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Abstract

Biological networks entail important topological features and patterns critical to understand-

ing interactions within complicated biological systems. Despite a great progress in under-

standing their structure, much more can be done to improve our inference and network

analysis. Spectral methods play a key role in many network-based applications. Fundamen-

tal to spectral methods is the Laplacian, a matrix that captures the global structure of the net-

work. Unfortunately, the Laplacian does not take into account intricacies of the network’s

local structure and is sensitive to noise in the network. These two properties are fundamen-

tal to biological networks and cannot be ignored. We propose an alternative matrix Vicus.

The Vicus matrix captures the local neighborhood structure of the network and thus is more

effective at modeling biological interactions. We demonstrate the advantages of Vicus in the

context of spectral methods by extensive empirical benchmarking on tasks such as single

cell dimensionality reduction, protein module discovery and ranking genes for cancer sub-

typing. Our experiments show that using Vicus, spectral methods result in more accurate

and robust performance in all of these tasks.

Author summary

Networks are a representation of choice for many problems in biology and medicine

including protein interactions, metabolic pathways, evolutionary biology, cancer subtyp-

ing and disease modeling to name a few. The key to much of network analysis lies in the

spectrum decomposition represented by eigenvectors of the network Laplacian. While

possessing many desirable algebraic properties, Laplacian lacks the power to capture fine-

grained structure of the underlying network. Our novel matrix, Vicus, introduced in this

work, takes advantage of the local structure of the network while preserving algebraic

properties of the Laplacian. We show that using Vicus in spectral methods leads to supe-

rior performance across fundamental biological tasks such as dimensionality reduction in

single cell analysis, identifying genes for cancer subtyping and identifying protein modules

in a PPI network. We postulate, that in tasks where it is important to take into account
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local network information, spectral-based methods should be using Vicus matrix in place

of Laplacian.

This is a PLOS Computational Biology Methods paper.

Introduction

Networks are a powerful paradigm for representing relations among objects from micro to

macro level. It is no surprise that networks became a representation of choice for many prob-

lems in biology and medicine including gene-gene and protein-protein interaction networks

[1], diseases [2] and their interrelations [3], cancer subtyping [4], genetic diversity [5], image

retrieval [6], dimensionality reduction [7, 8] and many other applications. Computational biol-

ogists routinely use networks to represent data and analyze networks to obtain better under-

standing of patterns and local structures hidden in the complex data they encode. One of the

most standard graph-based methods to analyze networks is to decompose it into eigenvectors

and eigenvalues, i.e. apply spectral methods to the network to understand its structure. At the

heart of spectral methods is the so-called Laplacian matrix. Spectral clustering relies on the fact

that the principle eigenvectors of the Laplacian capture membership of nodes in implicit net-

work clusters. This principle is essential to clustering and dimensionality reduction.

The traditional formulation of the Laplacian captures the global structure of the matrix,

which is often insufficient in biology where local topologies are what needs to be sought and

exploited. Moreover, recently algorithms designed to capture the local structure of the data

have been shown to significantly outperform global methods [9, 10]. These approaches aim to

reconstruct each data point using its local neighbours and have been shown to be robust and

powerful for unweighted networks. Weighted networks are richer representations of underly-

ing data than unweighted networks: in biological networks weights can represent the strength

of interactions or the strength of the evidence underlying each interaction, in patient networks

weights represent the degree of similarity between patients [4]. In this paper, we provide a

local formulation of the Laplacian for weighted networks which we call the Vicus matrix (Vþ),

from the Latin word ‘neighborhood’. Using Vicus in place of the Laplacian allows spectral

methods to exploit local structures and makes them a lot more relevant to a variety of biologi-

cal applications.

In this paper we introduce Vicus and compare its performance to the Laplacian across a

wide range of tasks. Our experiments include single cell dimensionality reduction, protein

module discovery, feature ranking and large scale network clustering. Since we consider such

a diverse set of biological questions, in each case we also compare to appropriate state-of-the-

art methods corresponding to each question. Spectral clustering using Vicus outperforms

competing approaches in all of these tasks. Our experiments show that Vicus is a more robust

alternative to traditional Laplacian matrix for network analysis.

Results

Simulations: Laplacian vs Vicus

In this section we consider predetermined 2D and 3D structures, represent them as a graph

and analyze the performance of local Vicus as compared to traditional Laplacian in the task of

graph-based dimensionality reduction.

Local structures for network analysis
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First, let us consider a particular type of protein fold that has a complex structure in which

four pairs of antiparallel beta sheets, only one of which is adjacent in sequence, are wrapped in

three dimensions to form a barrel shape. This structure known as jelly roll or Swiss roll is par-

ticularly common in viral proteins and is schematically depicted in Fig 1A. Spectral methods

assume that clusters of data points can be well described by the Euclidean distance. Though it

looks relatively unambiguous to a human, this task is computationally challenging since the

assumption that Euclidean proximity translates to similarity does not hold in the original data

space for the Swiss roll structure. As expected, standard spectral decomposition fails to find a

lower dimensional representation of the data due to the inability to capture the underlying

manifolds in Fig 1A. Using Vicus in place of the Laplacian matrix helps spectral decomposition

to transform the original data to the latent space with reduced complexity while preserving the

contiguity and the cluster memberships of the original data.

Another simulation that we considered is a typical example in bioinformatic imaging, struc-

tured 3D data. A schematic of clustered signal within brain regions and connecting channels

between them is captured in Fig 1B. Given five random non-overlapping clusters in 3D space

connected by sparsely measured channels, Vicus maps the clusters into dense points while pre-

serving the lines connecting them. This embedding indicates that, by considering local struc-

tures, local spectrum can highlight the obvious cluster structures without disregarding the

structure of the data between clusters. By comparison, Laplacian-based embedding highlights

the dense clusters while making the connectivity between them more ambiguous (Fig 1B).

This example sheds light on how Vicus can preserve local structure of the data.

A very common structure in protein folding is a helix. Among such foldings are toroidal

helices, where the helix is wrapped around a toroid. These structures have a pore in the middle

that allows unfolded DNA to pass through. The toroidal helix in Fig 1C has a circle as its basic

geometric shape. Our local spectrum recovers the underlying 2D circle by considering the

labels in local neighborhoods while the Laplacian finds a circle distorted by similarities of

points in the 3D dimension. The distortions by the global spectrum result from a fundamental

limitation in descriptive power of Euclidean distance in high dimensional spaces, while our

local spectrum can avoid such limitation by focusing on the local rather than the global mani-

fold structures.

Our final example is the task of sampling in 3D space, such as sampling an image of a cell

shape in a cell morphology study. We sampled points from a solid bowl-shaped figure

(Fig 1D) non-uniformly: the top of the bowl is more densely sampled, gradually reducing sam-

pling towards the bottom of the bowl graph. The Laplacian based 2D embedding has consider-

able bias towards the densely sampled region while Vicus’ embedding recognizes that

sampling was done on a solid shape, again by capturing the labels in the local neighbourhoods.

These examples show the benefits of capturing local structure in a network (graph) decom-

position, which gives a better understanding of patterns and neighborhoods hidden in com-

plex networks.

A case study in single-cell RNA-seq analysis

Single-cell RNA sequencing (scRNA-seq) technologies have recently emerged as a powerful

means to measure gene expression levels of individual cells [11]. Quantifying the variation

across gene expression profiles of individual cells is key to the dissection of the heterogeneity

and the identification of new populations among cells. The unique challenges associated with

single-cell RNA-seq data include large noise in quantification of transcriptomes and high

dropout rates, therefore reducing the usability of traditional unsupervised clustering methods.

Vicus, employing local structures hidden in high-dimensional data, is able to tackle these

Local structures for network analysis
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Fig 1. Four examples of three dimensional manifolds (left column) and their embeddings by global Laplacian

(middle column) and the proposed Vicus (right column). A shows an example of the structure known as jelly roll or

Swiss roll which is particularly common in viral proteins. B shows five random non-overlapping clusters in 3D space

connected by sparsely measured channels. C shows a toroidal helix containing a circle as its basic geometric shape. D

is an example of sampling in 3D space where we sample points from a solid bowl-shaped figure non-uniformly: the top of

Local structures for network analysis
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challenges and improve many types of single-cell analyses including visualization, clustering

and gene selection.

We benchmark our method on four recently published single-cell RNA-seq datasets with

validated cell populations:

• Pollen data set [12] consists of 11 cell populations including neural cells and blood cells.

• Usoskin data set [13] consists of neuronal cells with sensory subtypes. This data set contains

622 cells from the mouse dorsal root ganglion, with an average of 1.14 million reads per cell.

The authors divided the cells into four neuronal types: peptidergic nociceptors, non-pepti-

dergic nociceptors, containing neurofilament and containing tyrosine hydroxylase.

• Buettner data set [14] consists of embryonic stem cells in different cell cycle stages. This

dataset was obtained from a controlled study that quantified the effect of the cell cycle on

gene expression level in individual mouse embryonic stem cells (mESCs).

• Kolodziejczyk data set [15] consists of pluripotent cells under different environmental con-

ditions. This data set was obtained from a stem cell study on how different culture conditions

influence pluripotent states of mESCs. Preprocessed data was obtained directly from [11].

The main reason we chose these four single-cell datasets is that their ground-truth labels

have been validated either experimentally or computationally in their original studies. We for-

mulate the problem of clustering cells from RNA-seq data in terms of networks. First, cell-to-

cell similarity networks (Materials and methods) are constructed from single-cell RNA-seq

data. The advantage of using networks to represent this data are in network’s ability to capture

a set of relationship between all pairs of cells. After the construction of cell-to-cell networks,

we can apply our Vicus to obtain a low-dimensional representation that contains local struc-

tures in the networks and potential cluster memberships of cells.

To demonstrate the representative power of the low-dimensional representations by Vicus,

we ran t-SNE [16], the most common visualization method in single-cell studies, on the

obtained low-dimensional representations and compare the 2-D visualization of both Vicus

and Laplacian across the four single-cell datasets in Fig 2. Note that we are only using t-SNE

for the purpose of visualization of Laplacian and Vicus. The cells, color-coded by the ground-

truth labels from original studies [12–15], are clearly separated by Vicus (Fig 2), indicating

greater power of Vicus to capture fine-grained structures in cell-to-cell similarity networks.

We compare spectral decomposition using Vicus with spectral methods using traditional

global Laplacian along with 6 other popular dimensionality reduction methods. The six meth-

ods include linear methods such as Principle Component Analysis (PCA), Factor Analysis

(FA), and Probabilistic PCA (PPCA) and nonlinear methods such as multidimensional scaling

(MDS), Kernel PCA, Maximum Variance Unfolding (MVU), Locality Preserving Projection

(LPP) and Sammon mapping. We use a widely-used toolbox [16] implementing all these popu-

lar dimensionality reduction methods. Further, we also compare Vicus with three widely

used state-of-the-art network-based clustering algorithms: InfoMap [17], modularity-based

Louvian [18], and Affinity Propagation (AP) [19]. To compare these 11 methods we adopted

two metrics: Normalized Mutual Information(NMI) [20] and Adjusted Rand Index(ARI) [21]

(Materials and methods), evaluating the concordance of obtained label and the ground-truth.

Higher values of these evaluation metrics indicate better ability of correctly identifying cell

populations.

the bowl is more densely sampled, gradually reducing sampling towards the bottom of the bowl graph. On all the cases,

Vicus is able to recover the underlying distributions of the input data more robustly.

https://doi.org/10.1371/journal.pcbi.1005621.g001
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Results in Table 1 illustrate Vicus’ superior performances compared to all ten other meth-

ods in most of the considered cases. It is noticeable that Vicus outputs much better module

detection results than all other methods on Buettner data set [14]. This is due to the fact that

Buettner data set [14] contains cells in three different continuous cell stages which are hard to

detect due to large noise. In addition, PCA performs the best on Pollen data set [12] because

the ground-truth is obtained by simple clustering with PCA on a set of pre-selected genes. Fur-

ther, compared with the three network-based module detection methods (InfoMap, Louvian

and AP), our Vicus is able to achieve much more accurate module discovery on each of the

same networks.

Fig 2. Visualization of low-dimensional representations for single cells learned by Vicus and global Laplacian. Four columns represent the

embedding results for Buettner data, Kolodziejczyk data, Pollen data, and Usoskin data respectively. In each dataset, cells are color-coded as their

ground-truth labels. Larger separations between different clusters usually indicate better performances in low-dimensional embeddings.

https://doi.org/10.1371/journal.pcbi.1005621.g002

Table 1. Clustering results comparison on the four single-cell datasets.

NMI/ARI Buettner Kolodziejczk Pollen Usoskin

PCA 0.429/0.394 0.553/0.539 0.946/0.941 0.468/0.395

FA 0.337/0.278 0.686/0.679 0.700/0.558 0.135/0.104

PPCA 0.182/0.174 0.770/0.727 0.922/0.890 0.694/0.731

MDS 0.429/0.395 0.557/0.543 0.931/0.885 0.468/0.438

Sammon 0.247/0.232 0.434/0.423 0.903/0.825 0.582/0.551

KPCA 0.286/0.204 0.413/0.339 0.701/0.692 0.268/0.189

LPP 0.314/0.229 0.720/0.699 0.890/0.801 0.632/0.654

MVU 0.247/0.154 0.610/0.652 0.839/0.690 0.226/0.175

InfoMap 0.584/0.274 0.688/0.443 0.930/0.884 0.580/0.257

Louvian 0.731/0.654 0.728/0.599 0.770/0.643 0.603/0.561

AP 0.214/0.135 0.712/0.699 0.816/0.671 0.256/0.172

Global Laplacian 0.271/0.166 0.600/0.495 0.855/0.790 0.592/0.555

Vicus 0.778/0.742 0.780/0.719 0.934/0.880 0.695/0.701

https://doi.org/10.1371/journal.pcbi.1005621.t001
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Vicus captures rare cell populations

One of the major challenges in single-cell analysis is to detect rare populations of cells from

noisy single-cell RNA-seq data. The signals of rare populations can be easily neglected due to

the existence of various sources of noises. Our approach based on Vicus matrix is able to dis-

cover weak signals of rare populations by exploiting local structures while global Laplacian

fails. We applied our method on a scRNA-seq data consisting of 2700 peripheral blood mono-

nuclear cells (PBMC). It is generated by 10x Genomics GemCode platform, a droplet-based

high-throughput technique and 2700 cells with UMI counts were identified by their custom-

ized computational pipeline [22]. This cell population includes five major immune cell types

in a healthy human as well as a rare population of metakaryocytes (less than 0.5% abundance

in PBMC). The processed data is available in [11] and was originally published in [22]. Vicus

captures the rare population consisting of 11 cells (Fig 3A) while global Laplacian fails to find

such rare population. Vicus is also able to detect differential genes that define each cluster

(Fig 3B). Note that we used Vicus score to rank important genes (Materials and methods) and

we only show top 5 genes for each cluster.

Stability in clustering E. coli PPI network

Identification of functional modules in Protein-protein interaction (PPI) networks is an

important challenge in bioinformatics. Network module detection algorithms can be

employed to extract functionally homogenous proteins. In this application, first submodules

are detected and subsequently these submodules are investigated for enrichment of proteins

with a particular biological function. Stability is one of the essential goals of the multi-scale

module detection problem [23]. It measures how robust the employed algorithm is able to

recover the most dense subnetworks enriched to certain biological functions or physical inter-

actions. Inside the definition of stability (Materials and methods), the Laplacian is used in a

Markov process on the network which allows to compare and rank partitions at each iteration.

To analyze the stability of our method we partition a Protein-Protein Interaction(PPI) net-

work, which consists of 7,613 interactions between 2,283 Escherichia coli proteins [24]. This

task is more challenging than traditional clustering problems due to the intrinsic complexity of

Fig 3. Vicus detects rare population in PBMC data. A: a 3-D mapping of the learned low dimension by Vicus. Each cell is colored according to its

ground-truth. The rare population of Megakaryocytes is shown in yellow. B: The top 5 differential genes for each cell types detected by Vicus.

https://doi.org/10.1371/journal.pcbi.1005621.g003

Local structures for network analysis
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the cell captured by the PPI network. Due to large noise in experimental measurements of pro-

tein interactions, proteins in the same pathway do not necessarily have higher density of inter-

actions. This fact poses particular challenges to traditional network partition algorithms which

usually fail to infer the true membership of proteins to their underlying pathways. Vicus-based

spectrum exhibits higher stability along the Markovian timeline (Fig 4A) compared to the

global Laplacian. Global spectrum and Vicus-based local spectrum exploit different modes of

variation in the network (Fig 4B). Global spectrum tends to find large components in networks

to reduce the variation and increase stability while local spectrum exploits deeper substruc-

tures of the large components and detects partitions in more fine-grained fashion.

Ranking genes associated with cancer subtypes

One of the holy grails of computational medicine is identification of robust biomarkers associ-

ated with the phenotype of interest. Here we consider the question of identifying genes associ-

ated with cancer subtyping in 5 cancers from 6 microarray datasets. These are benchmark

datasets for feature selection in computational biology from http://featureselection.asu.edu/

datasets.php. Table 2 shows the statistics of these six datasets.

Fig 4. Stability and variations along different Markov time spans. Stability in Panel A indicates the robustness of the community detection algorithms

(Vicus vs Laplacian) while Variations in Panel B show how the corresponding algorithm exploits the community membership information in the network.

https://doi.org/10.1371/journal.pcbi.1005621.g004

Table 2. Statistics summary of the six macro-array datasets for cancer subtypes.

Data Set # Instances # Features # Classes Attributes

ALLAML 72 7129 2 continuous, binary

Carcinom 174 9182 11 continuous, multi-class

GLIOMA 50 4434 4 continuous, multi-class

leukemia 72 7070 2 discrete, binary

lung 203 3312 5 continuous, multi-class

lung-discrete 73 325 7 discrete, binary

https://doi.org/10.1371/journal.pcbi.1005621.t002

Local structures for network analysis
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In the standard formulation of spectral clustering, the ranking of features (in this case,

genes) is done using Laplacian score. Laplacian Score is a score derived based on the network

spectrum that is commonly used to rank features in the order of their importance and rele-

vance to the clusters. Given a feature f, the corresponding Laplacian Score (LS) is defined as

follows:

LSðfÞ ¼
fTLþf
fTf

: ð1Þ

Unfortunately, LS has difficulty identifying features that are only relevant to one of the clus-

ters (a certain local subnetwork) but not the whole network. Traditional LS will prefer features

that are globally relevant to all the clusters, even if they are not as strongly indicative of any

cluster in particular. We thus, propose to substitute the Laplacian matrix Lþ with our Vicus

matrix Vþ. We define our Vicus Score (VS) analogously to Laplacian Score:

VSðfÞ ¼
fTVþf
fTf

: ð2Þ

For each data set presented in Table 2, we rank the features by Laplacian Score and Vicus

Score. We take N highest ranked features and then apply simple k-means clustering. If the fea-

ture ranking algorithm correctly ranks the relevant features, the clustering accuracy should be

higher compared to the accuracy of the method that uses the same number of chosen but less

relevant features. We varied the number of chosen features and plotted the accuracy of the

ranking algorithms in Fig 5. Again, we use NMI and ARI as the evaluation metrics for the clus-

tering results. We observe that features ranked using the Vicus matrix result in better accuracy

when the number of chosen features is small, confirming that the most discriminative features

are ranked among the top by Vicus.

Discussion

The proposed Vicus matrix for weighted networks exhibits greater power to represent the

underlying cluster structures of the networks than the traditional global Laplacian. The key

observation is the ability of our local spectrum to make the top eigenvectors more robust to

noise and hyper parameters in the process of constructing such weighted networks. The pro-

posed Vicus-based local spectrum can supplant the usage of Laplacian-based spectral methods

for weighted networks in various tasks such as clustering, community detection, feature rank-

ing and dimensionality reduction. Sharing similar algebraic properties with global Laplacian,

our local spectrum helps to understand the underlying structures of the noisy weighted net-

works. As demonstrated, local spectrum is robust with respect to noise and outliers. Finally,

we have parallelized Vicus to achieve scalability. While the discussed applications contained at

most a few thousands nodes, we have performed experiments on networks with up to 500,000

nodes. On this very large network, Laplacian based spectral clustering took 7.5min while Vicus

took 12.9min with better performance (higher NMI). Thus, Vicus is not only more accurate

but it can scale to very large networks, a property which will become important as we start con-

structing, for example, DNA co-methylation probe-based networks with hundreds of thou-

sands of probes.

Conclusion

The power of local network neighborhoods has become abundantly clear in many fields where

the networks are used. Principled methods are needed to take advantage of the local network

structure. In this work we have proposed the Vicus matrix, a new formulation that shares

Local structures for network analysis
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algebraic properties with the traditional Laplacian and yet improves the power of spectral

methods across a wide range of tasks necessary to gain deeper understanding into biological

data and behavior of the cell. Taking advantage of the local network structure, we showed

improved performance in single cell RNA-seq clustering, feature ranking for identifying bio-

markers associated with cancer subtyping and dimensionality reduction in single cell RNA-

seq data. Further, we have shown that our method is amenable to parallelization which allows

it to be performed in time comparable to the traditional methods.

Materials and methods

Laplacian matrix

Suppose we have a network G ¼ fV; Eg with a set of V nodes and E weighted edges. Let

W 2 RjVj�jVj be the weighted ajacency matrix of this network, where |V| is the number of

nodes. Here, Wij represents the weight of the edge between the ith and jth nodes. Let diagonal

matrix D be W’s degree matrix, where Dii ¼
PjVj

j Wij. The classical formulation of the

Fig 5. The results of feature ranking by Laplacian and Vicus. Experiments are performed on 6 cancer datasets. On each dataset, we vary the number

of selected features (genes) and use k-means to report the clustering accuracy. NMI and ARI are used to measure the goodness of selected features. It is

consistently observed across six datasets that Vicus can select better features than Laplacian.

https://doi.org/10.1371/journal.pcbi.1005621.g005

Local structures for network analysis
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Laplacian of W is then matrix L ¼ D � W also known as the combinatorial Laplacian. A com-

mon variant of the Laplacian L is Lþ ¼ I � D� 1=2WD� 1=2 which is called the normalized
Laplacian.

Traditional state-of-the-art spectral clustering [25] aims to minimize RatioCut, an objective

function that effectively combines MinCut and equipartitioning, by solving the following opti-

mization problem:

min
Q2Rn�C

TraceðQTLþQÞ

s:t: QTQ ¼ I:
ð3Þ

where C is the number of clusters, n is the number of nodes and Q = [q1, q2, . . ., qC] is the set

of eigenvectors, capturing the structure of the graph. Eigenvectors associated with the Lapla-

cian matrix of the weighted network are used in many tasks (e.g., face clustering, dimensional-

ity reduction, image retrieval, feature ranking, etc). These eigenvectors suffer from some

limitations. For example, the top eigenvectors, in spite of their ability to map the data to a low-

dimensional space, are sensitive to noisy measurements and outliers encoded by pairwise simi-

larities (S1 Fig) [4]. Additionally, the Laplacian is very sensitive to the hyper-parameters used

to construct the similarity matrices (Materials and methods, S2 Fig) [25].

Local spectrum matrix: Vicus

Our Vicus Matrix (Vþ) is similar to the Laplacian (Lþ) in functionality and in addition cap-

tures the local structure inherent in the data. The intuition behind Vicus is that we use local

information from neighboring nodes, akin to label propagation [26] or random walks [27]. As

we demonstrate, relying on local subnetworks makes the matrix more robust to noise, helping

to alleviate the influence of outliers.

Let our data be a set of points {x1, x2, . . ., xn}. Then, each vertex vi, in the weighted network

G, represents a point xi and N i represents xi’s neighbours, not including xi. We constrain the

neighbourhood size to be held constant across nodes (i.e., kN i k¼ K; i ¼ 1; 2; . . . ; n).

Our main assumption is that the labels (such as cluster assignments 1 . . . C for C clusters)

of neighbouring points in the network are similar. Specifically, we assume that the cluster indi-

cator value of the ith datapoint (xi) can be inferred from the labels of its direct neighbors (N i).

First, we extract a subnetwork Gi ¼ ðVi; E iÞ such that Vi ¼ N i [ xi and E i ¼ EðViÞ which rep-

resents the edges connecting all the nodes in Vi. The similarity matrix associated with the sub-

graph Gi is Wi ¼WðE iÞ, representing the weights for all the edges associated with all the

nodes in Vi. Using the label diffusion algorithm [28], we can reconstruct a virtual label indica-

tor vector pk
Vi

such that

pk
Vi
¼ ð1 � aÞðI � aSiÞ

� 1qk
Vi
; 1 � k � C; ð4Þ

where α is a constant (0< α< 1, empirically set to 0.9 in all our experiments, as suggested in

[28]) and qk
Vi

is the scaled cluster indicator vector of the subnetwork Gi. Si represents the nor-

malized transition matrix of Wi, i.e., Siðu; tÞ ¼
Wiðu;tÞPKþ1

l¼1
Wiðu;lÞ

. Note that we do not actually per-

form any diffusion, since our setting is completely unsupervised. Instead we use pk to estimate

qik. pk
Vi

is a vector of K + 1 elements, where q̂k
i ¼ pk

Vi
½K þ 1� is the estimate of how likely data-

point i belongs to cluster k based on its neighbours. As we want maximal concordance between

q̂k
i and qk

i , we set q̂k
i ¼ biqk

Vi
, where bi 2 R

Kþ1 is the row of the matrix (1 − α)(I − αSi)
−1, repre-

senting label propagation at its final state. Here, βi represents the convergence of the label
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propagation for the datapoint i (Note that the original matrix was constructed as the concate-

nation of the neighborhood of i and datapoint i as the last row). Hence

q̂k
i �

bi½1 : K�qk
N i

1 � bi½K þ 1�
; ð5Þ

where βi[1: K] represents the first K elements of βi and βi[K + 1] is the K + 1st element in βi,
corresponding to the ith datapoint.

We can construct a matrix B, that represents a linear relationship q̂k � Bqk, (k = 1, . . ., C),

such that

Bij ¼

(
bi½j�

1 � bi½K þ 1�
if xj 2 N i and xj is the j‐th element in N i

0 otherwise

ð6Þ

Our objective is to minimize the difference between q̂k and qk:

Xn

i¼1

XC

k¼1

ðq̂k
i � qk

i Þ
2
¼

XC

k¼1

kqk � q̂k k2 �
XC

k¼1

kqk � Bqk k2

¼ TraceðQTðI � BÞTðI � BÞQÞ

ð7Þ

Setting Vþ ¼ ðI � BÞTðI � BÞ, we arrive at our novel local version of spectral clustering:

min
Q2Rn�C

TraceðQTVþQÞ

s:t: QTQ ¼ I:
ð8Þ

Similarly to the original spectral clustering formulation (Eq 3), our clustering results can be

obtained by performing eigen-decomposition of matrix Vþ [25] to solve Eq 8. The final group-

ing of datapoints into clusters is achieved by performing k-means clustering on Q as in [29].

Analysis of Vicus properties. Our Vicus Matrix Vþ shares many properties with Lapla-

cian Lþ [25]:

1. Both matrices are symmetric and positive semi-definite.

2. The smallest eigenvalue of both matrices is 0, the corresponding eigenvector is the constant

vector l.

3. Both matrices have n non-negative, real-valued eigenvalues 0 = λ1� λ2� . . .� λn

4. The multiplicity of the eigenvalue 0 of both Lþ and Vþ equals the number of connected

components in the network.

Here n is the number of nodes in the network. To prove the first property, we note that

VþT
¼ fðI � BÞTðI � BÞgT ¼ ðI � BÞTðI � BÞ ¼ Vþ, thus Vþ is symmetric. Also, for any non-

zero vector x, we have xT � Vþ � x ¼ xT � ðI � BÞTðI � BÞ � x ¼ jjðI � BÞ � xjj � 0.

For the second property, we first prove that B l = l, i.e., matrix B has an eigenvalue of 1 cor-

responding to an all-one constant vector. To prove the above, the following statement must be

true:

X

j2N i

Bij ¼ 1; i ¼ 1; 2; . . . ; n:
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According to Eq 6,
P

j2N i
Bij ¼

P
N i

bi ½j�

1� bi½Kþ1�
. Note that βi is the last row of the transition kernel

ð1 � aÞðI � aLiÞ
� 1
¼ ð1 � aÞ

P1

l¼0
ðaLiÞ

l
, hence we have

P
j2N i

bi½j� þ bi½K þ 1� ¼ ð1 � aÞ
P1

l¼0
al ¼ 1, considering the sum of each row of Li is all one. Thus we prove

P
j2N i

Bij ¼ 1 and

therefore Bl = l.

It is then easy to verify that

Vþl ¼ ðI � BÞTðI � BÞl

¼ ðI � B � BT þ BTBÞl

¼ l � l ¼ 0 □
Hence we proved that matrix Vþ always has an eigenvalue of 0 corresponding to the eigen-

vector l. Property 3 follows directly from properties 1 and 2. Finally, the last property can be eas-

ily proven using an arguments similar to [25]. The above properties verify that our proposed

Vicus matrix is a proper alternative to Laplacian including the desirable algebraic properties.

Similarity network constructions

Given a feature set that describes a collection of objects, denoted as X = {x1, x2, . . ., xn}, we

want to construct a similarity network N 2 Rn�n in which N ði; jÞ indicates the similarity

between the i-th and j-th object. The most widely used method is to assume a Gaussian distri-

butions across pairwise similarites:

N ði; jÞ ¼ exp �
kxi � xjk2

2s2

� �

;

Here σ is a hyper-parameter that needs careful manual setting. More advanced methods of

constructing similarity networks can be seen in [4].

Normalized mutual information

Throughout the paper, we used Normalized Mutual Information (NMI) [20] to evaluate the

consistency between the obtained clustering and the groundthuth. Given two clustering results

U and V on a set of data points, NMI is defined as: I(U, V)/ max{H(U), H(V)}, where I(U, V) is

the mutual information between U and V, and H(U) represents the entropy of the clustering

U. Specifically, assuming that U has P clusters, and V has Q clusters, the mutual information is

computed as follows:

IðU;VÞ ¼
XP

p¼1

XQ

q¼1

jUp \ Vqj

N
log

NjUp \ Vqj

jUpj � jVqj

where |Up| and |Vq| denote the cardinality of the p-th cluster in U and the q-th cluster in V
respectively. The entropy of each cluster assignment is calculated by

HðUÞ ¼ �
XP

p¼1

jUpj

N
log
jUpj

N
;

and

HðVÞ ¼ �
XQ

q¼1

jVqj

N
log
jVqj

N
:
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Details can be found in [20]. NMI is a value between 0 and 1, measuring the concordance

of two clustering results. In the simulation, we calculate the obtained clustering with respect to

the ground-truth. Therefore, a higher NMI refers to higher concordance with truth, i.e. a more

accurate result.

Adjusted Rand Index

The Adjusted Rand Index (ARI) is another widely-used metric for measuring the concordance

between two clustering results. Given two clustering U and V, we calculate the following four

quantities:

a: number of objects in a pair are placed in the same group in U and in the same group in V;

b: number of objects in a pair are placed in the same group in U and in different groups in V;

c: number of objects in a pair are placed in the same group in V and in different groups in U;

d: number of objects in a pair are placed in different groups in U and in different groups in V.

The (normal) Rand Index (RI) is simply aþd
aþbþcþd. It basically weights those objects that were

classified together and apart in both U and V. There are some known problems with this sim-

ple version of RI such as the fact that the Rand statistic approaches its upper limit of unity as

the number of clusters increases. With the intention to overcome these limitations, ARI has

been proposed in [21] in the form of

ARI ¼

n
2

� �
ðaþ dÞ � ½ðaþ bÞðaþ cÞ þ ðcþ dÞðbþ dÞ�
n
2

� �
� ½ðaþ bÞðaþ cÞ þ ðcþ dÞðbþ dÞ�

:

Stability and variations in Markov clustering

Given a network on a set of N nodes with edge weights W, we first present a few related terms

as follows

L: the Laplacian matrix for the network. It can either be traditional Laplacian or our newly pro-

posed Vicus;

π: the stationary distribution vector with πL = 0

di: the degree of node i as di = ∑j Wij

S: the normalized degree matrix with nonzero values only on the diagonal Sii ¼
diP
k
dk

.

H: the partition indicator matrix with Hij = 1 if the node i is classified with cluster j and Hij = 0

otherwise.

Then the stability measure on time t is defined in terms of the clustered auto-covariance

matrix

Rt ¼ HTðSðI � LÞt � pTpÞH

as follows:

rðt;HÞ ¼ min
0�s�t

XC

i¼1

ðRsÞii ¼ min
0�s�t

traceðRsÞ;

Local structures for network analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005621 October 12, 2017 14 / 18

https://doi.org/10.1371/journal.pcbi.1005621


and the stability curve of the network is obtained by maximizing this measure over all possible

partitions:

rðtÞ ¼ max
H

rðt;HÞ:

A good clustering over time t will have large stability, with a large trace of Rt over such a time

span.

The variation is defined in terms of the asymptotic stability induced by going from the ‘fin-

est’ to the ‘next finest’ partitions is:

Variation �
X

i

X

j
l
t
2

ffiffiffiffiffiffiffi
didj

q
u2iu2j

where u2 is the normalized Fiedler eigenvector with its corresponding eigenvalue λ2. We refer

the mathematical details in deriving these two definitions to [23].

Hyper-parameters settings for Vicus

There are mainly three hyper-parameters in Vicus: first the number of neighbors K, the vari-

ance in network construction σ, and the diffusion parameter α. Details about the meaning of

these hyper-parameters can be seen in [30]. In all our experiments, we use the same setting of

hyper-parameters as follows:

K ¼ 10; s ¼ 0:5; a ¼ 0:9:

The proposed Vicus is very robust to the choice of σ and α (S3 Fig). For the choice of K, we

usually increase K as the number of nodes in the networks get larger (S3 Fig). We also provide

a range of recommended choices for these hyper-parameters:

K 2 ½5; 20�; s 2 ½0:3; 0:6�; a 2 ½0:8; 0:95�

We also want to emphasize that, when performing clustering tasks, Vicus does not specify

the number of clusters since Vicus is only providing a new form of Laplacian that captures

local structures in the network. In our experiments of single-cell applications, we only feed the

number of clusters to the clustering algorithms (i.e, K-means algorithm) as the true number of

clusters.

Supporting information

S1 Fig. An illustrative example showing Vicus is more robust to noise and outliers com-

pared to Laplacian. Panel A shows the underlying ground-truth network heatmap consisting

of 3 connected components. Given this perfect network, we manually add random noise. The

random noise is generated from uniform distribution between [0, δ]. Larger δ indicates bigger

magnitude of the noise therefore stronger corruption on the network. Panel B shows an exam-

ple of the noisy network after corruption when δ = 1.2. Panel C is the clustering accuracy mea-

sured by NMI if we vary the number of noise strength δ.

(EPS)

S2 Fig. An illustrative example of comparison between Laplacian and Vicus to illustrate

their sensitivity to hyper-parameters used in the construction of similarity network. The

first column shows the groundtruth of the data distribution. Panel A is the 3D scattering of the

data points used in the experiment. Panel E shows the corresponding 2D ground-truth distri-

bution generating the data. This is also a desired output of low-dimensional embedding we
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want to recover. Panels B-D shows the results of low-dimensional embedding by Laplacian

while Panels F-H are for Vicus using different values of hyper-parameters.

(EPS)

S3 Fig. Sensitivity test for three hyper-parameters in Vicus. We apply Vicus on the Buettner

data set of single-cell RNA-seq. Panel A shows both NMI and ARI with different choices of

number of neighbors K with fixed σ = 0.5 and α = 0.9. Panel B shows both NMI and ARI with

different choices of σ with fixed K = 10 and α = 0.9. Panel C shows both NMI and ARI with dif-

ferent choices of α with fixed σ = 0.5 and K = 10.

(TIFF)
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