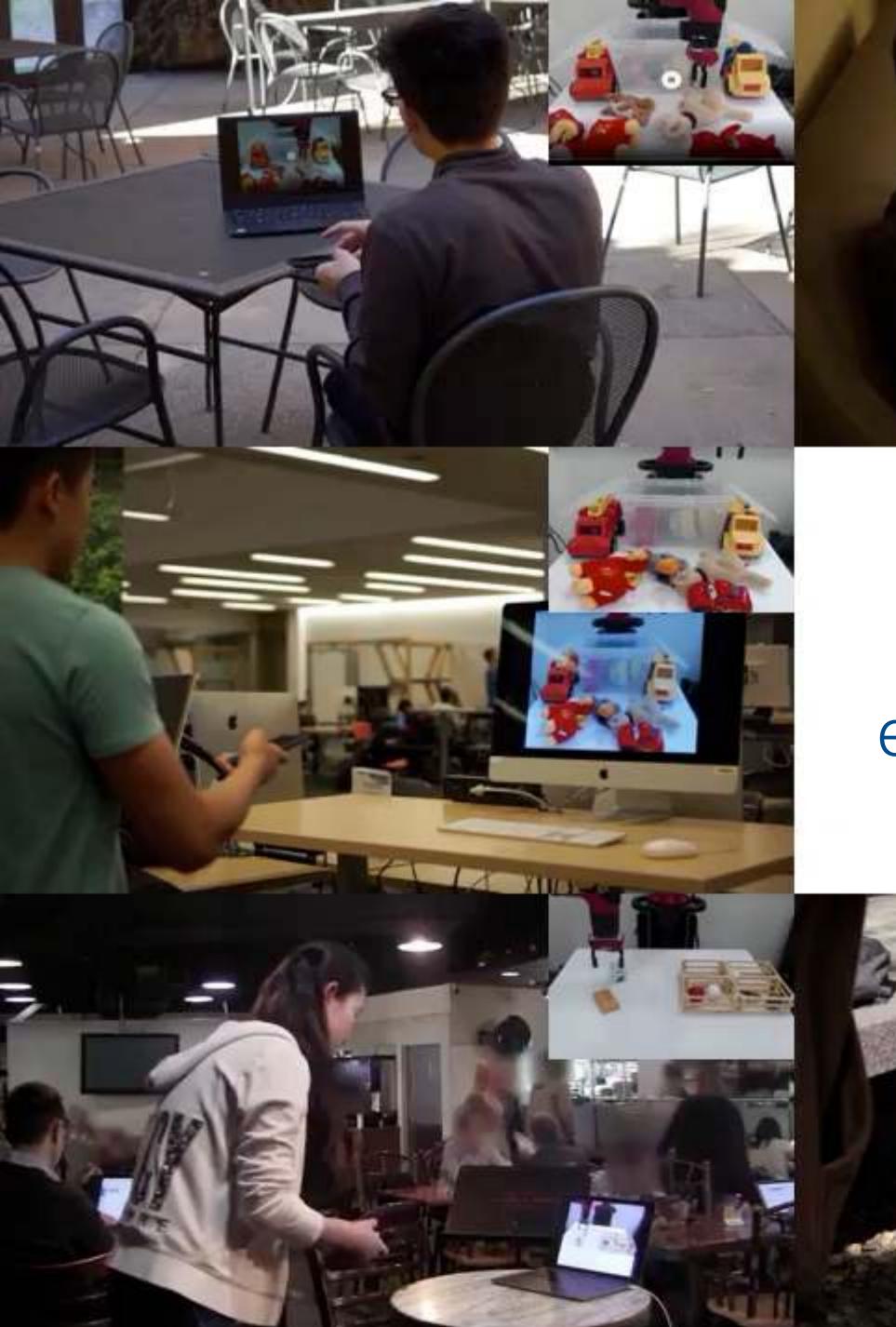


Mandlekar, Booher, Spero, Tung, Gupta, Zhu, Garg, Savarese, Fei-Fei, IROS 2019

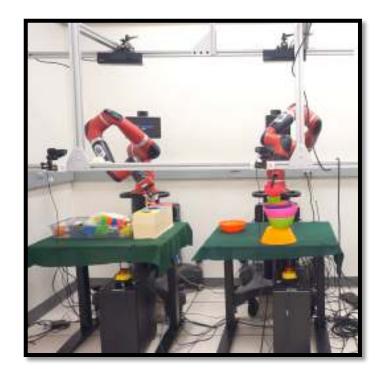
Dataset Size Comparison



Mandlekar, Booher, Spero, Tung, Gupta, Zhu, Garg, Savarese, Fei-Fei, IROS 2019



Summary - Part II



RoboTurk scales up demonstration collection with **teleoperated** crowdsourcing from web users

Large-scale crowdsourced data enables us to train more effective motor skill learning algorithms.

Learn More about RoboTurk?

Come to our IROS Presentation

RoboTurk: Human Reasoning and Dexterity for Large-Scale Dataset Creation

Tuesday 15:45-16:00, Award Session II: Paper TuBT4.5

Part I: Learning from Web Videos

Extracting compositional task structures from video data

Part II: Learning from Crowd Teleoperation

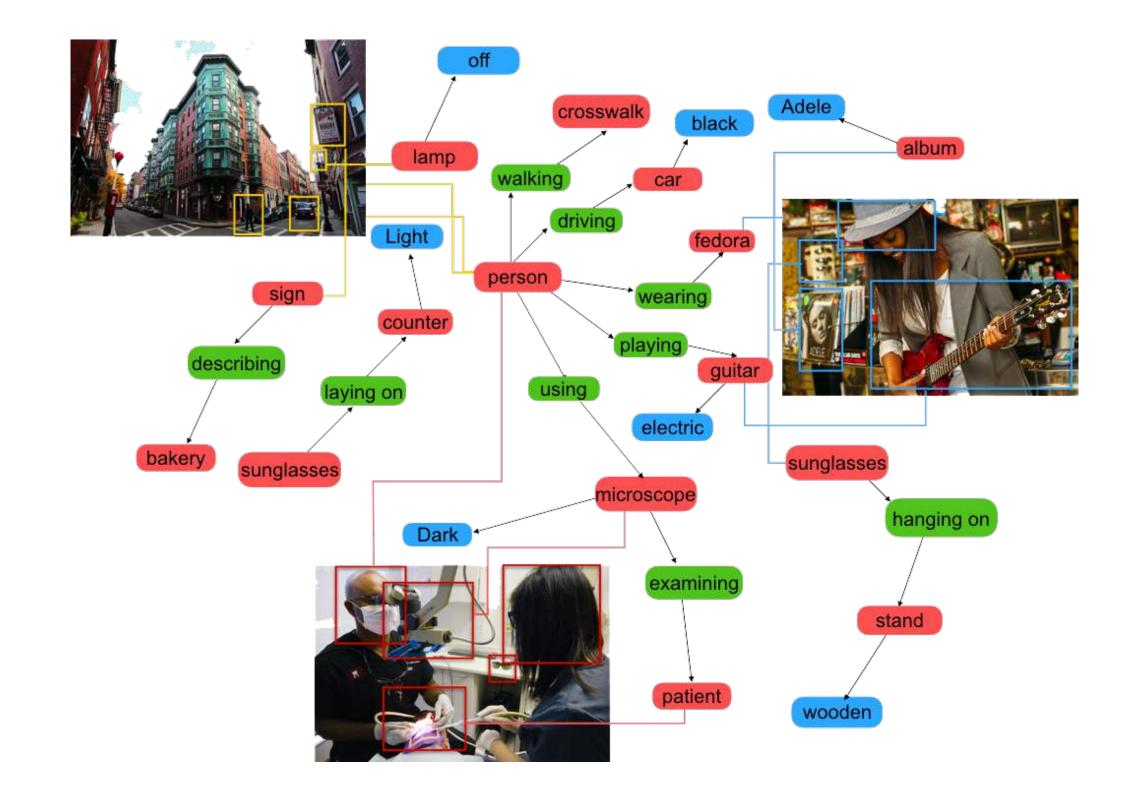
Crowdsourcing teleoperated demonstrations for skill learning

Conclusions

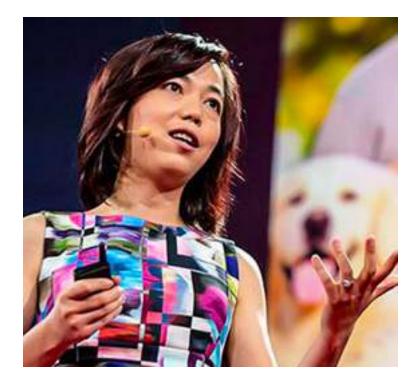
- What's a good representation of procedural knowledge?
 High-level task structures & low-level motor skills
 How do we learn procedural knowledge from the web?
 Large-scale web videos & crowd teleoperation from online users
- How can robots take advantage of such knowledge?
- Machine learning algorithms, e.g., meta-learning & imitation learning

Open Question:

How to integrate procedural knowledge and declarative knowledge into a unified knowledge ontology for building intelligent algorithms in robotics?

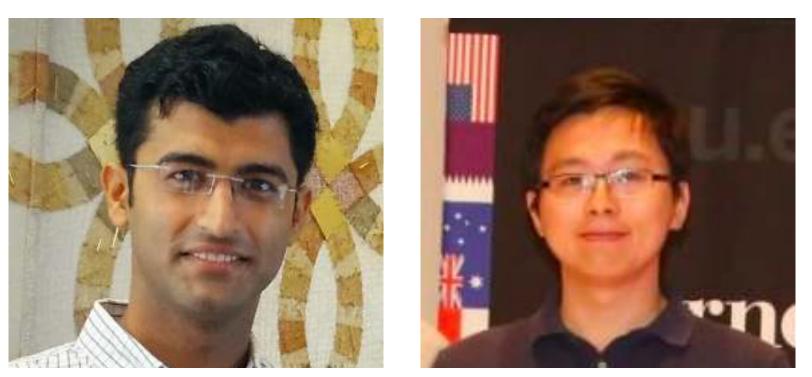


Acknowledgements



Fei-Fei Li

Silvio Savarese



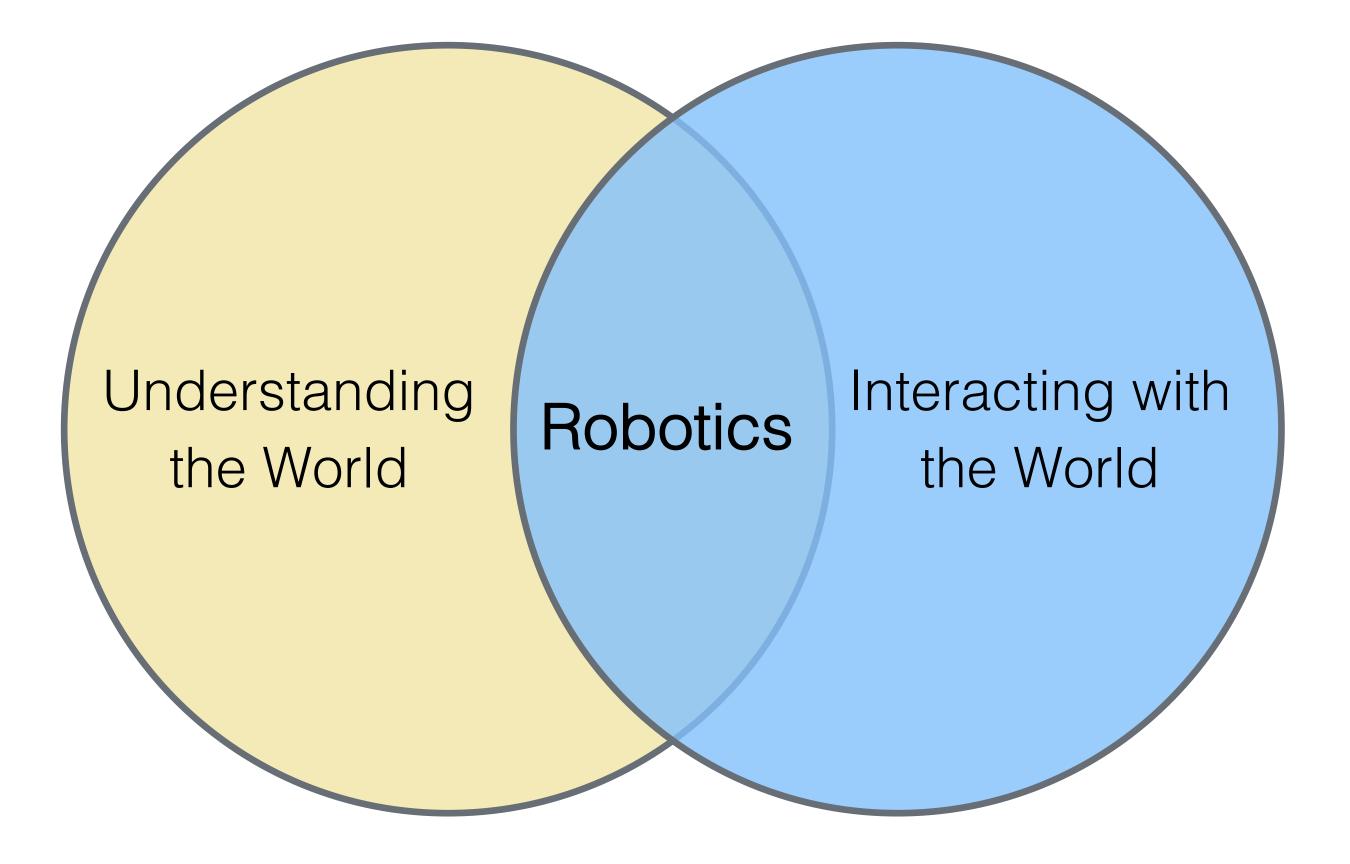
Animesh Garg

Danfei Xu

Ajay Mandlekar

De-An Huang

Declarative Knowledge ("That-Is")



http://ai.stanford.edu/~yukez/

yukez@cs.stanford.edu

Procedural Knowledge ("How-To")

Open Question:

How to integrate procedural knowledge and declarative knowledge into a unified knowledge ontology for building intelligent algorithms in robotics?

