Data Pyramid and Data Flywheel for Robotic Foundation Models

ΙΤΑι

Yuke Zhu

UT Austin / NVIDIA

Building Robotic Foundation Models

One "Al Brain" for All (Humanoid) Robots

Data

Algorithms

Large Language Models

Hardware

Data

Data

Algorithms

Robotic Foundation Models

Hardware

Scalable Algorithms

Powerful robot learning models that scale with data and compute

Robotic Foundation Models

Data Engine

New mechanisms to produce massive training data

Algorithms

Hardware

Human-like Embodiment

Humanoid robot platform for broad applications

Scalable Algorithms

Powerful robot learning models that scale with data and compute

Robotic Foundation Models

Data Engine

New mechanisms to produce massive training data

Algorithms

Hardware

Human-like Embodiment

Humanoid robot platform for broad applications

- **Versatility:** General-purpose robot autonomy needs a • versatile body.
- **Costs:** Hardware becomes cheaper and more robust • to democratize transformative research.
- **Safety:** Humanoid robots can be more predictable • and safer for human-robot interaction.
- **Data:** Their similar physique unlocks Internet-scale, • human-centered data sources.

. . .

Research Principle #1:

First Generalist, then Better Specialist

- **Versatility:** General-purpose robot autonomy needs a ** versatile body.
- **Costs:** Hardware becomes cheaper and more robust * to democratize transformative research.
- **Safety:** Humanoid robots can be more predictable • and safer for human-robot interaction.
- **Data:** Their similar physique unlocks Internet-scale, • human-centered data sources.

. . .

[[]Credit: Chad Jenkins]

- Versatility: General-purpose robot autonomy needs a versatile body.
- Costs: Hardware becomes cheaper and more robust to democratize transformative research.
- Safety: Humanoid robots can be more predictable and safer for human-robot interaction.
- Data: Their similar physique unlocks Internet-scale, human-centered data sources.

*

[VIOLA, Zhu et al. CoRL 2022]

[Credit: Figure AI 2024]

- Versatility: General-purpose robot autonomy needs a versatile body.
- Costs: Hardware becomes cheaper and more robust to democratize transformative research.
- Safety: Humanoid robots can be more predictable and safer for human-robot interaction.
- Data: Their similar physique unlocks Internet-scale, human-centered data sources.

*

- Versatility: General-purpose robot autonomy needs a versatile body.
- Costs: Hardware becomes cheaper and more robust to democratize transformative research.
- Safety: Humanoid robots can be more predictable and safer for human-robot interaction.
- Data: Their similar physique unlocks Internet-scale, human-centered data sources.

* ...

Note: humanoid robotics is still incredibly hard (!) — huge challenges in mechanical designs, dynamics & control, sensor technologies, compute and power, AI algorithm designs...

single video demonstration

trajectory rollouts in diverse scenes

single video demonstration

trajectory rollouts in diverse scenes

single video demonstration

trajectory rollouts in diverse scenes

Reference Plan Generation

Demonstration Video

Robot Observation

bagging (58.3%)

placing snacks on plate (75.0%)

sprinkling salt (58.3%)

putting toy in basket (66.7%)

closing the drawer (75.0%)

closing the laptop (83.3%)

research.nvidia.com/labs/gear

DATA PROCESSING AND GENERATION

NVIDIA OMNIVERSE

Scalable Algorithms

Powerful robot learning models that scale with data and compute

Robotic Foundation Model

Data Engine

New mechanisms to produce massive training data

Algorithms

Hardware

Human-like Embodiment

Humanoid robot platform for broad applications

Hierarchical Autonomy Stack: System 1-System 2

System 1

Fast, intuitive and emotional

System 2

Slow, conscious and effortful

Web Data

Common Crawl

- Massive scale and ever-growing
- Multimodal and unstructured
- Human-centered data

The "Cambrian explosion" of Vision-Language Models

Lightweight and multimodal Llama models

WIKIPEDIA The Free Encyclopedia

Qwen2 LONGVILA [Xue et al. 2024]

Human-centered data

2500 Speedway

"BUMBLE" Shah et al. 2024

Synthetic Data

Web Data

Common Crawl

- - Unlimited simulated data (in theory)
 - Content creation challenge, reality gap, computational burden

- Massive scale and ever-growing
- Multimodal and unstructured
- Human-centered data

Real-World Data

Synthetic Data

Web Data

Common Crawl

- Small scale and expensive to collect
- Ease of use for imitation learning, direct transfer

- Unlimited simulated data (in theory)
- Content creation challenge, reality gap, computational burden

- Massive scale and ever-growing
- Multimodal and unstructured
- Human-centered data

Real-World Data

Synthetic Data

Web Data

Common Crawl

Research Principle #2:

Learning Across the Data Pyramid

Real-World Data

Synthetic Data

Common Crawl

reddit

Data grows **linearly** with respect to time, money, human efforts, ...

Real-World Data

Synthetic Data

eh Dat

Common Crawl

real-time teleoperation (Tesla)

The Free Encyclopedia

Data grows **linearly** with respect to time, money, human efforts, ...

Real-World Data

Synthetic Data

Common Crawl

synthetic data generation

reddit

Data grows **exponentially** with automated generation in simulation.

RoboCasa

Large-Scale Simulation of Everyday Tasks for Generalist Robots

11

Creating diverse object assets with text-to-3D models

Interactable Furniture and Appliances

NESPRESSO

Farmhouse

Rustic

Traditional

1 D

Modern

Industrial

Scandinavian

Traditional

Transitional

RoboCasa: Generative Robotic Simulation

Diverse tasks generated with LLM guidance

List of activities

- 1. Chopping Food
- 2. Frying
- 3. Serving Food ...

Task: Prepare Microwave Steaming **Goal**: Put a bowl of vegetables inside the microwave to steam them there. **Objects**: bowl, vegetables Fixtures: sink, microwave Skills (6):

- 1. pick(vegetable)
- 2. place(bowl)
- 3. pick(bowl)
- 4. place(microwave)
- 5. close_door(microwave)
- 6. press(microwave)

Task Generation Process

pick(vegetable)

place(bowl)

place(bowl)

Cross-embodiment support

Pick and place

1.1

Opening and closing doors

C

2

Turning levers

7 8 9

O START

Twisting knobs

Pressing buttons

...

DexMimicGen: Automated Data Generation System

"DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning." Jiang*, Xie*, Lin*, et al. 2024

DexMimicGen: Automated Data Generation System

Source demos are split into objectcentric pieces

"MimicGen: A Data Generation System for Scalable Robot Learning using Human Demonstrations." Mandlekar et al. CoRL 2023

Pipeline for generating new trajectories

Source demo pieces are transformed and replayed in the new scene one by one

MimicGen: Data Generation Example

Source dataset trajectory

MimicGen: Data Generation Example

Execute transformed segment

Generated trajectory

Source dataset trajectory

MimicGen: Data Generation Example

Mug grasp is

consistent!

DexMimicGen: Automated Data Generation System

Parallel Subtasks

Coordination Subtasks Sequential Subtasks

DexMimicGen: Automated Data Generation System

Source demo segmentation

Parallel: pick cube Ref object: blue cube

Parallel: place cube Ref object: tray

Parallel: pick cube Ref object: green cube

Parallel: place cube Ref object: tray

New trajectory generation and execution

Coordination: lift tray Reference Reference Ref object: tray Subtask Trajectory Current Observation Object-Centric Trajectory Transformation Coordination: lift tray Executed

Ref object: tray

Trajectory

Generated Trajectory

DexMimicGen generates data for a large range of tasks.

DexMimicGen generates data for a large range of tasks.

Long-horizon tasks

DexMimicGen can be used to train real-world visuomotor policy.

Transfer real demo to sim using digital twin to ensure the sim demos are valid in real

DexMimicGen can be used to train real-world visuomotor policy.

Transfer only successful generated demos from sim to real to train a visuomotor policy

DexMimicGen can be used to train real-world visuomotor policy.

Real-world visuomotor policy rollouts (10X)

DexMimicGen: Automated Data Generation System

Multi-task imitation learning evaluation with RoboCasa simulation tasks

"RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots." Nasiriany et al. RSS 2024

DexMimicGen: Automated Data Generation System

Co-training with real (50) + sim (45k) datasets: 24.4%

Training on 50 real-robot demonstrations: 13.6%

"RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots." Nasiriany et al. RSS 2024

Recipe for Building Robotic Foundation Models

Scalable Algorithms

Powerful robot learning models that scale with data and compute

Robotic Foundation Models

Data Engine

New mechanisms to produce massive training data

Algorithms

Hardware

Human-like Embodiment

Humanoid robot platform for broad applications

Three-Phase Training for Robotic Foundation Models

[Source: RBC Borealis]

Training process of LLMs (ChatGPT, Claude, etc.)

Training process of **Robotic Foundation Models**

Increased Deployments

More Capable

Robots

Increased Deployments

More Capable

Robots

Increased Deployments

How can we ensure trustworthy deployment?

Robots

More Training Data

How can robots learn continually with more data?

Better Learning

Research Principle #3: Data Flywheel through Trustworthy and Safe Deployment Increased Deployments

More Capable

Robots

Robot Learning on the Job: Building the Data Flywheel The Sirius Framework for Human-Robot Teaming

"Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment." Liu et al. RSS 2023

Robot Deployment

Robot Learning on the Job: Building the Data Flywheel

Robot Deployment

"Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment." Liu et al. RSS 2023

Robot Learning on the Job: Building the Data Flywheel

Robot Deployment

"Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment." Liu et al. RSS 2023

Time

Human provides intervention

Robot takes control again

"Model-Based Runtime Monitoring with Interactive Imitation Learning." Liu et al. ICRA 2024

~

FRANKA

Robot Learning on the Job: Building the Data Flywheel

Round 1 Deployment

† Green masks indicate human intervention.

Intervention Distribution

Round 3 Deployment

Intervention Distribution

Robot Learning on the Job: Building the Data Flywheel

"Multi-Task Interactive Robot Fleet Learning with Visual World Models." Liu et al. CoRL 2024

"Multi-Task Interactive Robot Fleet Learning with Visual World Models." Liu et al. CoRL 2024

OOD Prediction

Human efforts reduce over time as policy performance continually improves.

Robot Fleet Deployment

Storage

Memory

interfaces for human-robot interaction, multimodal AI, safety, ...

Turn the Data Flywheel, Flip Data Pyramid Upside Down

The Present

Real-World Data

(through widespread deployments)

Synthetic Data

(turbocharged by generative AI)

(growing but dwarfed by

the other two)

The Future

Talk Summary

Research Principle #2: Learning Across the Data Pyramid

[MimicGen, CoRL 2023; RoboCasa, RSS 2024; BUMBLE, arXiv 2024; DexMimicGen, arXiv 2024]

[Sirius, RSS 2023; Sirius-RM, ICRA 2024; Sirius-Fleet, CoRL 2024]

Research Principle #1: First Generalist, then Better Specialist

Research Principle #3: Data Flywheel through Trustworthy and Safe Deployment

Papers can be found at https://yukezhu.me/

Acknowledgement

Kevin Lin

Huihan Liu

Zhenyu Jiang

Rutav Shah

Crystal Ding

Jinhan Li

James Liu

Aaron Lo

Adeet Parikh

Abhiram Maddukuri

Lance Zhang

Abhishek Joshi

Mingyo Seo

RPL PhD students

Yifeng Zhu

Jim Fan

NVIDIA Research team

Zhenjia Xu

Weikang Wan

Zhiyao Bao

Ajay Mandlekar

UT faculty collaborators

Albert Yu

Shivin Dass UT student collaborators

Georgios Pavlakos

