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Abstract— In this work, we propose a novel robot learning
framework called Neural Task Programming (NTP), which
bridges the idea of few-shot learning from demonstration and
neural program induction. NTP takes as input a task speci-
fication (e.g., video demonstration of a task) and recursively
decomposes it into finer sub-task specifications. These specifica-
tions are fed to a hierarchical neural program, where bottom-
level programs are callable subroutines that interact with the
environment. We validate our method in three robot manipula-
tion tasks. NTP achieves strong generalization across sequential
tasks that exhibit hierarchal and compositional structures. The
experimental results show that NTP learns to generalize well to-
wards unseen tasks with increasing lengths, variable topologies,
and changing objectives. stanfordvl.github.io/ntp/

I. INTRODUCTION

Autonomy in complex manipulation tasks, such as object
sorting, assembly, and de-cluttering, requires sequential
decision making with prolonged interactions between the
robot and the environment. Planning for a complex task and,
vitally, adapting to new task objectives and initial conditions
is a long-standing challenge in robotics [6, 12].

Consider an object sorting task in a warehouse setting –
it requires sorting, retrieval from storage, and packing for
shipment. Each task is a sequence of primitives – such
as pick_up, move_to, and drop_into – that can be
composed into manipulation sub-tasks such as grasping and
placing. This problem has an expansive space of variations
– different objects-bin maps in sorting, permutations of sub-
tasks, varying length order lists – resulting in a large space of
tasks. As a concrete example, Figure 1(C) shows a simplified
setup of the object sorting task. The task is to transport
objects of four categories to four shipping containers. There
is a total of 256 possible mappings between object categories
and containers, and the variable number of object instances
further increases the complexity. In this paper, we attempt to
address two challenges in complex task planning domains,
namely (a) learning policies that generalize to new task
objectives, and (b) hierarchical composition of primitives for
long-term environment interactions.

We propose Neural Task Programming (NTP), a unified,
task-agnostic learning algorithm that can be applied to a
variety of tasks with latent hierarchical structure. The key
underlying idea is to learn reusable representations shared
across tasks and domains. NTP interprets a task specification
(Figure 1 left) and instantiates a hierarchical policy as a neural
program (Figure 1 middle), where the bottom-level programs
are primitive actions that are executable in the environment.
A task specification is defined as a time-series that describes
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Fig. 1: (top) At test time, NTP instantiates a task-conditional policy
(a neural program) that performs the specified task by interpreting a
demonstration of a task. The policy interacts with the environment
through robot APIs. (bottom) We evaluate NTP on Block Stacking
(A,B), Object Sorting (C, D) and Table Clean-up (Figure 8) tasks in
both simulated and real environment.

the procedure and the final objective of a task. It can either be
a task demonstration recorded as a state trajectory, first/third-
person video demonstrations, or even a list of language
instructions. In this work, we use task demonstration as
the task specification. We experiment with two forms of
task demonstration: location trajectories of objects that are
involved in a task, and a third-person video demonstration
of a task. NTP decodes the objective of a task from the
input specification and factorizes it into sub-tasks, interacting
with the environment with closed-loop feedback until the
goal is achieved (Figure 1 right). Each program call takes as
input the environment observation and a task specification,
producing the next sub-program and a corresponding sub-task
specification. The lowest level of the hierarchy is symbolic
actions captured through a Robot API.

This hierarchical decomposition encourages information
hiding and modularization, as lower-level modules only
access their corresponding sub-task specifications that pertain
to their functionality. It prevents the model from learning
spurious dependencies on training data, resulting in better
reusability. Essentially, NTP addresses the key challenges in
task generalization: meta-learning for cross-task transfer and
hierarchical model to scale to more complex tasks. Hence,
NTP builds on the strengths of neural programming and
hierarchical RL while compensating for their shortcomings.

We demonstrate that NTP generalizes to three kinds of
variations in task structure: 1) Task Length: varying number
of steps due to the increasing problem size (e.g., having
more objects to transport); 2) Task Topology: the flexible
permutations and combinations of sub-tasks to reach the same
end goal (e.g., manipulating objects in different orders); and
3) Task Semantics: the varying task definitions and success
conditions (e.g., placing objects into a different container).

We evaluate NTP on three table-top manipulation tasks
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Fig. 2: Neural Task Programming
(NTP): Given an input program, a task
specification, and the current environ-
ment observation, a NTP model predicts
the sub-level program to run, the sub-
sequence of the task specification that the
sub-level program should take as input,
and if the current program should stop.

that require long-term interactions: Block Stacking, Object
Sorting, and Table Clean-up. We evaluate each task in both
simulated and real-robot setups.
Summary of Contributions:
1) Our primary contribution is a novel modeling framework:
NTP that enables meta-learning on hierarchical tasks.
2) We show that NTP enables knowledge transfer and one-
shot demonstration based generalization to novel tasks with
increasing lengths, varying topology, and changing semantics
without restriction on initial configurations.
3) We also demonstrate that NTP can be trained with visual
input (images and video) end-to-end.

II. BACKGROUND & RELATED WORK

Skill Learning: The first challenge is learning policies that
adapt to new task objectives. For learning a single task
policy, traditional methods often segment a complex task
into hand-engineered state machine composed of motion
primitives [6, 12, 27]. Although the model-based approaches
are well-founded in principle, they require meticulous model
specification and task-specific treatment leading to challenges
in scaling. Contrarily, learning-based methods such as re-
inforcement learning (RL) have yielded promising results
using end-to-end policy learning that obviates the need for
manually designed state representations through data-driven
task-salient features [20, 33]. Yet these methods fall short
because they need task-specific reward functions [21].
Learning from Demonstrations: LfD fills these gaps by
avoiding the need to define state machines or reward functions.
The objective in LfD is to learn policies that generalize beyond
the provided examples and are robust to perturbations [3, 17]
A common treatment to LfD is to model data as samples
from an expert policy for a fixed task, and use behavior
cloning [16, 25] or reward function approximation [22] to
output an expert-like policy for that task. However, learning
policies that generalize to new objectives with LfD remains
largely an unexplored problem.
Few-Shot Generalization in LfD: Our work is an instan-
tiation of the decades-old idea of meta-learning with few
examples [11, 30]. It has seen a recent revival in deep learning
in part because it can address the problems above [31].
Our setting resembles learning by demonstration (LfD) in
robotics [5], particularly one-shot imitation [10, 32]. Our
method learns to learn from an input task specification during
training. At test time, it generates a policy conditioned on a
single demonstration provided as a time-series showing the
task execution. While similar in these aspects, existing works
in both skill learning and LfD are inept at tasks with sparse
reward functions and complex hierarchical structures such as
Montezuma’s Revenge [19].

Hierarchical Skill Composition: The second challenge we
consider is the hierarchical composition of primitives to
enable long-term robot-environment interaction. The idea of
using hierarchical models for complex tasks has been widely
explored in both reinforcement learning and robotics [17, 28].
A common treatment to manage task structure complexity
is to impose hierarchy onto the learned policy. The options
framework composes primitive actions into multi-step actions,
which facilitates policy learning at higher-level semantic
and/or temporal abstraction [13, 29]. Notable examples
include structured reinforcement learning methods, especially
hierarchical variants of RL that handle decomposition through
multi-stage policies operating over options [4, 19, 23].
However, the naïve use of a hierarchical RL model with
"sub-policies" or options optimized for a specific task doesn’t
guarantee modularity or reusability across task objectives.

The core idea of NTP resonates with recent works on
dynamic neural networks, which aim to learn and reuse prim-
itive network modules. These methods have been successfully
applied to several domains such as robot control [1] and
visual question answering [2]. However, they have exhibited
limited generalization ability across tasks. In contrast, we
approach the problem of hierarchical task learning via neural
programming to attain modularization and reusability [24]. As
a result, our model achieves significantly better generalization
results than non-hierarchical models such as [10].
FSMs and Neural Program Induction: An exciting and
non-intuitive insight of this paper is that the well-studied
Finite State Machine (FSM) model lends itself to learning
reusable hierarchical policies thereby addressing the problem
of composability without the need for hand-crafting state
transitions. There have been a few studies learning FSMs
from data [14, 18]. In line with the idea, recent works in neural
programming using deep models have enabled symbolic
reasoning systems to be trained end-to-end, which have shown
potential to handle multi-modal and raw input/out data [9,
24] and achieve symbolic generalization [7].

NTP belongs to a family of neural program induction
methods, where the goal is to learn a latent program
representation that generates program outputs [9, 24]. While
these models have been shown to generalize on task length,
they are tested on basic computational tasks only with limited
generalization to task semantics and topology. Similar to NTP,
Neural Programmer-Interpreter (NPI) [24] has proposed to
use a task-agnostic recurrent neural network to represent
and execute programs. In contrast to previous work on
neural program induction, NPI-based models are trained with
richer supervision from the full program execution traces and
can learn semantically meaningful programs with high data
efficiency. However, program induction, including NPI, is not
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Fig. 3: Sample execution trace of NTP on a block stacking task. The task is to stack lettered blocks into a specified configuration (block_D
on top of block_E, block_B on top of block_D, etc). Top-level program block_stacking takes in the entire demonstration as
input (red window), and predicts the next sub-program to run is pick_and_place, and it should take the part of task specification
marked by the orange window as the input specification. The bottom-level API call moves the robot and close / open the gripper. When
End of Program (EOP) is True, the current program stops and return its caller program.

capable of generalizing to novel programs without training.
NTP is a meta-learning algorithm that learns to instantiate

neural programs given demonstrations of tasks, thereby
generalizing to unseen tasks/programs. Intuitively, NTP
decomposes the overall objective (e.g., object sorting) into
simpler objectives (e.g., pick and place) recursively. For
each of such sub-tasks, NTP delegates a neural program
to perform the task. The neural programs, together with the
task decomposition mechanism, are trained end-to-end.

While previous work has largely focused on executing a
pre-defined task one at a time NTP not only exhibits one-shot
generalization to tasks with longer lengths as NPI, but also
generalizes to sub-task permutations (topology) and success
conditions (semantics).

III. PROBLEM FORMULATION

We consider the problem of an agent performing actions
to interact with an environment to accomplish tasks. Let T
be the set of all tasks, S be the environment state space,
and A be the action space. For each task t 2 T, the Boolean
function g : S⇥T! {0,1} defines the success condition of
the task. Given any state s 2 S, g(s, t) = 1 if the task t is
completed in the state s, and g(s, t) = 0 otherwise. The task
space T can be infinite. We thus need a versatile way to
describe the task semantics. We describe each task using a
task specification y(t)2Y, where Y is the set of all possible
task specifications. Formally, we consider a task specification
as a sequence of random variables y(t) = {x1,x2, . . . ,xN}.

NTP takes a task specification y(t) as input in order to
instantiate a policy. y(t) is defined as a time series that
describes the procedure and the final objective of the task. In
experiments, we consider two forms of task specifications:
trajectories of object locations and raw video sequences.
In many real-world tasks, the agent has no access to the
underlying environment states. It only receives a sample of
environment observation o 2O that corresponds to the state
s, where O is the observation space. Our goal is to learn
a “meta-policy” that instantiates a feedback policy from a
specification of a task, p̃ : Y! (O! A). At test time, a

specification of a new task y(t) is input to NTP. The meta-
policy then generates a policy p(a|o;y(t)) : O!A, to reach
task-completion state sT where g(sT , t) = 1.
Why use Neural Programming for LfD? Previous work has
mostly used a monolithic network architecture to represent a
goal-driven policy [10, 26, 33]. These methods cannot exploit
the compositional task structures to facilitate modularization
and reusability. Instead, we represent our policy p̃ as a
neural program that takes a task specification as its input
argument. As illustrated in Figure 2, NTP uses a task-agnostic
core network to decide which sub-program to run next and
adaptively feeds a subset of the task specification to the
next program. Intuitively, NTP recursively decomposes a
task specification and solves a hierarchical task by divide-
and-conquer. Figure 3 highlights this feature with a sample
execution of a task. Our method extends upon a special type of
neural programming architecture named Neural Programmer-
Interpreter (NPI) [7, 24]. NPI generalizes well to input size but
cannot generalize to unseen task objectives. NTP combines
the idea of meta-learning and NPI. The ability to interpret
task specifications and instantiate policies accordingly makes
NTP generalize across tasks.

A. Neural Programmer-Interpreter (NPI)
Before introducing our NTP model, it is useful to briefly

overview the NPI paradigm [24]. NPI is a type of neural
program induction algorithm, in which a network is trained
to imitate the behavior of a computer program, i.e., the
network learns to invoke programs recursively given certain
context or stop the current program and return to upper-
level programs. The core of NPI is a long-short memory
(LSTM) [15] network. At the i-th time step, it selects the
next program to run conditioned on the current observation
oi and the previous LSTM hidden units hi�1. A domain-
specific encoder is used to encode the observation oi into a
state representation si. The NPI controller takes as input the
state si, the program embedding pi retrieved from a learnable
key-value memory structure [Mkey;Mprog], and the current
arguments ai. It generates a program key, which is used to
invoke a sub-program pi+1 using content-based addressing,



the arguments to the next program ai+1, and the end-of-
program probability ri. The NPI model maintains a program
call stack. Each time a sub-program is called, the caller’s
LSTM hidden units embedding and its program embedding is
pushed to the stack. Formally, the NPI core has three learnable
components, a domain-specific encoder fenc, an LSTM flstm,
and an output decoder fdec. The full update being: si =
fenc(oi,ai) hi = flstm(si, pi,hi�1) ri, pi+1,ai+1 = fdec(hi).
When executing a program with the NPI controller, it performs
one of the following three things: 1) when the end-of-program
probability exceeds a threshold a (set to 0.5), this program is
popped up from the stack and control is returned to the called;
2) when the program is not primitive, a sub-program with its
arguments is called; and 3) when the program is primitive, a
low-level basic action is performed in the environments. The
LSTM core is shared across all tasks.

IV. NEURAL TASK PROGRAMMING

Overview. NTP has three key components: Task Specification
Interpreter fT SI , Task Specification Encoder fT SE , and a
core network fCN (Figure 2. The Task Specification Encoder
transforms a task specification yi into a vector space. The
core network takes as input the state si, the program pi, and
the task specification yi, producing the next sub-program
to invoke pt+1 and an end-of-program probability rt . The
program returns to the caller when rt exceeds a threshold a

(set to 0.5). We detail the inference procedure in Algorithm 1.
NTP vs NPI: We highlight three main differences of NTP
than the original NPI: (1) NTP can interpret task specifications
and perform hierarchical decomposition and thus can be
considered as a meta-policy; (2) it uses APIs as the primitive
actions to scale up neural programs for complex tasks; and (3)
it uses a reactive core network instead of a recurrent network,
making the model less history-dependent, enabling feedback
control for recovery from failures. In addition to the three key
components, NTP implements two modules similar to the NPI
architectures [7, 24]: (1) domain-specific task encoders that
map an observation to a state representation si = fENC(oi), and
(2) a key-value memory that stores and retrieves embeddings:
j⇤ = argmax j=1...N(M

key
j,: ki) and pi = Mprog

j⇤,: , where ki is the
program key predicted by the core network.
Scaling up NTP with APIs. The bottom-level programs in
NPI correspond to primitive actions that are executable in the
environment. To scale up neural programs in coping with the
complexity of real-world tasks, it is desirable to use existing
tools and subroutines (i.e., motion planner) such that learning
can be done at an abstract level. In computer programming,
application programming interfaces (APIs) have been a
standard protocol for developing software by using basic
modules. Here we introduce the concept of API to neural
programming, where the bottom-level programs correspond to
a set of robot APIs, e.g., moving the robot arm using inverse
kinematics. Each API takes specific arguments, e.g., an object
category or the end effector’s target position. NTP jointly
learns to select APIs functions and to generate their input
arguments. The APIs that are used in the experiments are
move_to, grip, and release. move_to takes an object

Algorithm 1 NTP Inference Procedure
Inputs: task specification y , program id i, and environment
observation o
function RUN(i, y)

r 0, p Mprog
i,: , s fENC(o), c fT SE(y)

while r < a do
k,r fCN(c, p,s), y2 fT SI(y, p,s)
i2 argmax j=1...N(M

key
j,: k)

if program i2 is primitive then . if i2 is an API
a fT SI(y2, i2,s) . decode API args
RUN_API(i2,a) . run API i2 with args a

else
RUN(i2,y2) . run program i2 w/ task spec y2

end if
end while

end function

index as the API argument and calls external functions to
move the gripper to above the object whose position is either
given by the simulator or predicted by an object detector.
grip closes the gripper and release opens the gripper.

Task Specification Interpreter. The Task Specification Inter-
preter, taking a task specification as input, chooses to perform
one of the two operations: (1) when the current program p
is not primitive, it predicts the sub-task specification for the
next sub-program; and (2) when p is primitive (i.e., an API),
it predicts the arguments of the API.

Let yi be the task specification of the i-th program
call, where yi is a sequence of random variables yi =
{x1,x2, . . . ,xNi}. The next task specification yi+1 is deter-
mined by three inputs: the environment state si, the current
program pi, and the current specification yi. When pi is a
primitive, TSI uses an API-specific decoder (i.e., an MLP)
to predict the API arguments from the tuple (si, pi,yi).

We focus on the cases when pi is not primitive. In this case,
TSI needs to predict a sub-task specification yi+1 for the
next program pi+1. This sub-task specification should only
access relevant information to the sub-task. To encourage
information hiding from high-level to low-level programs, we
enforce the scoping constraint, such that yi+1 is a contiguous
subsequence of yi. Formally, given yi = {x1,x2, . . . ,xNi}, the
goal is to find the optimal contiguous subsequence yi+1 =
{xp,xp+1, . . . ,xq�1,xq}, where 1 p q Ni.

Subsequence Selection (Scoping). We use a convolutional
architecture to tackle the subsequence selection problem.
First, we embed each input element yi = {x1,x2, . . . ,xNi}
into a vector space fi = {w1,w2, . . . ,wNi}, where each wi 2
Rd . We perform temporal convolution at every temporal
location j of the sequence fi, where each convolutional
kernel is parameterized by W 2 Rm⇥dk and b 2 Rm, which
takes a concatenation of k consecutive input elements and
produces a single output y j

i 2 Rm. We use relu as the
nonlinearities. The outputs from all convolutional kernels
y j

i are concatenated with the program embedding pi and the
encoded states si into a single vector h j = [pi;y j

i ;si]. Finally,
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Fig. 4: The variability of a task structure consists of changing
success conditions (task semantics), variable subtask permutations
(task topology), and larger task sizes (task length). We evaluate the
ability of our proposed model in generalizing towards these three
types of variations.

we compute the softmax probability of four scoping labels
Pr j(l 2 {Start,End,Inside,Outside}). These scoping
labels indicate whether this temporal location is the start/end
point of the correct subsequence, or if it resides inside/outside
the subsequence. We use these probabilities to decode the
optimal subsequence as the output sub-task specification yi+1.

The decoding process can be formulated as the maximum
contiguous subsequence sum problem, which can be solved
optimally in linear time. However in practice, taking the
start and end points with the highest probabilities results in
a good performance. In our experiments, we set yi+1 =
{xst,xst+1, . . . ,xed}, where st = argmax j=1...Ni Pr j(Start)
and ed = argmax j=1...Ni Pr j(End). This process is illustrated
in Figure 3, wherein the model factorizes a video sequence
which illustrates the procedure of pick_and_place into a
fraction that only illustrates pick. This convolutional TSI
architecture is invoked recursively along the program exe-
cution trace. It decomposes a long task specification into
increasingly fine-grained pieces from high-level to low-level
tasks. This method naturally enforces the scoping constraint.
Our experimental results show that such information hiding
mechanism is crucial to good generalization.
Model Training. We train the model using rich supervision
from program execution traces. Each execution trace is a
list of tuples {xt |xt = (yt , pt ,st), t = 1 . . .T}, where T is the
length of the execution trace. Our training objective is to
maximize the probability of the correct executions over all
the tasks in the dataset D = {(xt ,xt+1)}, such that q

⇤ =
SD logPr[xt+1|xt ;q ].

We collect a dataset that consists of execution traces from
multiple types of tasks and their task specifications. For
each specification, we provide the ground-truth hierarchical
decomposition of the specification for training by rolling
a hard-coded expert policy. We use cross-entropy loss at
every temporal location of the task specification to supervise
the scoping labels. We also adopted the idea of adaptive
curriculum from NPI [24], where the frequency of each mini-
batch being fetched is proportional to the model’s prediction
error with respect to the corresponding program.

V. EXPERIMENTAL SETUP

The goal of our experimental evaluation is to answer the
following questions: (1) Does NTP generalize to changes in all

three dimensions of variation: length, topology, and semantics,
as illustrated in Figure 4, (2) Can NTP use image-based input
without access to ground truth state, and (3) Would NTP
also work in real-world tasks which have combinations of
these variations. We evaluate NTP in three robot manipulation
tasks: Object Sorting, Block Stacking, and Table Clean-up.
Each of these tasks requires multiple steps to complete and
can be recursively decomposed into repetitive sub-tasks.
Input State Representation. We use an expert policy to
generate program execution traces as training data. An expert
policy is an agent with hard-coded rules that call programs
(move_to, pick_and_drop, etc.) to perform a task. In
our experiment, we use the demonstration of a robot carrying
out a task as the task specification. For all experiments, unless
specified, the state representation in the task demonstrations
is in the form of object position trajectories relative to the
gripper frame. In the Block Stacking experiment, we also
report the results of using a learned object detector to predict
object locations and the results of directly using RGB video
sequence as state observations and task demonstrations.
Simulator Setup. We conduct our experiments in a 3D
environment simulated using the Bullet Physics engine [8].
We use a disembodied PR2 gripper for both gathering
training data and evaluation. We also evaluate NTP on a
simulated 7-DoF Sawyer arm with a parallel-jaw gripper as
shown in Figure 1 and Figure 8. Since NTP only considers
end-effector pose, the choice of robot does not affect its
performance in the simulated environment.
Real-Robot Setup. We also demonstrate NTP’s performance
on the Block Stacking and the Object Sorting tasks on a 7-
DoF Sawyer arm using position control. We use NTP models
that are trained with simulated data. Task demonstration are
obtained in the simulator, and the instantiated NTP models
are executed on the robot. All real-robot experiments use
object locations relative to the gripper as state observations.
A Kinect2 camera is used to localize objects in the 3D scene.
Evaluation Metrics. We evaluate NTP on three variations
of task structure as illustrated in Figure 4: 1) task length:
varying number of steps due to the increasing problem size
(e.g., having more objects to transport); 2) task topology:
variations in permutations of steps of sub-tasks to reach the
same end goal (e.g., manipulating objects in different orders);
and 3) task semantics: the unseen task objectives and success
conditions (e.g., placing objects into a different container).

We evaluate Task length on the Object Sorting task varying
the number of objects instances from 1 to 10 per category.
Further, we evaluate Task Topology on the Block Stacking task
with different permutations of pick-and-place sub-tasks that
lead to the same block configurations. Finally, we evaluate
Task Semantics on Block Stacking on a held-out set of task
demonstrations that lead to unseen block configurations as
task objectives.We report success rates for simulation tasks,
and we analyze success rates, causes of failure, and proportion
of task completed for real-robot evaluation. All objects are
randomly placed initially in all of the evaluation tasks in both
the simulated and the real-robot setting.
Baselines. We compare NTP to four baselines architecture



Object Sorting: Task Length

Fig. 5: Task Length: Evaluation of the Object Sorting in simulation.
The axes represent mean success rate (y) with 100 evaluations
each and the number of objects in unseen task instances (x). NTP
generalizes to increasingly longer tasks while baselines do not.

variations. (1) Flat is a non-hierarchical model, similar to [10],
that takes as input task demonstration and current observation,
and directly predicts the primitive APIs instead of calling
hierarchical programs. (2) Flat (GRU) is the Flat model with
a GRU cell. (3) NTP (no scope) is a variant of the NTP
model that feeds the entire demonstration to the subprograms,
thereby discarding the scoping constraint. (4) NTP (GRU) is a
complete NTP model with a GRU cell. This is to demonstrate
that the reactive core network in NTP can better generalize
to longer tasks and recover from unexpected failures due to
noise, which is crucial in robot manipulation tasks.

VI. EXPERIMENT 1: OBJECT SORTING

Setup. The goal of Object Sorting is to transport objects
randomly scattered on a tabletop into their respective shipping
containers stated in the task demonstration. We use 4 object
categories and 4 containers in evaluating the Object Sorting
task. In the real robot setup, a toy duck, toy frog, lego block,
and marker are used as the objects for sorting, and are sorted
into 4 black plastic bins. This results in a total of 44 = 256
category-container combinations (multiple categories may be
mapped to the same container). However, as each category
can be mapped to 4 possible containers, a minimum of 4
tasks can cover all possible category-container pairs. We
select these 4 tasks for training and the other 252 unseen
tasks for evaluation. We train all models with 500 trajectories.
Each test run is on 100 randomly-selected unseen tasks.
Simulator. As shown in Figure 5, NTP significantly out-
performs the flat baselines. We examine how the task size
affects its performance. We vary the numbers of objects to be
transported from 4 to 40 in the experiments. The result shows
that NTP retains a stable and good performance (over 90%) in
longer tasks. On the contrary, the flat models’ performances
decline from around 40% to around 25%, which is close to
random. The performance of the NTP (GRU) model also
declines faster comparing to the NTP model as the number of
objects increases. This comparison illustrates NTP’s ability
to generalize towards task length variations.
Real robot. Table I shows the results of the Object Sorting
task on the robot. We use 4 object categories with 3 instances
of each category. We carried out a total of 10 evaluation trials
on randomly selected unseen Object Sorting tasks. 8 trials
completed successfully, and 2 failed due to of manipulation

failures: a grasp failure and a collision checking failure.

VII. EXPERIMENT 2: BLOCK STACKING

Setup. The goal of Block Stacking is to stack a set of blocks
into a target configuration, similar to the setup in [10]. We use
8, 5⇥5 cm wooden cubes of different colors both in simulation
and with real-robot. We randomly generate 2000 distinct
Block Stacking task instances. Two tasks are considered
equivalent if they have the same end configuration. We use a
maximum of 1000 training tasks and 100 trials for each task,
leaving the remaining 1000 task instances as unseen test cases.
A task is considered successful if the end configuration of the
blocks matches the task demonstration. We evaluate both seen
and unseen tasks, i.e., whether the end configuration appears
in training set. We use N = 8 blocks in our evaluation.
Simulator. Figure 6 shows that all models except the Flat
baseline are able to complete the seen tasks at around 85%
success rate. The performance of the Flat baseline decreases
dramatically when training with more than 400 tasks. It is
because the Flat model has very limited expressiveness power
to represent complex tasks. The Flat (GRU) model performs
surprisingly well on the seen tasks. However, as shown in
Figure 6, both Flat and Flat (GRU) fail to generalize to unseen
tasks. We hypothesize that the Flat (GRU) baseline simply
memorizes the training sequences. On the other hand, NTP
achieves increasingly better performances when the diversity
of the training data increases.

We evaluate task topology generalization on random
permutations of the pick-and-place sub-tasks that lead to
the same end configuration. Specifically, the task variations
are generated by randomly shuffling the order that the "block
towers" are built in the training tasks. Figure 6 illustrates
that NTP generalizes better towards variable topologies when
trained on a larger variety of tasks. We find that increasing
the diversity of training data facilitates NTP to learn better
generalizable modules.

Next, we evaluate task semantics generalization. The
variability of real-world environments prevents any task-
specific policy learning method from training for every
possible task. Figure 6(A) illustrates that NTP generalizes
well to novel task demonstrations and new goals. As the
number of training tasks increases, both NTP and its recurrent
variation steadily improve their performance on the unseen
tasks. When trained with 1000 tasks, their performances on
unseen tasks are almost on par with that of seen tasks.

The performance gaps between NTP (no scope) and NTP
highlight the benefit of the scoping constraint. NTP (no scope)
performance drops gradually as the task size grows implying
that the programs in NTP learn modularized and reusable
semantics due to information hiding, which is crucial to
achieving generalization towards new tasks.
Real robot. Table I shows the results of the Object Sorting
task in the real world setting. We carried out 20 trails of
randomly selected unseen Block Stacking tasks. Out of the 2
failure cases, one is caused by an incorrect placing; the other
is caused by the gripper knocking down a stacked tower and
not able to recover from the error.



A. Seen Task Objectives B. Unseen Task ObjectivesBlock Stacking: Task Semantics Block Stacking: Task Topology

Fig. 6: Task Semantics: Simulated evaluation of the Block Stacking. The x-axis is the number of tasks used for training. The y-axis is
the overall success rate. (A) and (B) show that NTP and its variants generalize better to novel task demonstrations and objectives as the
number of training tasks increases.
Task Topology: Simulated evaluation of the Block Stacking. NTP shows better performance in task topology generalization as the number
of training tasks grows. In contrast, the flat baselines cannot handle topology variability.
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Fig. 7: NTP with Visual State: NTPVID (Detector) uses an
object detector on images which is subsequently used as state
in NTP. NTP (E2E) is an end-to-end model trained completely
on images with no low-level state information. We note that
in the partial observation case (only video), similar learning
trends were observed as compared to fully observed case (NTP
(Full State)), albeit with a decrease in performance.

A. Adversarial Dynamics

We show that the reactive core network in NTP enables
it to better recover from failures compared to its recurrent
variation. We demonstrate this by performing Block Stacking
under an adversary. Upon stacking each block, an adversary
applies a force to the towers with a probability of 25%. The
force can knock down the towers. We evaluate NTP and its
recurrent variant on the 1000 unseen tasks. Table II shows that
under the same adversary, the success rate of NTP with the
GRU core decreases by 46%, whereas the success rate of NTP
only decreases by 20%. This indicates that a reactive model
is more robust against unexpected failures as its behavior is
less history dependent than the recurrent counterpart. We also
demonstrate this feature in the supplementary video in the
real world setting.
B. NTP with Visual State

This experiment examines the ability of NTP to learn when
demonstrations come in the form of videos and the state is
a single image. Unlike the full state information used in
experiments thus far, we train an NTP model NTPVID (E2E)
to jointly learn a policy and task-relevant features without
explicit auxiliary supervision. An alternative is to use a 2-
phase pipeline with an object detector as state preprocessor
for NTP, termed as NTPVID (Detector). The detector is a
separately trained CNN to predict object position in R3.

We explore these results in Figure 7, where we see compare
the visual models (NTPVID (E2E) and NTPVID (Detector))
against the best full state model (NTP), all trained on 100
demonstrations per task, for a varying number of tasks. For
NTPVID (E2E) we use a 7-layer convolutional network,
which takes as input a 64⇥64 image and outputs a length
128 feature vector. For NTPVID (Detector) , we use a VGG16

based architecture, predicting the position of the N-task
objects from an input image of size 224⇥224.

We note that NTPVID (E2E) outperforms NTPVID (De-
tector) and achieves a higher success rate despite only having
partial state information. Both of these methods are inferior
to the full-state NTP version. NTPVID (Detector) does
not generalize due to task-specific state representation, and
cascading errors in detection propagate to NTP reducing
performance even when using a very deep network for the
detection. The detector errors are Gaussian with standard
deviation of 2 cm. However, this performance comes at a
computational cost. NTPVID (E2E) was trained on 1000
training tasks for 10 days on 8 Nvidia Titan X GPUs. NTPVID
(Detector) was trained for 24 hours on a single GPU. Due
to computational cost, we only evaluated NTPVID (E2E) on
400 and 1000 training tasks.

VIII. EXPERIMENT 3: TABLE CLEAN-UP

Setup. We also evaluate NTP on the Table Clean-up task,
which exemplifies a practical real-world task. Specifically, the
goal of the task is to clear up to 4 white plastic bowls and
20 red plastic forks into a bin such that the resulting stack of
bowls and forks can be steadily carried away in a tray. Task
variation comes in task length, where the number of utensils
varies, and task topology, where the ordering in which bowls
are stacked can vary. Using trajectories as demonstrations
and object positions as state space, a model is trained using
1000 task instances.
Simulator. We observe that performance varies between
55%-100% where increasing errors with more objects are
attributed to failures in collision checking, not incorrect
decisions from NTP. The result shows that NTP retains



TABLE I: Real Robot Evaluation: Results of 20 unseen Block
Stacking evaluations and 10 unseen sorting evaluations on Sawyer
robot for the NTP model trained on simulator. NTP Fail denotes
an algorithmic mistake, while Manip. Fail denotes a mistake in
physical interaction (e.g. grasping failures and collisions).

Tasks # Trials Success NTP Fail Manip. Fail
Blk. Stk. 20 0.9 0.05 0.05
Sorting 10 0.8 0 0.20

TABLE II: Adversarial Dynamics: Evaluation results of the Block
Stacking Task in a simulated adversarial environment. We find that
NTP with GRU performs markedly worse with intermittent failures.

Model No failure With failures
NTP 0.863 0.663
NTP (GRU) 0.884 0.422

its generalization ability in a task that requires multiple
dimensions of generalization.
Real robot. We have also transferred the trained model on
the real-Sawyer arm to evaluate the feasibility as shown in
Figure 8. We demonstrate this task in the supplementary video
in the real world setting.

IX. DISCUSSION & FUTURE WORK

We introduced Neural Task Programming (NTP), a meta-
learning framework that learns modular and reusable neural
programs for hierarchical tasks. We demonstrate NTP’s
strengths in three robot manipulation tasks that require
prolonged and complex interactions with the environment.
NTP achieves generalization towards task length, topology,
and semantics. This work opens up the opportunity to use
generalizable neural programs for modeling hierarchical
tasks. For future work, we intend to 1) improve the state
encoder to extract more task-salient information such as object
relationships, 2) devise a richer set of APIs such as velocity
and torque-based controllers, and 3) extend this framework
to tackle more complex tasks on real robots.
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