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Abstract

Our goal is to generate a policy to complete an unseen

task given just a single video demonstration of the task in

a given domain. We hypothesize that to successfully gener-

alize to unseen complex tasks from a single video demon-

stration, it is necessary to explicitly incorporate the compo-

sitional structure of the tasks into the model. To this end,

we propose Neural Task Graph (NTG) Networks, which use

conjugate task graph as the intermediate representation to

modularize both the video demonstration and the derived

policy. We empirically show NTG achieves inter-task gen-

eralization on two complex tasks: Block Stacking in Bul-

letPhysics and Object Collection in AI2-THOR. NTG im-

proves data efficiency with visual input as well as achieve

strong generalization without the need for dense hierarchi-

cal supervision. We further show that similar performance

trends hold when applied to real-world data. We show that

NTG can effectively predict task structure on the JIGSAWS

surgical dataset and generalize to unseen tasks.

1. Introduction

Learning sequential decisions and adapting to new task

objectives at test time is a long-standing challenge in

AI [5, 9]. In rich real domains, an autonomous agent has

to acquire new skills with minimal supervision. Recent

works have tackled the problem of one-shot imitation learn-

ing [8, 11, 40, 41] that learns from a single demonstration.

In this work, we push a step further to address one-shot vi-

sual imitation learning that operates directly on videos. We

first train a model on a set of seen in-domain tasks. The

model can then be applied on a single video demonstration

to obtain an execution policy of the new unseen task.

Learning directly from video is crucial for advancing the

existing imitation learning approaches to real-world scenar-

ios as it is infeasible to annotate states, such as object tra-

jectories, in each video. We focus on long-horizon tasks,
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Figure 1. Our goal is to execute an unseen task from a single video

demonstration. We propose Neural Task Graph Networks that

leverage compositionality by using the task graph as the interme-

diate representation. This leads to strong inter-task generalization.

as real-world tasks such as cooking or assembly are inher-

ently long-horizon and hierarchical. Recent works have

attempted learning from pixel space [11, 27, 35, 42], but

learning long-horizon tasks from video in a one-shot setting

remains a challenge, since both the visual learning and task

complexity exacerbate the demand for better data efficiency.

Our solution explicitly models the compositionality in

the task structure and policy, enabling us to scale one-

shot visual imitation to complex tasks. This is in con-

trast to previous works using unstructured task represen-

tations and policies [8, 11]. The use of compositionality

has led to better generalization in Visual Question Answer-

ing [17, 20, 24] and Policy Learning [3, 7, 38]. We propose

Neural Task Graph (NTG) Networks, a novel framework

that uses task graph as the intermediate representation to

explicitly modularize both the visual demonstration and the

derived policy. NTG consists of a generator and an execu-

tion engine, where the generator builds a task graph from

the task demo video to capture the structure of the task, and

the execution engine interacts with the environment to per-

form the task conditioned on the inferred task graph. Figure

1 shows an overview of NTG Networks.

The main technical challenge in using graphical task rep-

resentations is that the unseen demos can easily introduce

states that are never observed during training. For example,
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the goal state of an unseen block stacking task [8, 41] is a

block configuration that never appears during training. This

challenge is amplified by our goal of learning from visual

observation without strong supervision, which obscures the

state structure and prevents direct state space decomposi-

tion, as done in prior work [8]. Our key observation is

that, while there can be countless possible states, the num-

ber of possible actions in a certain domain is often limited.

We leverage this conjugate relationship between states and

actions, and propose to learn NTG on the Conjugate Task

Graph (CTG) [16], where the nodes are actions, and the

states are captured by the edges. This allows us to modu-

larize the policy and address the challenge of an unknown

number of novel states. This is critical when operating in

visual space, where states are high dimensional images and

modeling a graph over a combinatorial state space is in-

feasible. Additionally, the CTG intermediate representation

can yield alternate action sequences to complete the task, a

property that is vital for generalization to unseen scenarios

in a world with stochastic dynamics. This sets NTG apart

from previous works that directly output the policy over op-

tions [41] or actions [8] from a single demonstration.

We evaluate NTG Networks on one-shot visual imitation

learning in two domains: Block Stacking in a robot simu-

lator [6] and Object Collection in AI2-THOR [23]. Both

domains involve multi-step planning for interaction and are

inherently compositional. We show that NTG significantly

improves the data efficiency on these complex tasks for di-

rect imitation from video by explicitly incorporating com-

positionality. We also show that with the data-driven task

structure, NTG outperforms methods that learn unstruc-

tured task representation [8] and methods that use strong

hierarchically structured supervision [41], albeit without re-

quiring detailed supervision. Further, we evaluate NTG

on real-world videos. We show that NTG can effectively

predict task graph structure on the JIGSAWS [12] surgical

dataset and generalize to unseen human demonstrations.

In summary, the main contributions of our work are:

(1) Introducing compositionality to both the task and pol-

icy representation to enable one-shot visual imitation learn-

ing on long-horizon tasks; (2) Proposing Neural Task Graph

(NTG) Networks, a novel framework that uses task graph to

capture the structure and the goal of a task; (3) Addressing

the challenge of novel visual state decomposition using a

Conjugate Task Graph (CTG) formulation.

2. Related Work

Imitation Learning. Traditional imitation learning work

uses physical guidance [1, 31] or teleoperation [39, 43] as

demonstration. While, third-person imitation learning uses

date from other agents or viewpoints [27, 35]. Recent meth-

ods for one-shot imitation learning [8, 11, 13, 40, 41, 42]

can translate a single demonstration to an executable pol-
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Figure 2. Overview of the setting of one-shot visual imitation

learning. The seen tasks (Task 1 and 2) are used to train the model

φ to instantiate the policy πi from the demonstration. During test-

ing, φ is applied to a single video demonstration from the unseen

Task 3 to generate the policy π3 to interact with the environment.

icy. The most similar to ours is NTP [41] that also learns

long-horizon tasks. However, NTP (1) uses strong hierar-

chical frame label supervision and (2) suffers from a no-

ticeable drop in performance with visual state. Our method

reduces the need for this strong supervision, requiring only

the demonstration action sequence during training, while

achieving a performance boost of over 25% in success rates.

Task Planning and Representations. Conventionally task

planning focuses on high-level plans and low-level state

spaces [10, 36]. Recent works integrate perception via deep

learning [15, 32, 44]. HTN compounds low-level sub-tasks

into higher-level abstraction to reduce the planning com-

plexity [29, 33]. Other representations include: integrat-

ing task and motion planning [21] and behavior-based sys-

tems [30]. In vision, And-Or Graphs capture the hierarchi-

cal structures and have been used to parse video demonstra-

tions [26]. Unlike previous methods, our task graph repre-

sentation is data-driven and domain-agnostic: we generate

nodes and edges directly from task demonstrations.

Structural Video Understanding. Generating task graphs

from demonstrations is related to video understanding. An-

notation in videos is hard to obtain. One solution is to

use the language as supervision. This includes instructional

video [2, 18, 34], movie script [37, 45], and caption anno-

tation [14, 25]. We focus on how the structure is helpful for

task learning, and assume the annotation for the seen tasks.

Compositional Models in Vision and Robotics. Recent

works have utilized compositionality to improve models’

generalization, including visual question answering [4, 17,

20] and policy learning [3]. We show the same principle can

significantly improve data efficiency in imitation learning to

enable visual learning of complex tasks.
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Figure 3. Overview of our Neural Task Graph (NTG) networks. The NTG networks consist of a generator that produces the conjugate

task graph as the intermediate representation, and an execution engine that executes the graph by localizing node and deciding the edge

transition in the task graph based on the current visual observation.

3. Problem Formulation

Our goal is to learn to execute a previously unseen task

from a single video demonstration. We refer to this as one-

shot visual imitation, where the model directly learns from

visual inputs. Let T be the set of all tasks in the domain

of interest, A be the set of high-level actions, and O be the

space of visual observation. A video demonstration d for a

task τ is defined as a video, dτ = [o1, . . . , oT ], that com-

plete the task. As shown in Figure 2, T is split into two

sets: Tseen with a large amount of demonstrations and su-

pervision for training, and Tunseen with only task demon-

strations for evaluation. The goal is to learn a model φ(·)
from Tseen that can instantiate a policy πd(a|o) from d to

perform the tasks in Tunseen using visual observations.

The learning problem is formulated as learning a model

φ(·) that maps demonstration d to the policy φ(d) =
πd(a|o). Tseen is used to train this model with demonstra-

tions and potentially extra supervision. At test time, given a

demonstration d from an unseen task, the hope is that φ(·)
trained on Tseen can generalize to novel task instances in

Tunseen and produce a policy that can complete the novel

task illustrated by the visual demonstration.

4. Neural Task Graph Networks

We have formulated one-shot visual imitation as learn-

ing the model φ(·) that maps a video demonstration to the

policy. As shown in Figure 1, our key contribution is ex-

plicitly incorporating compositionality to improve the data

efficiency of generalization. We decompose φ(·) into two

components: a graph generator φgen(·) that generates the

task graph G from the demonstration (G = φgen(d)), and a

graph execution engine φexe(·) that executes the task graph

and acts as the policy (πd = φexe(G)). The structure of the

task graph G modularizes both the demonstration and the

policy. This leads to stronger data efficiency of generaliz-

ing to unseen tasks. An overview is shown in Figure 3.

4.1. Neural Task Graph Generator

The NTG Generator generates a task graph capturing the

structure of an unseen task from a single video demonstra-

tion. This is challenging since the video demonstration of

an unseen task introduces novel visual states that are not ob-

served in the seen tasks. This challenge is amplified by our

goal of learning from visual observation, which prevents

direct state space decomposition. In this case, generating

the traditional task graph is ill-posed due to the exploding

number of nodes. We address this by leveraging the con-

jugate relationship between state and action and work with

the conjugate task graph [16], where the nodes are the ac-

tions, and the edges implicitly depend on the current state.

In the experiments, we show that this scheme significantly

simplifies the (conjugate) task graph generation problem.

Conjugate Task Graph (CTG). A task graph Ḡ = {V̄ , Ē}
contains nodes V̄ as the states and Ē the directed edges for

the transitions or actions between them. A successful exe-

cution of the task is equivalent to a path in the graph that

reaches the goal node. The task graph captures the structure

of the task, and the effect of each action. However, generat-

ing this graph for an unseen task is extremely challenging,

as each unseen state would be mapped to a new node. This

is especially the case in visual tasks, where the state space

is high dimensional. We thus work with the conjugate task

graph(CTG) [16], G = {V,E}, where the actions are now

the nodes V , and the states become edges E, which implic-

itly encode the preconditions of the actions. This allows us

to bypass explicit state modeling, while still being able to

perform tasks by traversing the conjugate task graph.

We assume that all actions are observed during training

from the seen tasks, which is reasonable for tasks in the

same domain. This gives all the nodes in CTG, and the

goal is to infer the correct edges. This can be viewed as un-

derstanding the preconditions for each action. We propose

two steps for generating the edges: (i) Demo Interpretation:

First we obtain a valid path traversing the conjugate task

graph by observing the action order in the demonstration;

(ii) Graph Completion: The second step is to add the edges

that are not observed in the demonstration. There might be

actions whose order can be permutated without affecting the

final outcome. As we only have a single demonstration, this

interchangeability is not captured in the previous step. We
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learn a Graph Completion Network, which adds more edges

that are proper given the edges initialized by step (i).

Demo Interpreter. Given d = [o1, . . . , oT ], our goal is to

output A = [a1, . . . , aK ], the sequence of the actions exe-

cuted in the demonstration as the initial edges in the CTG

as shown in Figure 4. The visual observations ot are first

encoded by a CNN as Enc(ot). We then adapt a seq2seq

model [28] as our demo interpreter to take Enc(ot) as in-

puts and generate A. We do not use a frame-based classi-

fier, as we do not need accurate per-frame action classifica-

tion. What is critical here is that the sequence of actions A

provides reasonable initial action order constraints (edges)

to our conjugate task graph. We do assume the training

demonstrations in Tseen come with the action sequence A

as supervision for our demo interpreter. We only require

this “flat” supervision for Tseen, as opposed to the strong

hierarchical supervision used in the previous work [41].

Graph Completion Network (GCN). Given a valid path

(action sequence) from the demo interpreter, the goal is to

complete the edges that are not observed in the demo. We

formulate this as learning graph state transitions [19, 22].

Our GCN iterates between two steps: (i) edge update and

(ii) propagation. Given the node embedding NEgcn(ni) for

each node ni, the edge strengths are updated as:

Ct+1

ij = (1− Ct
ij) · fset(N

t
i , N

t
j ) + Ct

ij · freset(N
t
i , N

t
j ), (1)

where Ct
ij is the adjacency matrix of the previous iteration,

fset and freset are MLPs for setting and resetting the edge,

and Ni = NEgcn(ni) is the node embedding for node i.

Given Ct and the current node embeddings N t, the propa-

gation step updates the node embeddings with:

N
t+1

i = rnn(ai, N
t
i ), ai =

∑

j

Ct
ijff (N

t
j ) + Ct

jifb(N
t
j ), (2)

where rnn(ai, N
t
i ) takes the message ai from other nodes

as input and updates the hidden state N t
i to N t+1

i .

4.2. Neural Task Graph Execution

We have discussed how the NTG generates a CTG as the

compositional representation of a task demonstration. Next

we show how to instantiate a policy from this task graph.

We propose the NTG execution engine that interacts with

the environment by executing the task graph. The execu-

tion engine executes a task graph in two steps: (i) Node

Localization: The execution engine first localizes the cur-

rent node in the graph based on the visual observation. (ii)

Edge Classification: For a given node, there can be multiple

outgoing edges for transitions to different actions. The edge

classifier checks the (latent) preconditions of each possible

next action and picks the most fitting one. These two steps

enable the execution engine to use the generated Conjugate

Task Graph as a reactive policy which completes the task

given observations. Formally, we decompose this policy as:
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Figure 4. Illustration of our learning setting with a block stacking

task. The video demonstrations di in the seen tasks only require

corresponding action sequence Ai. We aggregate data from all the

demonstrations in the same task and use it as the supervision of

each component of our model. This approach allows us to bypass

the need for strong supervision as in previous works.

π(a|o) ∝ ǫ(a|n, o)ℓ(n|o), where the localizer ℓ(n|o) local-

izes the current node n based on visual observation o, and

the edge classifier ǫ(a|n, o) classifies which edge transition

from n and o. Deciding the edge transition given the node

is equivalent to selecting the next action a.

Node Localizer. We define the localizer as: ℓ(n|o) ∝
Enc(o)TNEloc(n), where the probability of a node is pro-

portional to the inner product between Enc(o), the encoded

visual observation, and NEloc(n), the node embedding of

the node. Since our nodes are actions that are already ob-

served in the seen tasks, we can learn the node embeddings

effectively. This shows the benefit of modularizing our pol-

icy, where sub-modules are more generalizable.

Edge Classifier. The edge classifier is the key for NTG

to generalize to unseen tasks. Unlike the localizer, which is

approx. invariant across seen and unseen tasks, deciding the

correct edge requires the edge classifier to correctly infer the

underlying states from the visual observations. Take block

stacking as an example. For a task that aims to stack blocks

A, B, and C in order, the robot should not pick-and-place C

unless B is already on A. The edge classifier thus needs to

recognize such prerequisites for actions involving block C.

ǫ(a|n, o) ∝ (Wǫ[Enc(o), NEgcn(n)])
T
NEloc(na), (3)

where na is the node for action a, and NEgcn(·) is the final

node embedding from our GCN in Section 4.1. As the GCN

node embedding is used to generate edges in the conjugate
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Figure 5. Execution of NTG based on the conjugate task graph.

Although the execution engine visited the (Move B) node twice,

it is able to correctly decide the next action using the edge classifier

by understanding the second visit needs to (Place D).

task graph, it captures the task structure. We use NEloc

from localization for the destination node.

4.3. Learning NTG Networks

We have described how we decompose φ(·) into the gen-

erator and the execution engine. As discussed in Section 3

we train both on Tseen. In contrast to previous works that

require strong supervision on Tseen (state-action pairs [8] or

hierarchical supervision [41]), NTG only requires the raw

visual observation along with the flat action sequence (low-

est level program in [41] without a manually defined action

hierarchy). An overview of learning different components

of NTG is shown in Figure 4.

Learning Graph Generation. For each demonstration dτi
of task τ , we have the corresponding Aτ

i = [a1, . . . , aK ],
the executed actions. First, we translate Ai to a path {P τ

i =
(Ṽ , Ẽτ

i )} by using all actions as nodes Ṽ and adding edges

of the transitions in Ai to Ẽi. For a single task τ , we use

the union of all demonstrated paths of τ as the edges Et =⋃
i Ẽ

τ
i of the groud truth conjugate task graph gτ = (V,Et).

In this case, the goal of GCN is to transform each P τ
i to gτ

by completing the missing edges in P τ
i . We use the binary

cross entropy loss following [19] to train the GCN, where

the input is P τ
i and the goal is to generate gτ .

Learning Graph Execution. Given a task graph from the

generator, we learn an execution engine that derives the pol-

icy. As discussed in Section 4.2, we decompose the policy

into node localizer and edge classifier. For the localizer, we

use the video frames as input and the corresponding action

labels from the demonstrations as targets. For the edge clas-

sifier, we collect all pairs of source-target nodes connected

by transitions, and use the action label from the demonstra-

(a) Block Stacking Results with Full State

(b) Block Stacking Results with Visual State

N
/A

N
/A

Figure 6. Results for generalizing block stacking to unseen target

configuration. (a) Results with the block locations as input, and

(b) Results with raw video as input. Our NTG model significantly

outperforms the baselines despite using only flat supervision.

tion as the target. Additionally, the edge classifier uses the

node embedding from our Graph Completion Network. The

idea is that the embedding from the GCN can inform the

edge classifier about what kind of visual state it should clas-

sify and learn to generalize to the unseen task.

5. Experiments

Our experiments aim to answer the following questions:

(1) With a single video demonstration, how does NTG gen-

eralize to unseen tasks and compare to baselines without us-

ing compositionality? (2) How do each of the components

of NTG contributes to its performance? (3) Is NTG appli-

cable to real-world data? For the first two questions, we

evaluate and perform ablation study of NTG in two chal-

lenging task domains: the Block Stacking [41] using the

BulletPhysics [6] and the Object Collection task in the AI2-

THOR [46]. For the last question, we evaluate NTG on real-

world surgical data and examine its graph prediction and

evaluation of unseen tasks on the JIGSAWS [12] dataset.

5.1. Evaluating Block Stacking in BulletPhysics

We evaluate NTG’s generalization to unseen target con-

figurations. The hierarchical structure of block stacking

provides a large number of unique tasks and is ideal for ana-
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(a) Block StackingAblation Study

(b) Object SortingAblation Study

Figure 7. Ablation study of NTG. (a) Demo Int. and Node Loc.

are almost indispensable. (b) Both GCN and Edge Cls are required

to generalize to execution order different from the demonstration.

lyzing the effect of explicitly introducing compositionality.

Experimental Setup. The goal of Block Stacking is to

stack the blocks into a target configuration. We follow the

setup in Xu et al. [41]. We use eight 5 cm cubes with dif-

ferent colors and lettered IDs. A task is considered success-

ful if the end configuration matches the task demonstration.

We use the 2000 distinct Block Stacking tasks and follow

the training/testing split of Xu et al. [41].

Baselines. We compare to the following models:

- Neural Task Programming (NTP) [41] learns to synthe-

size policy from demonstration by decomposing a demon-

stration recursively. In contrast to ours, NTP assumes strong

structural supervision: both the program hierarchy and the

demonstration decomposition are required at training. We

use NTP as an example of methods that encourage compo-

sitionality via strong structural supervision.

- NTP Flat is an ablation of NTP, which only uses the same

supervision as our NTG model (lowest level program).

- NTP (Detector) first detects the block and feeds that into

the model as the approximated full state. The detector is

trained separately with additional supervision.

Results. Results are shown in Figure 6. The x-axis is the

number of training seen tasks. We compare models with

full state (State) and visual state (Vid) as input. Full state

uses the 3D block location, and the visual state uses 64×64
RGB frames. For both input modalities, NTG can capture

the structure of the tasks and generalize better to unseen tar-

get configuration compared to the baseline. NTG with raw

visual input (Ours (Vid)) performs on-par with NTP using

full state (NTP (State)). When there is not enough training

data (50 tasks), the NTP (State) and NTP (Detector) in are

able to outperform NTG because of the extra supervision

(hierarchical for NTP (State), and detection for NTP (De-
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Figure 8. Using GCN, our policy is able to solve an unseen sorting

task in a different order than the provided demonstration.

tector)). However, once NTG is trained with more than 100

tasks, it is able to quickly interpret novel tasks and signifi-

cantly outperforms the baselines. Figure 5 shows an NTG

execution trace. Although the execution engine visited the

(Move B) node twice, it is able to correctly decide the

next action based on the visual observation by interpreting

the underlying state from the visual observation.

5.2. Ablation Analysis of NTG Model Components

Before evaluating other environments, we analyze the

importance of each component of our model. Some sub-

systems are almost indispensable. For example, without the

Demo Interpreter, there is no information from the video

demonstration, and the policy is no longer task-conditional.

We perform the ablation study using 1000 training tasks

as follows: For Demo Interpreter, we initialize CTG as a

fully connected graph without order constraints from the

demonstration. For Node Localizer and Edge Classifier,

we replace the corresponding term in the policy π(a|o) ∝
ǫ(a|n, o)ℓ(n|o) by a constant. For GCN, we skip the graph

completion step. As shown in Figure 7(a), the policy cannot

complete any of the tasks without Demo Interpreter or Node

Localizer. While our full model still performs the best, re-

moving Edge Classifier or GCN does not give as big a per-

formance gap. This is because the Block Stacking tasks

from [41] do not all require task structure understanding.

Alternate Solutions for Task. GCN is particularly im-

portant for situations requiring alternative execution orders.

For example, the task of “putting the red ball into the red

bin and the blue ball into the blue bin”. It is obvious to us

that we can either put the red ball first or the blue ball first.
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the underlying state (e.g. if the object is found) from the visual input and successfully complete the task. (b) Object Collection results on

varying numbers of steps. The NTG model is only trained with 6 and 12 steps, and is able to generalize well to other numbers of steps.

This ability to generalize to alternative execution orders is

exactly what we aim to capture with GCN. Without GCN,

the policy can be easily stuck at unseen execution order (i.e.,

not understanding object sorting order can be swapped). We

thus analyze GCN on the “Object Sorting” task (details in

Section VI of [41]), but initialize the scene to require execu-

tion order different from the demonstration. These settings

will occur often when the policy needs to recover from fail-

ure or complete a partially completed tasks. This is chal-

lenging because: (i) GCN has to generalize and introduce

alternative execution order beyond the demonstration. (ii)

Edge Classifier needs to correctly select the action from the

newly introduced edges by GCN. As shown in Figure 7(b),

the policy cannot complete any of the tasks without Edge

Classifier because of the ambiguities in the completed task

graph. Figure 8 shows an qualitative example of how our

method learns to complete “Object Sorting” with order dif-

ferent from the demonstration using GCN. This shows the

importance of both the Edge Classifier and GCN, which are

required to complete this challenging task.

5.3. Evaluating Object Collection in AI2THOR

In this experiment, we evaluate the Object Collection

task, in which an agent collects and drop off objects from

a wide range of locations with varying visual appearances.

We use AI2-THOR [46] as the environment, which allows

the agent to navigate and interact with objects via seman-

tic actions (e.g. Open). This task is more complicated than

block stacking because: First, the agent is navigating in the

scene and thus can only have partial observations. Second,

the photo-realistic simulation enables a variety of visual ap-

pearance composition. In order to complete the task, the

model needs to understand various appearances of the ob-

ject and location combinations.

Experimental Setup. An Object Collection task involves

visiting M randomly selected searching locations for a

set of N target objects out of C categories. Upon pick-

ing up a target object, the agent visits and drops off the

object at one of K designated drop-off receptacles. A

task is considered successful if all of the target objects

are placed at their designated receptacles at the end of the

task episode. The available semantic actions are search,

pickup(object), dropoff(receptacle). The

search action visits each searching locations in a random-

ized order. pickup(object) picks up a selected object

and the action would fail if the selected object is not visible

to the agent. dropoff(receptacle) would teleport

the agent to a selected drop-off receptacle (tabletop,

cabinet, etc) and drop off. We use N = [1, 5] objects

(3-15 steps) out of C = 8 categories, M = N + 3 search

locations, and K = 5 drop-off receptacles.

Baseline. We compare to the “Flat Policy” baseline in [8]

to show the importance of incorporating compositionality

to the policy. At each step, the Flat Policy uses attention

to extract relevant information from the demonstration and

combine it with the observation to decide action. For a fair

comparison, we implement the Flat Policy using the same

architecture as our demo interpreter. Note that the Object

Collection domain doesn’t have hand-designed hierarchy.

Hence NTP [41] is reduced to a similar flat policy model.

Results. The results for Object Collection are shown in Fig-

ure 9(b). The models are only trained on 2 and 4 objects

and generalize to 1, 3, 5 objects. NTG significantly outper-

forms the Flat Policy on all numbers of objects. This shows

the importance of explicitly incorporating compositionality.

Qualitative comparison is shown in Figure 9(a). The bound-

ing boxes are for visualization only and are not used in the

model. During evaluation, the objects of interest can appear
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Figure 10. Part of a predicted graph from a single demonstration of an unseen task on the JIGSAWS dataset. Our method is able to learn

that for the Needle Passing task, after failing any of the step in this subtask, the agent should restart by reorienting the needle.

Figure 11. Negative loglikehood (NLL) of expert demonstrations

on the JIGSAWS dataset. The policy generated by our full model

can best capture the actions performed in human demonstration.

in locations that are different from the demonstration and

thus lead to diverse and challenging visual appearances. It

is thus important to understand the structure of the demon-

stration instead of naive appearance matching. Our explicit

model of the task structure sets NTG apart from the flat pol-

icy and leads to stronger generalization to unseen tasks.

5.4. Evaluating Realworld Surgical Data

We have shown that NTG significantly improves one-

shot visual imitation learning by explicitly incorporating

compositionality. We now evaluate if this structural ap-

proach can be extended to the challenging real-world sur-

gical data from the JIGSAWS dataset [12], which con-

tains videos and states for surgical tasks, and the associated

atomic action labeling. In this setting, our goal is to assess

NTG’s ability to generalize to the task of “Needle Passing”,

after training on the tasks of “Knot Tying” and “Suturing”.

This is especially challenging because it requires general-

ization to a new task with significant structural and visual

differences, given only 2 task types for training.

Without a surgical environment, we cannot directly eval-

uate the policy learned by NTG on the JIGSAWS dataset.

Therefore, we evaluate how well the NTG policy is able to

predict what a human will do in other demonstrations. This

entails generating a policy conditioned on a single demon-

stration of “Needle passing”, and using it to evaluate the

negative log-likelihood (NLL) of all the other demonstra-

tions in the “Needle Passing” task. A lower negative log

likelihood corresponds to the generated policy better ex-

plaining the other demonstrations, and in turn better cap-

turing the task structure.

The results are shown in Figure 11. We compare to the

no graph variant of our model and also the lower bound

of a uniform policy. Unsurprisingly, the uniform policy

performs the worst without capturing anything from the

demonstration. The no-graph variant is able to capture

some parts of the expert policy and better capture the ex-

pert demonstration. However, the policy generated by full

NTG model substantially improves the NLL and is the most

consistent with the expert demonstration.

In addition, we show qualitative results of part of our

task graph prediction on the JIGSAWS dataset in Figure 10.

Again, we train on “Knot Tying” and “Suturing” and evalu-

ate on “Needle Passing”. By comparing the predicted path

and the final predicted graph, we can see that our model is

able to introduce several new edges going back to the action

“Orienting Needle”. This captures the behavior that when

the execution fails in any of step in this subtask of “Needle

Passing”, the agent should return to “Orienting Needle” and

reorient the needle to restart the subtask. This is consistent

with our intuition and the ground truth graph.

6. Conclusion

We presented Neural Task Graph (NTG) Network, a

one-shot visual imitation learning method that explicitly in-

corporates task compositionality into both the intermediate

task representation and the policy. Our novel Conjugate

Task Graph (CTG) formulation effectively handles unseen

visual states and serves as a reactive and executable pol-

icy. We demonstrate that NTG is able to outperform both

methods with unstructured representation [8], and meth-

ods with a hand-designed hierarchical structure [41] on a

diverse set of tasks, including simulated environment with

photo-realistic rendering and a real-world dataset.
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cal task and motion planning in the now. In ICRA, 2011.

[22] Thomas N Kipf and Max Welling. Semi-supervised classifi-

cation with graph convolutional networks. In ICLR, 2017.

[23] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu,

Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive

3D Environment for Visual AI. arXiv, 2017.
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