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Two Worlds of Building Robot Autonomy

James Webb Space Telescope

* special-purpose robotic systems
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* high engineering cost: over 9,000,000,000 dollars
» decades of teamwork: 20+ years, originally planned for

2013, launched in the final week of 2021

» extremely complex yet reliable system: over 300 are

“single points of failure”

robotic systems engineering

"The James Webb Space Telescope — making 300 points of failure reliable” Robert Barron



https://flyingbarron.medium.com/the-james-webb-space-telescope-making-300-points-of-failure-reliable-db669810a9d8

Two Worlds of Building Robot Autonomy

General-Purpose Collaborative Robots

general-purpose robotic systems
intractable to be manually engineered
months of research effort: small team of graduate

students and researchers

one-off and unreliable system: publish a paper with

~70% success rate and move on to the next one

robot learning research



Two Worlds of Building Robot Autonomy

James Webb Space Telescope
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robotic systems engineering

General-Purpose Collaborative Robots
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robot learning research



Key to deployable robot autonomy Iin the wild!

James Webb Space Telescope General-Purpose Collaborative Robots
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| essons from Systems Engineering Principles

Abstraction Composition

I'M THE
PERFECT

ABSTRACTION MAYBE ARE YOU
OF A DUck! SLIGHTLY TOO

50
ABSTRACT?

MANY
LAYERS!

“division of labor” “harmony of labor”

“Types, abstraction, and parametric polymorphism.” John Reynolds, 1983
“What Are Abstractions in Software Engineering with Examples.” Matthieu Cneude, 2019
“‘Between abstraction and composition...” Jonathan Sterling, 2021



Abstraction and Composition in Robot Autonomy

Sensory motor
data actions

the “pixels to torques”™ approach



Abstraction and Composition in Robot Autonomy

state
abstraction

Sensory
data

actior

abstract

On

T: O — ¢ —/]/— Y —~ g

Mmotor
actions

compositional robot autonomy stack



Abstraction and Composition in Robot Autonomy

state action
abstraction abstraction
™ 0
Sensory Motor
data actions

[Source: Detectron2, FAIR]

compositional robot autonomy stack
composition of objects



Abstraction and Composition in Robot Autonomy

actior
abstraction

™ ’

[Source: Daniel M. Wolper] compositional robot autonomy stack
composition of skills



Abstraction and Composition in Robot Autonomy

Neural Task Programming (NTP): Hierarchical Policy Learning as Neural Program Induction
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Objects: color cubes

Skills: pick and place

- Strong generalization!

‘Neural Task Programming: Learning to Generalize Across Hierarchical Tasks." Xu et al. ICRA 2018

‘Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration." Huang et al. CVPR 2019



Abstraction and Composition in Robot Autonomy

Observation: Compositionality works well in

domains where a finite set of objects and skills

can be clearly defined, like the block world.

Question: Can we “unblock the block world”?




Compositional Robot Autonomy with Objects and Skills

L earning object abstractions Compositional task modeling with

from embodied interactions skill abstractions

| 2022]

Ditto [Jiang et al., Bv | B | s o MAPLE [Nasiriany et

E . 2 C 2 2 us tomic A | | |
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Compositional Robot Autonomy with Objects and Skills

L earning object abstractions

from embodied interactions

Ditto [Jiang et al.,
arXiv 2022]




Object Representations for Robotic Grasping

o Input: Partial point cloud of workspace

« Output: 6-DoF grasp pose (3D position
and orientation)




Affordance and geometry reasoning are connected.

Ikelihood of grasp success
and grasp parameters

Affordance Geometry

Predict affordance of
reconstructed part

Reconstruct
graspable region




GIGA: Grasping via Implicit Geometry and Affordance

Input TS

Grasp affordance

DF GIGA

3D reconstruction



Neural Fields for 3D Scenes

8 Decision
—___ boundary
e of implicit

surface

Neural networks that map from coordinate to

® o
e SDF >0
.

quantities (SDF, occupancy) visual
feature @ SDF<0 '
Smooth, continuous encoding of 3D scenes neural
network
Fully differentiable models that can be
trained with rich supervisions query
coordinate

DeepSDF, Park et al. CVPR 2019



GIGA: Grasping via Implicit Geometry and Affordance

Input TS

D

GIGA Model

\
\
\
\

Structured
feature grids

=

¢ Grasp center

(x,y,z) =*

(xl, yl’ ZI) —)

Query point

Affordance
Decoder

S local
feature

Geometry
Decoder

Grasp affordance

3D reconstruction



Self-Supervised Data Collection

o Affordance labels from grasp trials in simulation.

« 3D geometry labels from ground-truth object meshes.

Packed scene Plle scene
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Geometry Learning Facilitates Occluded Grasps.

InputYigYY GIGA-Aff GIGA — \\ . VGN (Breyer et al.)

-

SUCCESS

B failure



Reconstruction Focuses on Graspable Parts

moU m [oU-Grasp

a0 404
8.1{
B I I

GIGA-Detach GIGA GIGA-Geo

Affordance Affordance and Reconstruction
Only Reconstruction Only

Ground truth GIGA-Geo
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» Task-dependent: optimized for downstream grasping tasks

» Multimodal: captures synergies between affordance and

geometry for robotic grasping.
» Structured: combines 3D voxel grids with neural field methods

» Self-supervised: trained with self-supervised interactions

_LOW High
Affordance Affordance

“Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations.” Jiang, Zhu, Svetlik, Fang, and Z.
Zhenyu Jiang Code and models are available at https://sites.google.com/view/rpl-giga2021




Can we build object models from interaction?

Interaction creates novel sensory stimuli for object learning.



Can we build object models from interaction?

digital twin
creation

- “1.

physical object virtual object
N universe IN “metaverse”



Ditto: Digital Twin of Articulated Objects

part-level segmentation
& 3d geometry

Before
INteraction

After
INteraction

point cloud articulation parameters



Ditto Architecture

betfore subsampled dense
interaction point features point features occupancy
probability
\ g&;;%g?g%o%% /
PointNet++ Oé)%é’og;@g%ﬁgg bor Geometry Occupancy 0
Encoder NCARS X —— | reature | Decoder ’
/ OOOO DeCOder
l T mobile
"'...:§° -y
YA robabilit
Cross | Ry P fused - !
i IS XTSC Sete .
Atte ntion i ga features | Segmentation 0
f’ Decoder ‘
Pcélr?ctggteJrrJr — % Articulation
/ Decoder
after joint

interaction parameters
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From Real World to Simulation and Back

physical worla Real-World
Observations

Real-World
Manipulation

Digital rsis
J— Engine

Twin

virtual world

https://robosuite.al



https://robosuite.ai/

¢ Ditto: Building Interactive Object Models

 Embodied interactions: Emit useful sensory information for

understanding an object

« Structured implicit neural representations: Jointly encode

geometry and articulation

» Digital twins: Bridge simulation and the real world

| “Building Digital Twins of Articulated Objects from Interaction.” Jiang, Hsu, and Z.
/Zhenyu Jiang Code and models are available at https://ut-austin-rpl.github.io/Ditto




Compositional Robot Autonomy with Objects and Skills

Compositional task modeling with

skill abstractions

Hierarchical task structure ? Temporal segments from

set of demonstrations

Zhu et al.,
| 2022]

Multi-sensory demonstration K sensorimotor skills

Library of Behavior Exploring with
Primitives Primitives

invoking parameterized primitives

Reach Grasp

BT (W e | e MAPLE [Nasiriany et

] Primitive Parameters

gf ¢ closed-loop robotic @ a .y
e N i task £ ED

Observations

Rewards r(s, a, x)




Compositionality in Language and Behaviors

prepare dinner

S
NP VBD IN NP
/\ | l /\ wash dishes cook food
DT JJ JJ NN barked at DT NN
the little yvellow  dog the cat
grasp wash place cut ool

sensorimotor skills: perceptually grounded,
temporally extended behaviors



Compositionality in Language and Behaviors

prepare dinner

S
_ T
NP VBD IN NP
/4\ | | /" wash dishes !Cookfood
DT JJ JJ NN barked at DT NN
| | | | |
the little yellow  dog the cat

grasp wash place cut ool

The Context Principle: words have meaning only as constituents of (hence,
presumably, only in virtue of their use in) sentences

The Compositionality Principle: the meaning of the whole sentence is a function of
the meanings of its parts

"How to Stop Worrying About Compositionality”, Aurelie Herbelot



BUDS: Bottom-Up Discovery of sensorimotor Skills

meta controller
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Repertoire of skills » @ l_l

Repertoire of skills

Unstructured demonstrations Sensorimotor skills Composition of skills

 NO temporal annotations o Operating on raw sensory data



BUDS: Bottom-Up Discovery of sensorimotor Skills

Hierarchical task structure

Bottom-up approach

o Building hierarchical task structures

e Agglomerative clustering on temporal

segments w/ multi-sensory cues

« |dentity reusable skills from
recurring temporal patterns

Unstructured demonstration



Temporal segments from set of demonstrations

Temporal segnieni

- °

Compose Skills to Solve Tasks

Cluster segments into skills

meta controller

oPRISIRAPX

Subgoal

MageoMpPUte rowearw 1O €ach
iInput
temporal segment K sensorimotor skills




| earned skills iImprove task success.

Behavioral Cloning CHAMP
(Zhang et al. 2018) (Niekum et al. 2015)

24.4% success 23.4% success

e Jrained on 30min demonstrations for each task

-

YRR

72.0% success




Multi-sensory cues improve skill segmentation.

Task Success Rate (%)

m Kitchen

41 4
36.8

7.4

BUDS BUDS-Image BUDS-WS-Image BUDS-Proprio

Images + Images only Workspace Proprioception
proprioception image only only

“Event Structure in Perception and Conception.” Zacks and Tversky, 2001



Multi-task learning improves quality of skills.

Task success rate (%)
m Multi-Task Trainig = Single Task Held-outpe

70.2
59 59.8 60.8
52.6 0.3
Task-1 Task-2

Multi-task learning in Kitchen leads to an 8% increase in success rate.




Discovered skills are reusable In novel tasks.

Task success rate (%)

m Multi-Task Trainig = Single Task Held-out Task
75.Q

70.2

59

52.6

Task-1

Through reusing the skills while re-training the meta-controller.






£ BUDS: Bottom-Up Sensorimotor Skill Discovery

 Discover reusable sensorimotor skills from unstructured

task demonstrations
» Multi-sensory, multi-task learning improves skill guality

« Sample-efficient learning of complex behaviors using

30min of demonstrations

| | e “Bottom-Up Skill Discovery from Unsegmented Demonstrations for Long-Horizon Robot Manipulation.” Zhu, Stone, and Z.
Yiteng Zhu Code and models are available at https://github.com/UT-Austin-RPL/BUDS




Compositionality in Language and Behaviors

prepare dinner

S
_ T S
NP VBD IN NP
/\ | | /" wash dishes ! cook food
DT JJ JJ NN barked at DT NN
| | | ]
the little yvellow  dog the cat

grasp wash place cut ool

The Context Principle: words have meaning only as constituents of (hence,
presumably, only in virtue of their use in) sentences

The Compositionality Principle: the meaning of the whole sentence is a function of
the meanings of its parts



Compositionality in Language and Behaviors

skills

The Context Principle: words have meaning only as constituents of (hence,

presumably, only in virtue of their use in) sentences



Compositionality in Language and Behaviors

il =y — G - A
Gripper
@ — I /- Ty B T Reach e
) ,

skills skills tasks

The Context Principle: words have meaning only as constituents of (hence,
presumably, only in virtue of their use in) sentences

The Compositionality Principle: the meaning of the whole sentence is a function of

the meanings of its parts




MAPLE: Manipulation Primitive-augmented Reinforcement Learning

* Heterogenous library of primitives

* Primitives are parameterized with
; — Num Params: 3 Num Params: 4 Num Params: 7
HDUtS' or exa_rrp‘e’ Grasp(x, Y, £, Horizon: 15 Horizon: 20 Horizon: 20
p): reach location (x, y, z) at angle

MAPLE
iorary

Num Params: O Num Params: 5
Horizon: 4 Horizon: 1



MAPLE: Manipulation Primitive-augmented Reinforcement Learning

* Heterogenous library of primitives

* Primitives are parameterized with
; — Num Params: 3 Num Params: 4 Num Params: 7
HDUtS' or exa_rrp‘e’ Grasp(x, Y, £, Horizon: 15 Horizon: 20 Horizon: 20
p): reach location (x, y, z) at angle

« Atomic primitive dedicated to low-
level motor actions

MAPLE
iorary

Num Params: O Num Params: 5
Horizon: 4 Horizon: 1



MAPLE: Manipulation Primitive-augmented Reinforcement Learning

Selected Primitive

Primitive Type

Primitive Parameters

Num Params: 3 Num Params: 4 Num Params: 7
Horizon: 15 Horizon: 20 Horizon: 20

MAPLE
iorary

Observations Num Params: O Num Params: 5
Horizon: 4 Horizon: 1
Reward



MAPLE: Manipulation Primitive-augmented Reinforcement Learning

---------------------------------------------
. S
. .

Primitive Type
(one-hot encoding)

Primitive /
Parameter
Sub-Policy

e —————————— > .

: Gaussian o
Std dev : Primitive Params

(continuous encoding)

.
.'. .®
--------------------------------------------



Evaluation: Peg Insertion

Atomic (0% Success) DAC (16% Success)

|

- s
““"‘—-

3

-

o

p—— —c - =
EmED ‘ . —
Option 4 Option 2 Option 1

= MAPLE (ours

v

(100% Success)




Evaluation: Compositionality

Atomic (x6) %

Primitive Types HEREEEEER
B Grasp B Reach l (Repeat across trials) l ask Sketch
B Push W Atomic ENENEES NN ffold of behavior
| HEEEEEE Scafioid or
Gripper Release HEE EBEEEEEEe orimitives



Evaluation: Compositionality

Primitive Types
B Grasp [ Reach
B Push B Atomic

Gripper Release

Nut Assembly Cleanup
(score = 0.87) (score = 0.72)

(score = 1.0)

Wipe
(score = 0.67)

Pick and Place Stack
(score = 0.87) (score = 0.96)

Peg Insertion
(score = 0.24)

leuolisodwo?

leuonisodwo?

o JOW

SS9



From Digital Twin Training to Real Robot Deployment

MAPLE Policy Trained in Digital Twin Zero-Shot Policy Transfer to Real Robot

“Fast Uncertainty Quantification for Deep Object Pose Estimation.” Shi, Zhu, Tremblay, Birchfield, Ramos, Anandkumar, and Z.



@ﬁ MAPLE: Primitive-Augmented Reinforcement Learning

» Heterogeneous behavior primitives to scaffold long-

horizon manipulation tasks

» Hierarchical policy to invoke behavior primitives as

modular APIs

» Emergent compositional structures from primitive

CcOm pOSi’[iOn Observations
Rewards

B A ML “Augmenting Reinforcement Learning with Behavior Primitives for Diverse Manipulation Tasks.” Nasiriany, Liu, and Z.
Soroush Nasiriany Code and models are available at https://github.com/UT-Austin-RPL/maple

U

b




Compositional Robot Autonomy with Objects and Skills

L earning object abstractions Compositional task modeling with

from embodied interactions skill abstractions

Input TSDF GIGA

=

" GIGA [Jiang et al., SN M Zhu et al.,

=~ / Grasp Affordance .
= A
TN éma  RSS2021] o, (T | 2022]

Library of Behavior Exploring with
Primitives Primitives

Grasp

Digital Twin - ' T Reach 1
v ' . \ i Primitive Type .| Selecte MAP LE [ N Iri
itto __¢ Robot Simulation D IttO [J | an g et al .y ? E Primitive Parameters rimitive aS | rl any et
L) — % v
o
arXiv 2022] | [ AP cosedtoop  rabotic al., ICRA 2022]




Compositional Robot Autonomy with Objects and Skills

L earning object abstractions

from embodied interactions

Input TSDF

Jiang et al.,

Interactive P
Digital Twin 2
v n
Robot Simulation D IttO [
@

arXiv 2022]

What is an Object?

Context-, task- dependent
Multi-modal, multi-faceted

L earned from embodied interaction



Compositional Robot Autonomy with Objects and Skills

Compositional task modeling with

What is a Skill”? skill abstractions

« (Context vs Compositionality principle

Zhu et al.,
| 2022]

* Versatility and reusabillity

* [emporal abstraction and perceptual

Library of Behavior Exploring with

| |
g I’O U ﬂ d | ﬂ g Primitives Primitives
invoking parameterized primitives

Grasp

Reach v

_ ol ol | [ MAPLE [Nasiriany et
Push

-

Atomic L - al.. ICRA 2022
ddyny Closea-l00 robotic 'y

eee Cce \:\‘4;.\:;"’. .
s R/ ol1C as




Al Architectures of Robot Autonomy

Classical Pipeline End-to-End Deep Learning Compositional Robot Autonomy
(pre 2010) (2011-now) (new frontier)
torques torques torques

control

action .
.................................... action

action deep abstraction

network

state state
.................................... abStraCthﬂ

state

erception

pixels pixels pixels



ion & Learning Lab

UT Robot Percept
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https://rpl.cs.utexas.edu/

