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Abstract Model-free policy learning has enabled good performance on complex
tasks that were previously intractable with traditional control techniques. However,
this comes at the cost of requiring a perfectly accurate model for training. This is
infeasible due to the very high sample complexity of model-free methods preventing
training on the target system. This renders such methods unsuitable for physical
systems. Model mismatch due to dynamics parameter differences and unmodeled
dynamics error may cause suboptimal or unsafe behavior upon direct transfer. We
introduce the Adaptive Policy Transfer for Stochastic Dynamics (ADAPT) algorithm
that achieves provably safe and robust, dynamically-feasible zero-shot transfer of
RL-policies to new domains with dynamics error. ADAPT combines the strengths of
offline policy learning in a black-box source simulator with online tube-based MPC
to attenuate bounded dynamics mismatch between the source and target dynamics.
ADAPT allows online transfer of policies, trained solely in a simulation offline, to
a family of unknown targets without fine-tuning. We also formally show that (i)
ADAPT guarantees bounded state and control deviation through state-action tubes
under relatively weak technical assumptions and, (ii) ADAPT results in a bounded
loss of reward accumulation in case of direct transfer with ADAPT as compared to
the policy trained and evaluated in the source environment. We evaluate ADAPT on 2
continuous, non-holonomic simulated dynamical systems with 4 different disturbance
models, and find that ADAPT performs between 50%-300% better on mean reward
accrual than direct policy transfer.
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1 Introduction

Deep reinforcement learning (RL) has achieved remarkable advances in sequential
decision making in recent years, often outperforming humans on tasks such as Atari
games [17]. However, model-free variants of deep RL are not directly applicable
to physical systems because they exhibit poor sample complexity, often requiring
millions of training examples on an accurate model of the environment. One approach
to using model-free RL methods on robotic systems is thus to train in a relatively
accurate simulator (a source domain), and transfer the policy to the physical robot (a
target domain). This naive transfer may, in practice, perform arbitrarily badly and
so online fine-tuning may be performed [1]. During this fine-tuning, the robot may
behave unsafely however, and so it is desirable for a system to be able to train in
a simulator with slight model inaccuracies but still be able to perform well on the
target system on the first iteration. We refer to this as the zero-shot policy transfer
problem.

The zero-shot transfer problem involves training a policy on a system possessing
different dynamics than the target system, and evaluating performance as the average
initial return in target domain without training in the target domain. This problem is
challenging for robotic systems since simplified simulated models may not always
accurately capture all relevant dynamics phenomena, such as friction, structural
compliance, turbulence and so on, as well as parametric uncertainty in the model. In
spite of the renewed focus on this problem, few studies in deep policy adaptation
offer insightful analysis or guarantees regarding feasibility, safety, and robustness in
policy transfer.

In this paper, we introduce a new algorithm which we refer to as ADAPT, that
achieves provably safe and robust, dynamically-feasible zero-shot direct transfer of
RL policies to new domains with dynamics mismatch. The key insight here is to
leverage the global optimality of learned policy with local stabilization from MPC
based methods to enable dynamic feasibility, thereby building on strengths of two
different methods. In the offline stage, ADAPT first computes a nominal trajectory
(without disturbance) by executing the learned policy on the simulator dynamics.
Then in the online stage, ADAPT adapts the nominal trajectory to the target dynamics
with an auxiliary MPC controller.

Statement of Contributions
1. We develop the ADAPT algorithm, which allows online transfer of policy trained
solely in a simulation offline, to a family of unknown targets without fine-tuning.
2. We also formally show that (i) ADAPT guarantees state and control safety through
state-action tubes under the assumption of Lipschitz continuity of the divergence in
dynamics and, (ii) ADAPT results in a bounded loss of reward accumulation in case
of direct transfer with ADAPT as compared to a policy trained only on target.
3. We evaluate ADAPT on two continuous, non-holonomic simulated dynamical
systems with four different disturbance models, and find that ADAPT performs
between 50%-300% better on mean reward accrual than direct policy transfer as
compared to mean reward.
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Organization This paper is structured as follows. In Section 2 we review related
work in robust control, robust reinforcement learning, and transfer learning. In
Section 3 we formally state the policy transfer problem. In Section 4 we present
ADAPT and discuss algorithmic design features. In Section 5 we prove the accrued
reward for ADAPT is lower bounded. In Section 6 we present experimental results on
a simulated car environment and a two-link robotic manipulator, as well as present
results for ADAPT with robust policy learning methods. Finally, in Section 7 we
draw conclusions and discuss future directions.

2 Related Work and Background

A plethora of work in both learning and control theory has addressed the problem of
varying system dynamics, especially in the context of safe policy transfer and robust
control.

Transfer in reinforcement learning The problem of high sample complexity in
reinforcement learning has generated considerable interest in policy transfer. Taylor
et al. provide an excellent review of approaches to the transfer learning problem [28].
A series of approaches focused on reducing the number of rollouts performed on a
physical robot, by alternating between policy improvement in simulation and physical
rollouts [1], [13]. In those works, a time-dependent term is added to the dynamics
after each physical rollout to account for unmodeled error. This approach, however,
does not address robustness in the initial transfer, and the system could sustain or
cause damage before the online learning model converges.

The EPOPT algorithm [23] randomly samples dynamics parameters from a Gaus-
sian distribution prior to each training run, and optimizes the reward for the worst-
performing ε-fraction of dynamics parameters. However, it is not clear how robust
it is against disturbances not explicitly experienced in training. This approach is
conceptually similar to that in [19], in which more traditional trajectory optimization
methods are used with an ensemble of models to increase robustness. Similarly, [14]
and [22] use adversarial disturbances instead of random dynamics parameters for
robust policy training. Tobin et al. [29] and Peng et al. [21] randomize visual inputs
and dynamics parameters respectively. Bousmalis et al. [2] meanwhile adapt rendered
visual inputs to reality using a framework based on generative adversarial networks,
as opposed to strictly randomizing them. While this may improve adaptation to
a target environment in which these parameters are varied, this may not improve
performance on dynamics changes outside of those varied; in effect, it does not
mitigate errors due to the “unknown unknowns”.

Christiano et al. [4] approach the transfer problem by training an inverse dynamics
model on the target system and generating a nominal trajectory of states. The inverse
dynamics model then generates actions to connect these states. However, there are no
guarantees that an action exists in the target dynamics to connect two learned adjacent
states. Moreover, this requires training on the target environment; in this work we
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consider zero-shot learning where this is not possible. Recently, the problem of
transfer has been addressed in part by rapid test adaptation [6], [24]. These approaches
have focused on training modular networks that have both “task-specific” and “robot-
specific” modules. This then allows the task-specific module to be efficiently swapped
out and retrained. However, it is unclear how error in the learned model affects these
methods.

In this work we aim to perform zero-shot policy transfer, and thus efficient model-
based approaches are not directly applicable. However, our approach uses an auxiliary
control scheme that leverages model learning for an approximate dynamics model.
When online learning is possible, sample-efficient model-based reinforcement learn-
ing approaches can dramatically improve sample complexity, largely by leveraging
tools from planning and optimal control [11]. However, these models require an
accurate estimate of the true system dynamics in order to learn an effective policy.
A variety of model classes have been used to represent system dynamics, such as
neural networks [9], Gaussian processes [5], and local linear models [8], [13].

Robust control Trajectory optimization methods have been widely used for robotic
control [27]. Among these optimization methods, model predictive control (MPC)
is a class of online methods that perform trajectory optimization in a receding-
horizon fashion [20]. This receding-horizon approach, in which a finite-horizon,
open-loop trajectory optimization problem is continuously re-solved, results in an
online control algorithm that is robust to disturbances. Several works have attempted
to combine trajectory optimization methods with dynamics learning [16] and policy
learning [10]. In this work, we develop an auxiliary robust MPC-based controller to
guarantee robustness and performance for learned policies. Our method combines the
strengths of deep policy networks [25] and tube-based MPC [15] to offer a controller
with good performance as well as robustness guarantees.

3 Problem Setup and Preliminaries

Consider a finite-horizon Markov Decision Process (M) defined as a tuple M :
〈S,A, p,r,T 〉. Here S and A represent continuous, bounded state and action spaces
for the agent, r : S×A→R is the reward function that maps a state-action tuple to a
scalar, and T is the problem horizon. Finally, p : S×S×A→ [0,1] is the transition
distribution that captures the state transition dynamics in the environment and is a
distribution over states conditioned on the previous state and action. The goal is to
find a policy π : S → A that maximizes the expected cumulative reward over the
choice of policy:

π
∗(s) = argmax

π(s)
E

[
T∑

t=0

r(st ,at)

]
. (1)

The above reflects a standard setup for policy optimization in continuous state
and action spaces. In this work, we are interested in the case in which we only have
an approximately correct environment, which we refer to as the source environment
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(e.g. a physics simulator). We may sample this simulator an unlimited number
of times, but we wish to maximize performance on the first execution in a target
environment. Without any assumptions on the correctness of the simulator, this
problem is of course intractable as the two sets of dynamics may be arbitrarily
different. However, relatively loose assumptions about the correctness of the simulator
are very reasonable, based on the modeling fidelity of the simulator. We assume
the simulator (denoted MS) has deterministic, twice continuously-differentiable
dynamics st+1 = f (st ,at). Then, let the dynamics of the target environment (denoted
MT ) be denoted st+1 = f (st ,at)+wt , for iid additive noise wt with compact, convex
support W that contains the origin. Generally, the noise distribution may be state and
action dependent, so this formulation reduces to standard formulations in both robust
and stochastic control [32]. We assume all other components of the MDPs defining
the source and target environments are the same (e.g. reward function). Finally, we
assume the reward function r is Lipschitz continuous, an assumption that we discuss
in more detail in section 5. Based on the above definitions, we can now state the
problem we aim to solve.

Problem Statement Given the simulator dynamics and the problem defined by the
MDP MS, we wish to learn a policy to maximize the reward accrued during operation
in the target system, MT . Formally, if we write the realization of the disturbance at
time t as w̃t , we wish to solve the problem:

max
{at}Tt=0

E

[
T∑

t=0

r(st ,at)

]
s.t. st+1 = f (st ,at)+ w̃t , and st ∈ S, at ∈A ∀ t ∈ [0,T ],

(2)

while only having access to the simulator, MS , for training.

4 ADAPT: Adaptive Policy Transfer for Stochastic Dynamics

In this section we present the ADAPT algorithm for zero-shot transfer. A high
level view of the algorithm is presented in Algorithm 1. First, we assume that a
policy is trained in simulation. Our approach is to first compute a nominal trajectory
(without disturbance) by continuously executing the learned policy on the simulator
dynamics. Then, when transferred to the target environment, we use an auxiliary
model predictive control-based (MPC) controller to stabilize around this nominal
trajectory. In this work, we use a reward formulation for operation in the primary
environment (i.e, the aim is to maximize reward), and a cost formulation for the
auxiliary controller (i.e., the aim is to minimize cost to thus minimize deviation from
the nominal trajectory). This is in part to disambiguate the distinction between the
primary and auxiliary optimization problems.

Policy Training We use model-free policy optimization on the black-box simulated
model. Our theoretical guarantees rely on the auxiliary controller avoiding saturation.
Therefore, if a policy operates near the limits of its control authority and thus the
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auxiliary controller saturates when used on the target environment, this policy is
trained using restricted state and action spaces S ′ ⊆ S , A′ ⊆A. We let M′ denote an
MDP with restricted state and action spaces. This follows the approach of [15], where
it is used to prevent auxiliary controller saturation. Intuitively, restricting the state
and action space ensures any nominal trajectory in those spaces can be stabilized
by the auxiliary controller. Therefore, if saturation is rare, restricting these sets is
unnecessary.

ADAPT is invariant to the choice of policy optimization method. During online
operation, a nominal trajectory τ = {(s̄t , āt)}T

t=0 is generated by rolling out the policy
on the simulator dynamics, MS . The auxiliary controller then tracks this trajectory
in the target environment.

Approximate Dynamics Model Because the model of the simulator is treated as a
black-box, it is impractical to use for the auxiliary controller in an optimal control
framework. As such, we rely on an approximate model of the dynamics, separate
from the simulator dynamics f , which we refer to as f̂ . The specific representation of
the model (e.g. linear model, feedforward neural network, etc.) depends on both the
accuracy required as well as the method used to solve the auxiliary control problem.
This model may be either learned from the simulator, or based on prior knowledge.
A substantial body of literature exists on dynamics model learning from black-box
systems [18]. Alternatively, this model may be based on external knowledge, either
from learning a dynamics model in advance from the target system or from, for
example, a physical model of the system.

Auxiliary MPC Controller Our auxiliary nonlinear MPC controller is based on
that of [15]. Specifically, we write the auxiliary control problem:

min
{ak}t+N

k=t

t+N∑
k=t

(sk− s̄k)
T Qk(sk− s̄k)+(ak− āk)

T Rk(ak− āk)

s.t. sk+1 = f̂ (sk,ak), and sk ∈ S, ak ∈A ∀k ∈ [t, t +N],

(3)

where N is the MPC horizon, Qk and Rk are positive definite cost matrices for the
state deviation and control deviation respectively, and f̂ is the approximate dynamics
model. In some cases, this problem is convex, but generally it may not be. In our
experiments, this optimization problem is solved with iterative relinearization based
on [30]. However, whereas they iteratively linearize the nonlinear optimal control
problem and solve an LQR problem over the full horizon of the problem, we explicitly
solve the problem over the MPC horizon. We do not consider terminal state costs
or constraints. This formulation of the auxiliary controller by [15] allows us to
guarantee, under our assumptions, that our true state stays in a tube around the
nominal trajectory, where the tube is defined by level sets of the value function (the
details of this are addressed in Section 5).

The solution to the MPC problem is iterative. First, we linearize around the
nominal trajectory τ . We introduce the notation {(ŝk, âk)}k=t+N

k=t , which is the solution
for the last iteration. These are initialized as ŝt ← s̄t and ât ← āt . Then, we introduce
the deviations from this solution as

δ st = st − ŝt , δat = at − ât . (4)
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Algorithm 1 Adaptive Policy Transfer for Stochastic Dynamics (ADAPT)
Input: Source Env: MS, Target Env: MT , Initial State: s0

Offline:
1: A′,S ′← bound_set(A,S) // Calculate constrained state & action space
2: π ← policy_opt

(
M′

S
)

// Train a policy for M′
S using constrained S ′,A′

3: f̂ ← fit_dynamics
(
MS

)
// Fit Dynamics for MS

Online:
4: τ ← rollout

(
s0,π,MS,T

)
// Roll out π on MS to get nominal trajectory

5: s← s0
6: for t ∈ [0,T ] do
7: a← aux_MPC

(
s,τ, f̂ ,τ,N

)
// NMPC with iterative linearization

8: s← f (s,a)+w // Rollout the first step of action seq. on MT
9: end for

Then, taking the linearization of our dynamics

At =
∂ f̂
∂ st

∣∣∣∣
st=ŝt ,at=ât

Bt =
∂ f̂
∂at

∣∣∣∣
st=ŝt ,at=ât

, (5)

we can rewrite the MPC problem as:

min
{δak}t+N

k=t

t+N∑
k=t

(δ sk + ŝk− s̄k)
T Qk(δ sk + ŝk− s̄k)+(δak + âk− āk)

T Rk(δak + âk− āk)

s.t. δ sk+1 = Akδ sk +Bkδak, and δ sk + ŝk ∈ S, δak + âk ∈A, ∀k ∈ [t, t +N].
(6)

Note that the optimization is over the action deviations {δak}t+N
k=t . Once this problem

is solved, we use the update rule ŝt ← ŝt + δ st , ât ← ât + δat . The dynamics are
then relinearized, and this is iterated until convergence. Because we use iterative
linearization to solve the nonlinear program, it is necessary to choose a dynamics
representation f̂ that is efficiently linearizable. In our experiments, we use an analyti-
cal nonlinear dynamics representation for which the linearization can be computed
analytically (see [31] for details), as well as fit a time-varying linear model. Choices
such as, e.g., a Gaussian process representation, may be expensive to linearize.

5 ADAPT: Analysis

The following section develops the main theoretical analysis of this study. We will
first show that ADAPT results in bounded deviation from the nominal trajectory
τ under a set of technical assumptions. This result is then used to show that the
deviation between cumulative reward of the realized rollout on the target system and
the cumulative reward of the nominal trajectory on the source environment, is upper
bounded. This is to say, the decrease in performance below the ideal case is bounded.
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5.1 Safety Analysis in ADAPT

Using the notation from Eq (3), let us denote the solution at time k as C∗N(sk,k)
for MPC horizon N. This is the minimum cost associated with the finite horizon
problem that is solved iteratively in the MPC framework. Note that this problem is
solved with the approximate dynamics model; in the case where the approximate
dynamics model exactly matches the target environment model, the solution to this
problem would have value zero as the trajectory would be tracked exactly. We denote
by κN(sk) the action at time k from the solution to the MPC problem. Then, let
Ld(k), {s |C∗N(s,k)≤ d} denote the level set of the cost function for some value
d ∈ (0,c) (for some constant c; see [15]) at time k.

We assume the error between approximate dynamics representation f̂ and the
simulator dynamics f is outer approximated by a compact, convex set D that contains
the origin. Therefore, for all state, action pairs (s,a) ∈ S×A, f (s,a)− f̂ (s,a) ∈D.
In the case where the state and action spaces are bounded, there always exists an
outer approximation which satisfies this assumption. However, in practice, it is likely
considerably smaller than this worst case.

Let Ts(s0), {Ld(k) | k ∈ Z≥0} denote a state tube defined by the time-dependent
level sets of the auxiliary cost function. We may now state our first result, noting that
the auxiliary stabilizing policy κN is the result of the MPC optimization problem
relying solely on the approximate dynamics f̂ .

Theorem 1. Every state trajectory {st}T
t=0 generated by the target dynamics st+1 =

f (st ,κN(st))+wt with initial state s0, lies in the state tube Ts(s0).

Proof. Note that W +D, where the addition denotes a Minkowski sum, is compact,
convex, and contains the origin. Then, the result follows from Theorem 1 of [15] by
replacing the set of disturbances (which the authors refer to as W) with W +D. ut

The above result combined with Proposition 2i of [15], which shows that for some
constant c1, C∗N(sk,k) ≥ c1‖sk− s̄k‖2, gives insight into the safety of ADAPT. In
particular, note that for an arbitrarily long trajectory, the realized trajectory stays
in a region around the nominal trajectory despite using an inaccurate dynamics
representation in the MPC optimization problem. While this result shows that the
deviation from the nominal trajectory is bounded, it does not allow construction of
explicit tubes in the state space, and thus can not be used directly for guarantees on
obstacle avoidance. Recent work by Singh et al. [26] establishes tubes of this form,
and this is thus a promising extension of the ADAPT framework.

5.2 Robustness Analysis in ADAPT

We will now show that due to the boundedness of state deviation, the deviation in
the total accrued reward over a rollout on the target system is bounded. Let V π

S (s)
and V κ

T (s) denote the value functions associated with some state s and the primary
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policy executed on the source environment, and the ADAPT policy on the secondary
environment respectively.

Theorem 2. Under the technical assumptions made in Section 3 and 5.1, |V κ
T (s0)−

V π
S (s0)| ≤ c2

∑T
t=0
√

C∗N(st , t), where c2 is some constant and st+1 = f (st ,κN(st))+
wt .

Proof. First, note |Vκ(s0) − Vπ(s0)| ≤
∑T

t=0 |r(st ,κN(st)) − r(s̄t ,π(s̄t))|, where
st+1 = f (st ,κN(st))+wt and s̄t+1 = f (s̄t ,π(s̄t)). Additionally, letting a = κN(s) and
ā = π(s̄), note that similarly to Proposition 2i of [15], we can establish a bound
on the action deviation from the nominal trajectory in terms of the auxiliary cost
function, C∗(st , t)≥ c3‖at− āt‖2 for all t (where the norm is in the Euclidean sense),
by taking c3 as the minimum eigenvalue of Rt . By the Lipschitz continuity of the
reward function, and writing the Lipschitz constant of the reward function Lr, we
have

|r(s,a)− r(s̄, ā)| ≤ Lr(‖s− s̄‖+‖a− ā‖). (7)
Then, noting that the quadratic auxiliary cost function C∗N is always positive, the
result is proved by applying Proposition 2i of [15] and the bound on action deviation
from the nominal to the right hand side of Equation 7. ut

This result may then be restated in terms of the disturbance sets. Let ‖W +D‖,
maxw∈W ,d∈D ‖w+d‖.

Theorem 3. Under the same technical assumptions as Theorem 2, the following
inequality holds for some constant c4 > 0:

|V κ
T (s0)−V π

S (s0)| ≤ c4T
√
‖W +D‖ (8)

Proof. The result follows from combining Theorem 2 with Proposition 4ii of [15].
ut

These results shows that along with guarantees on spatial deviation from the
nominal trajectory, we may also establish bounds on the accrued reward relative
to what is received with the nominal policy in the source environment, in effect
demonstrating that zero-shot transfer is possible. The Lipschitz continuity of the
reward function is essential to this result, and this illustrates several aspects of the
policy transfer problem.

The ADAPT algorithm is based on tracking a nominal rollout in simulation.
Critical in the success of this approach is gradual variation of the reward function.
Sparse reward structures are likely to fail with this approach to transfer, as tracking
the nominal trajectory, even relatively closely, may result in poor reward. On the
other hand, a slowly varying reward function, even if tracked relatively roughly may
result in accrued reward close to the nominal rollout on the source environment.
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Fig. 1: Mean cumulative cost over the length of an episode for 50 episodes on the kinematic car
environment. The confidence intervals are standard error. The costs are normalized to the cost of the
naive policy being rolled out on the simulated environment from the same initial state, to allow more
direct comparison across episodes. The naive rollout is the nominal policy executed on the target
environment. The disturbances tested are a) a hill landscape, b) additive control error, c) process
noise, and d) dynamics parameter error.

6 Experimental Evaluation

We implemented ADAPT on a nonlinear, non-holonomic kinematic car model with
a 5-dimensional state space as well as on the Reacher environment in OpenAI’s
Gym [3]. We train policies using Trust Region Policy Optimization (TRPO) [25].
The policy is parameterized as a neural network with two hidden layers, each with
64 units and ReLU nonlinearities. In all of our experiments, we report normalized
cost. This is the cost (negative reward) realized by a trial in the target environment,
divided by the cost of the nominal policy rolled out on the simulated environment
from the same initial state. This allows more direct comparison between episodes
for environments with stochastic initial states. We generally compare the naive trial,
which is the nominal policy rolled out on the target environment (e.g., standard
transfer with no adaptation) to ADAPT.
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(a) (b) (c)
Fig. 2: a) The car environment with the paths for the ideal case (nominal policy on simulated
environment), the naive case (nominal policy on the target environment), and the ADAPT case
(ADAPT on the target environment). The contour plot shows the height of the added hills. Figures
(b) and (c) show the normalized cost for varying disturbances due to additive control error and
dynamics parameter error for b) the naive case and c) ADAPT (lower is better). In addition to the
listed disturbances, disturbances due to hills are also added for all trials. Each grid cell is the mean
of 50 trials.

6.1 Environment I: 5-D Car

We implemented ADAPT on a nonlinear, nonholonomic 5-dimensional kinematic car
model that has been used previously in the motion planning literature [31]. Specif-
ically, the car has state s = [x,y,θ ,v,κ]T , where x and y denote coordinates in the
plane, θ denotes heading angle, v denotes speed, and κ denotes trajectory curva-
ture. The system has dynamics ṡ = [vcosθ ,vsinθ ,vκ,av,aκ ], where av ∈ [−2,2]
and aκ ∈ [−0.5,0.5] are the controlled acceleration and curvature derivative. The
policy is trained to minimize the quadratic cost L(sss,aaa) =

∑T
t=0 `(st ,at), where

`(st ,at) = x2
t + y2

t + a2
v,t + a2

κ,t , which results in policies that drive to the origin.
In each trial, the vehicle is initialized in a random state, with position x,y ∈ [−5,5],
with random heading and zero velocity and curvature.

Our auxiliary controller used an MPC horizon of 2 seconds (20 timesteps). Our
state deviation penalty matrix, Q, has value 1 along the diagonal for the position
terms, and zero elsewhere. Thus, the MPC controller penalizes only deviation in
position. The matrix R had small terms (10−3) along the diagonal to slightly penalize
control deviations. In practice, this mostly acts as a small regularizing term to
prevent large oscillatory control inputs by the auxiliary controller. The behavior of
the auxiliary controller is dependent on the matrices Q and R, but in practice good
performance may be achieved across environments with fixed values. Because of the
relatively high quadratic penalty on control in policy training, the nominal policy
rarely approaches the control limits. Thus, we can set A′ = A, and we set S ′ = S.
For our dynamics model, we use the linearization reported in [31].

6.2 Disturbance Models

We investigate four disturbance types:
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1. Environmental Uncertainty: We add randomly-generated hills to the target envi-
ronment such that the car experiences accelerations due to gravity. This noise
is therefore state-dependent. Figure 2a shows a randomly generated landscape.
We randomly sample 20 hills in the workspace, each of which is circular and
has varying radius and height. The vehicle experiences an additive longitudinal
acceleration proportional to the landscape slope at its current location, and no
lateral acceleration.

2. Control noise: Nonzero-mean additive control error drawn from a uniform
distribution.

3. Process noise: Additive, zero-mean noise added to the state. Disturbances are
drawn from a uniform distribution.

4. Dynamics parameter error: We add a scaling factor γ to the control of κ̇ , such
that κ̇ = γaκ .

For the last three, the noise terms were drawn i.i.d. from a uniform distribution at
each time t. These disturbances were investigated both independently (Figure 1) and
simultaneously (Figure 2). Figure 1 shows the normalized cost of the naive transfer
and ADAPT for each of the four disturbances individually.

In our experiments, ADAPT substantially outperforms naive transfer, achieving
normalized costs 1.5-5x smaller. Additionally, the variance of the naive transfer is
considerably higher, whereas the realized cost for ADAPT is clustered relatively
tightly around one (e.g., approximately equal cost to the ideal case). In Figure 1d,
the normalized cost of ADAPT is actually below one, implying that the transferred
policy performs better than the ideal policy. In fact, this is because the dynamics
parameter error in this trial results in oversteer, and so the agent accumulates less
cost to turn to face the goal than in the nominal environment. Thus, pointing toward
the goal is more “cost-efficient” in the target environment. The performance of direct
transfer and ADAPT with varying parameter error may be seen in Figure 2b and
Figure 2c. In Figure 2a, a case is presented where the direct policy transfer fails to
make it up a hill, whereas the ADAPT policy tracks the nominal trajectory well.

6.3 ADAPT with Robust Offline Policy

Whereas ADAPT’s approach to policy transfer relies primarily on stabilization in
the target environment, recent work has focused on training robust policies in the
source domain, and then performing direct transfer. In the EPOPT policy training
framework [23], an agent is trained over a family of MDPs in which model parame-
ters are drawn from distributions before each training rollout. Then, a Conditional
Value-at-Risk (CVaR) objective function is optimized as opposed to an expectation
over all training runs. We apply ADAPT on top of an EPOPT-1 policy (equivalent
to optimizing expected reward, with model parameters varying), and find that for
disturbances explicitly varied during training, the performance of EPOPT-only trans-
fer and ADAPT are comparable. We add parameters γi to the state derivative as
follows: ṡ = [γ1vcosγ2θ ,γ1vsinγ2θ ,γ1vγ3κ,γ4av,γ5aκ ]. Each of these γi are drawn
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Fig. 3: Mean cumulative cost over the length of an episode for 50 episodes on the 5-D car environ-
ment, using an EPOPT-1 robust policy. The confidence intervals are standard error. The disturbances
tested are a) a hill landscape, b) additive control error, c) process noise, and d) dynamics parameter
error. The details of each noise source is presented in the supplementary materials.

from Gaussian distributions before each training run, and are fixed during the training
run. Although some of these parameters do not have a physical interpretation, the
resulting policies are still robust to both parametric error, as well as process noise.
In these experiments, an MPC horizon of 1 second was used (10 timesteps). The
matrices Q and R were set as in Section 6.1.

In Figure 3, the comparison between the direct transfer of EPOPT policies and
ADAPT policies is presented. We can see that, for disturbances that are explicitly
considered in training (specifically, model parameter error), naive transfer performs
slightly better, albeit with higher variance. For other disturbances, like the addition
of hills or control noise, ADAPT significantly outperforms the directly-transferred
policy. Indeed, while the performance of the ADAPT policy is comparable to direct
transfer for disturbances directly considered in training, unmodelled disturbances are
handled substantially better by ADAPT. Thus, to extract the best performance, we
recommend applying the two approaches in tandem.
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Fig. 4: Mean cumulative cost over the length of an episode for 50 episodes on the reacher envi-
ronment. The confidence intervals are standard error. The costs are normalized to the cost of the
naive policy being rolled out on the simulated environment from the same initial state, to allow
more direct comparison across episodes. The naive rollout is the nominal policy executed on the
target environment. The disturbances tested are a) additive control error, b) process noise, and c)
dynamics parameter error.

6.4 Environment II: 2-Link Planar Robot Arm

We next evaluate the performance of ADAPT on the Reacher environment of Gym
[3]. This environment is a two link robotic arm that receives reward for proximity
to a goal in the workspace, and is penalized for control effort. The state is a vector
of the sin and cos of the joint angles, as well as joint angular velocities, the goal
position, and the distance from the arm end-effector to the goal. In our tests, we fix
one goal location and one starting state for all tests to more directly compare between
trials. As such, the variance in normalized cost in experiments is much smaller than
in the car experiments. For these experiments, the same noise models were used as
in the previous section, with the exception of the “hills” disturbance.

As an approximate dynamics model used for the auxiliary controller, we use the
time-varying linear dynamics from [12]. This model is fit from rollouts in simulation.
Since this model is linear, the MPC problem is convex, and the iterative MPC
converges in one iteration. These dynamics are only valid in a local region, and thus
must be fit for each desired policy rollout in the target environment. However, since
the model is fit from simulation data, it is generated quickly and inexpensively.

The results for normalized cost comparisons between naive transfer and ADAPT
are presented in Figure 4. We note that ADAPT achieves significantly lower cost for
additive control error and process noise, but achieves comparable cost for parameter
error. The parameter varied in these experiments was the mass of the links of the
arm. The effect of this change is to increase the inertia of the manipulator as a
whole. In fact, this can be seen in the Figure 4c. While the cost of the naive transfer
increases slowly, the cost of the ADAPT trials spikes at approximately time t = 0.25.
As ADAPT is tracking the nominal trajectory, it increases the torque applied, thus
suffering a penalty for the increased control action, but resulting in better tracking of
the nominal trajectory.

A similar effect can be observed in Figure 4a. The added control error actually
drives the manipulator toward the goal, resulting in the dip in the normalized cost for
both trajectories. However, the naive policy overshoots the goal substantially, and
thus accrues substantially higher normalized cost than the ADAPT experiments.
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7 Conclusion and Outlook

We have presented the ADAPT algorithm for robust transfer of learned policies to
target environments with unmodeled disturbances or model parameters. We have also
provided guarantees on the lower bounds of the accrued reward in the target environ-
ment for a policy transferred with ADAPT. Our results were demonstrated on two
different environments with four disturbance models investigated. We additionally
discuss usage of robust policies with ADAPT. The results presented demonstrate that
this method improves performance on unmodeled disturbances by 50-300%.

In this work, we construct our analysis on the Lipschitz continuity of the dynamics.
Indeed, the smoothness of the deviation in dynamics is fundamental to the guarantees
we establish. An immediate avenue of future investigation is, therefore, expanding
the work presented here to environments with discrete and discontinuous dynamics
such as contact. Recently, Farshidian et al. [7] have extended an iteratively linearized
nonlinear MPC, similar to ours, to switching linear systems, which may have potential
as a foundation on which to develop a capable contact formulation of ADAPT.
Additionally, recent work has developed robust, receding horizon tube controllers
that allow the establishment of explicit tubes in the state space [26]. This approach
has the potential to establish explicit safety constraints for operation in cluttered
environments. Finally, these methods will also be evaluated on a physical systems.
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