
Learning Task-Oriented Grasping for Tool
Manipulation from Simulated Self-Supervision

Kuan Fang Yuke Zhu Animesh Garg Andrey Kurenkov Viraj Mehta Li Fei-Fei Silvio Savarese
Stanford University, Stanford, CA 94305 USA

Abstract—Tool manipulation is vital for facilitating robots to
complete challenging task goals. It requires reasoning about
the desired effect of the task and thus properly grasping
and manipulating the tool to achieve the task. Task-agnostic
grasping optimizes for grasp robustness while ignoring crucial
task-specific constraints. In this paper, we propose the Task-
Oriented Grasping Network (TOG-Net) to jointly optimize both
task-oriented grasping of a tool and the manipulation policy for
that tool. The training process of the model is based on large-
scale simulated self-supervision with procedurally generated tool
objects. We perform both simulated and real-world experiments
on two tool-based manipulation tasks: sweeping and hammering.
Our model achieves overall 71.1% task success rate for sweeping
and 80.0% task success rate for hammering. Supplementary
material is available at: bit.ly/task-oriented-grasp.

I. INTRODUCTION

Tool manipulation can be defined as the employment of
a manipulable object, i.e. a tool, to fulfill a task goal. For
this purpose, the agent needs to effectively orient and then
manipulate the tool so as to achieve the desired effect.
According to Brown et al. [4], there are four key aspects to
learning task-oriented tool usage: (a) understanding the desired
effect, (b) identifying properties of an object that make it a
suitable tool, (c) determining the correct orientation of the tool
prior to usage, and (d) manipulating the tool. A task-oriented
grasp is therefore a grasp that makes it possible to correctly
orient the tool and then manipulate it to complete the task.

Consider a hammer object as shown in Figure 1. The
best grasp predicted by a task-agnostic task-agnostic grasp
prediction model, such as Dex-Net [35], is likely to reside close
to the center of mass to optimize for robustness. However, the
hammering task can be best achieved by holding the hammer
at the far end of the handle, thus to generate a high moment
at the point of impact on the head. And yet when the same
object is used for the sweeping task, it should be grasped by
the head since that spares the largest contact surface area with
the target objects. In order to optimize for the task success,
both grasping robustness and suitability for the manipulation
should be considered.

The problem of understanding and using tools has been
studied in robotics, computer vision, and psychology [1, 14, 16,
20, 41, 55]. Various studies in robotics have primarily focused
on reasoning about the geometric properties of tools [7, 47].
They often assume prior knowledge of object geometry and
require predefined affordance labels and semantic constraints,
which has constrained their usefulness in realistic environments
with sensory and control uncertainty. Some pioneering works

Task-Oriented GraspingInitial State

Task-Agnostic Grasp Sweeping Hammering

Figure 1: The same object can be grasped by the robot in different
ways from the initial state on the table. A task-agnostic grasp can lift
up the hammer but it might not be suitable for specific manipulation
tasks such as sweeping or hammering. We aim to directly optimize
for task success in each episode, by jointly choosing a task-oriented
grasp and the subsequent manipulation actions.

have also grounded the tool grasping problem in an interactive
environment [37, 38]. Nonetheless, their approaches relied on
hand-engineered feature representations and simplified action
spaces, which are limited to the tasks they are tuned to work
for and allow only limited generalization to novel objects in
complex manipulation tasks.

In this work, we focus on tool manipulation tasks that consist
of two stages. First, the robot picks up a tool resting on
the tabletop. Second, it manipulates this tool to complete
a task. We propose the Task-Oriented Grasping Network
(TOG-Net), a learning-based model for jointly predicting task-
oriented grasps and subsequent manipulation actions given the
visual inputs. To accommodate the need for large amounts
of training data for deep learning, we embrace the self-
supervised learning paradigm [31, 38, 42], where the robot
performs grasping and manipulation attempts and the training
labels automatically generated thereby. To scale up our self-
supervision data collection, we leverage a real-time physics
simulator [6] that allows a simulated robot to perform task
executions with diverse procedurally generated 3D objects. We
evaluate our method on a hammering task and a sweeping task.
Our model is proved to learn robust policies that generalize
well to novel objects both in simulation and the real world.
In the real-world experiments, our model achieves 71.1% task
success rate for sweeping and 80.0% task success rate for
hammering using 9 unseen objects as tools.

http://bit.ly/task-oriented-grasp

Our primary contributions are three-fold: 1) We propose a
learning-based model for jointly learning task-oriented grasping
and tool manipulation that directly optimizes task success; 2)
To train this model, we develop a mechanism for generating
large-scale simulated self-supervision with a large repository
of procedurally generated 3D objects; 3) We demonstrate that
our model can generalize to using novel objects as tools in
both simulation and the real world.

II. RELATED WORK

Task-Agnostic Grasping: Robotic grasping is a long-standing
challenge that involves perception and control. Classical meth-
ods approach the grasping problem from a purely geometric
perspective. They optimize grasp quality measures based on
analytic models of geometric constraints, such as force closure
and form closure [12, 44, 52]. While grasp quality measures
offer a principled mathematical framework of grasp analysis,
their practical usage is limited by the large space of possible
grasps. Several techniques have been proposed to restrict the
search space of grasp candidates. This includes representing
objects with shape primitives [40], simplifying the search
of grasps in a subspace of reduced dimensionality [5], and
leveraging a dataset of objects with known grasps to speed up
grasp selection for novel objects [15, 34]. Another limitation
of these approaches is that they require the full 3D geometry
of the object, which restricts their usage in unstructured
real-world environments. The recent development of machine
learning techniques, especially deep learning, has enabled a
surge of research that applies data-driven methods to robotic
grasping [2, 25]. These learning methods largely fall into two
families depending on the source of supervision: 1) supervised
learning approaches [30, 35, 46], where the models are trained
with a dataset of objects with ground-truth grasp annotations,
and 2) self-supervision approaches [23, 31, 42, 3, 11], where
grasp labels are automatically generated by a robot’s trial
and error on large numbers of real-world or simulated grasp
attempts. To address the data-hungry nature of deep neural
networks, several works [35, 51] relied on depth sensors to
train their models in simulation and transfer to the real robot.
Task-Oriented Grasping: A major portion of research in
grasping aims at holding the object in the robot gripper so as to
not drop it despite external wrenches. In practice, however, the
end goal of grasping is often to manipulate an object to fulfill a
goal-directed task once it has been grasped. When the grasping
problem is contextualized in manipulation tasks, a grasp
planner that solely satisfies the stability constraints is no longer
sufficient to satisfy the task-specific requirements. In classical
grasping literature, researchers have developed task-oriented
grasp quality measures using task wrench space [18, 32, 43].

Data-driven approaches have also been used to learn task-
related constraints for grasp planning [7, 47]. These studies
incorporate semantic constraints, which specify which object
regions to hold or avoid, based on a small dataset of grasp
examples. However, these grasping methods cannot entail the
success of the downstream manipulation tasks, and the hand-
labeled semantic constraints cannot generalize across a large

variety of objects. On the contrary, our work jointly learns the
task-aware grasping model and the manipulation policy given a
grasp. Thus, our grasping model is directly optimized to fulfill
its downstream manipulation tasks. Furthermore, we employ
deep neural networks to train our task-aware grasping models
on a large repository of 3D objects, enabling it to generalize
from this repository of objects to unseen objects as well as
from simulation to the real world.

Affordance Learning: Another line of related work centers
around understanding the affordances of objects [8, 28, 55, 56].
The notion of affordances introduced by Gibson [14] character-
izes the functional properties of objects and has been widely
used in the robotics community as a framework of reasoning
about objects [26, 50]. Prior art has developed methods to
learn different forms of object affordance such as semantic
labels [56], spatial maps [24], and motion trajectories [55].
Our work follows a progression of previous work on behavior-
grounded affordance learning [13, 22, 37, 38, 48], where the
robot learns object affordance by observing the effects of
actions performed on the objects. Nonetheless, we do not
explicitly supervise our model to learn and represent goal-
directed object affordances. Instead, we demonstrate that our
model’s understanding of object affordance naturally emerges
from training grasping and manipulation simultaneously. Recent
work by Mar et al. [38] has the closest resemblance to our
problem setup; however, their action space consists of a small
set of discrete actions, while we employ a multi-dimensional
continuous action space. Aside from the problem, their method
of self-organizing maps uses hand-designed tool pose and
affordance descriptors, while we eschew feature engineering
in favor of end-to-end deep learning.

III. PROBLEM STATEMENT

Our goal is to control a robot arm to perform tool-based
manipulation tasks using novel objects. Each task is a two-
stage process. In the first stage, the robot grasps an object as
a tool for a task. In the second stage, the robot manipulates
the tool to interact with the environment to complete the goal
of the task. The visual appearance of the tool is provided for
the robot to accomplish this.
Notations of Grasping: The robot operates in a workspace
based on camera observations, where O denotes the observation
space. We consider the grasping problem in the 3D space,
where G denotes the space of possible grasps. Given a pair
of observation o ∈ O and grasp g ∈ G, let SG(o,g) ∈ {0,1}
denote a binary-valued grasp success metric, where SG = 1
indicates that the grasp is successful according to the predefined
metric. In practice, the underlying sensing and motor noise
introduce uncertainty to the execution of a grasp. We measure
the robustness of a grasp QG(o,g) by the probability of grasp
success under uncertainty, where QG(o,g) = Pr(SG = 1|o,g).
This grasp metric SG is task-agnostic, which evaluates the
quality of a grasp without grounding to a specific task. As we
noted in Section II, data-driven grasping methods [35, 51] have
focused on optimizing task-agnostic grasps.

task-oriented
grasping
model

grasp ranking

robust
task-oriented

grasp

manipulation
policy

grasp
candidates 1

2

3

4

hammering
task

task execution

Trained to select
the best grasp

Trained to perform
the task the best

simulated
self-supervised
learning

diverse training objects large-scale data collection

grasping stage manipulation stage

Training

Testing

Figure 2: Model Overview. Our model consists of a task-oriented grasping model and a manipulation policy. Given the visual inputs of the
object, we sample multiple grasp candidates. The task-oriented grasping model computes a grasp quality score for each candidate based on
the planned task, and chooses the grasp with the highest score. Given the observation of the scene, the manipulation policy outputs actions
conditioned on the selected grasp. The two modules are trained jointly using simulated self-supervision.

Problem Setup: By contrast, we contextualize the grasping
problem in tool manipulation tasks. In our setup, the grasping
stage is followed by a manipulation stage, where a policy π

produces actions to interact with the environment once the
object is grasped. Intuitively, both the choice of grasps and the
manipulation policy play an integral role in the success rate
of a task.

Let ST (o,g) ∈ {0,1} denote a binary-valued task-specific
success metric, where ST = 1 indicates that the task T is
successfully done based on the goal specification. Clearly the
grasp success is the premise of the task success, i.e., ST = 1
entails SG = 1. Given a manipulation policy π for the task,
we measure the robustness Qπ

T of a task-oriented grasp by the
probability of task success under policy π , where Qπ

T (o,g) =
Pr(ST = 1|o,g). Thereafter, the overall learning objective is to
train both policies simultaneously such that:

g∗,π∗ = argmax
g,π

Qπ
T (o,g). (1)

We aim at selecting the optimal grasp g∗ that is most likely
to lead to to the completion of the task, and at the same time
finding the best policy π∗ to perform the task conditioned on a
grasp. In practice, we implement both the grasping policy and
the manipulation policy using deep neural networks. We detail
the design of the neural network models and their training
procedures in Sec. IV.
Assumptions: We consider the problem of task-oriented grasp
planning with a parallel-jaw gripper based on point clouds from
a depth camera. The training of our model uses simulated data
generated from a real-time physics simulator [6]. Our design

decision is inspired by the effective use of depth cameras
in transferring the grasping model and manipulation policy
trained in simulation to reality [35, 51]. Further, to reduce the
search space of grasping candidates, we restrict the pose of
the gripper to be perpendicular to the table plane. In this case,
each grasp g = (gx,gy,gz,gφ) has 4 degrees of freedom, where
(gx,gy,gz) ∈R3 denotes the position of the gripper center, and
gφ ∈ [0,2π) denotes the rotation of the gripper in the table
plane. Each observation o ∈ RH×W

+ is represented as a depth
image from a fixed overhead RGB-D camera with known
intrinsics.

IV. TASK-ORIENTED GRASPING FOR TOOL MANIPULATION

As shown in Fig 2, our task-oriented grasping network
(TOG-Net) consists of a task-oriented grasping model and
a manipulation policy. The two modules are coupled and learn
to achieve task success together. In this section, we first present
the design and implementation of the two modules, and then
describe how they are jointly trained using simulated self-
supervision.

A. Learning Task-Oriented Grasp Prediction

High-quality task-oriented grasps should simultaneously
satisfy two types of constraints. First, the tool must be stably
held in the robot gripper, which is the goal of task-agnostic
grasping. Second, the grasp must satisfy a set of physical and
semantic constraints that are specific to each task.

For a given observation o ∈ O, a small subset of grasps
Gα ⊆ G can robustly lift up the object with a grasp quality
higher than α , i.e. QG(o,g)≥α . Hence, the task agnostic grasp

fc 64

1⨉1 conv, 8 1⨉1 conv, 81⨉1 conv, 8

QT|G

fc 64

fc 64

a

fc 64

fc 64

QG

fc 64fc 8

gripper depth z

grasp candidate

center crop

64x64
32x32

CNN CNN CNN

6⨉6 conv, 64

3⨉3 conv, 64

pool, /2

3⨉3 conv, 64

3⨉3 conv, 128, /2

3⨉3 conv, 128

3⨉3 conv, 256, /2

3⨉3 conv, 256

task-agnostic
grasp quality

conditioned
task-oriented
grasp quality

 Convolutional Module (CNN)

manipulation
action

z

Figure 3: Task-Oriented Grasping Network (TOG-Net). The inputs to the network are two depth image crops and the sampled gripper
depth z. The network predicts task-agnostic grasp quality, conditioned task-oriented grasp quality, and manipulation actions. The CNN modules
share parameters as denoted by the dashed lines. Residual network layers and batch normalization are used in the CNN modules.

prediction problem involves finding the corresponding grasp
g that maximizes the grasp quality QG(o,g) = Pr(SG = 1|o,g).
This prediction problem can be solved with a variety of
methods, and we build upon the approach of Mahler et al. [35]
that uses quality function approximation with algorithmic
supervision via analytic models.

As noted in Section III, the overall objective is maximizing
the probability of task success Qπ

T (o,g) under a policy π ,
grasp g ∈ G. However, directly solving this problem results
in a discrete space search over a large space of grasps,
and then a subsequent optimization problem to solve for a
manipulation policy given each grasp. Furthermore, we note that
tool manipulation task execution only succeeds if the grasp has
succeeded. However, not all grasps g∈ Gα result in a successful
task. Specifically, we can define a conditional robustness
metric QT |G that measures the probability of task success
(under policy π) conditioned on a successful grasp, where
QT |G(o,g) = Prπ(ST = 1|SG = 1,o,g). Then, task-oriented
grasps form a subset of task-agnostic grasps: Gα,δ ⊆ Gα , i.e.
the grasps which lead to task success with a task quality
conditioned on the grasp QT |G(o,g)≥ δ where δ is a chosen
threshold.

This formulation lets us to effectively decouple the two
problems as: 1) finding robust task-agnostic grasps; and 2)
finding a robust task-oriented grasp among robust grasps and
the corresponding manipulation policy. The key observation
is that the task quality metric Qπ

T (o,g) can be factorized into
independently computable terms: QT |G(o,g) and QG(o,g) .
Formally, the task robustness QT (o,g) can be decomposed as
follow:

Qπ
T (o,g) = Prπ(ST = 1|o,g)

= Prπ(ST = 1,SG = 1|o,g)
= Prπ(ST = 1|SG = 1,o,g) ·Pr(SG = 1|o,g)
= QT |G(o,g) ·QG(o,g).

Our model learns to approximate the values of grasp quality

QG(o,g) and task quality conditioned on grasp QT |G(o,g) using
deep neural networks given object o and grasp g as inputs. We
denote the predicted values as Q̂G(o,g;θ1) and Q̂T |G(o,g;θ2),
where θ1 and θ2 represent the neural network parameters.

The pipeline during testing is shown in Figure 2. We first
sample 200 antipodal grasp candidates based on depth gra-
dients [35]. Then Q̂T (o,g;θ1,θ2) = Q̂T |G(o,g;θ2) · Q̂G(o,g;θ1)
is computed for each grasp candidate. We run the cross-entropy
method [45] for 3 iterations as in [35], in order to rank and
choose the task-oriented grasp corresponds to the highest Q̂T .

B. Learning the Manipulation Policy

To complete the task with different tools and different grasps,
the manipulation policy needs to be conditioned on o and g. The
manipulation policy can be either an external motion planner or
a learned policy. While our pipeline is not limited to a specific
action space, here we choose to use parameterized motion
primitives parallel to the planar table surface to control the robot
in an open-loop manner. After the motion primitive is chosen
based on the task environment, our manipulation policy predicts
the continuous manipulation actions a = (ax,ay,az,aφ) ∈ R3,
where (ax,ay,az) and aφ are the translation and rotation of
the motion primitive. We use a Gaussian policy π(a|o,g;θ3) =
N (f (o,g;θ3),Σ), where f (o,g;θ3) is a neural network for
predicting the mean with parameters θ3 and the covariance
matrix Σ is a constant diagonal matrix.

C. Neural Network Architecture

In Figure 3 we propose a three-stream neural network archi-
tecture for jointly predicting Q̂G and Q̂T |G and a. Following
the practice of [35], we convert o and g into gripper depth z
and image crops as inputs to the neural network. The gripper
depth is defined as the distance from the center of the two
fingertips to the object surface. The image crops are centered
at the grasp center (gx,gy,gz) and aligned with the grasp axis
orientation φ . [35] uses image crops of size 32×32 to focus
on the contact between the gripper and the tool. To achieve

the task success, our model is supposed to reason about the
interactions between the tool and the task environment which
requires a holistic understanding of the shape of the tool. Thus
our model predicts Q̂T |G and a using larger image crops of
size 64×64 which covers most of training and testing objects.
Meanwhile the center crop of 32×32 is used to predict Q̂G.
Our neural network is composed of three streams which share
parameters in their low-level convolutional layers, extracting
identical image features, denoted by dotted lines. Building atop
the GQCNN in [35], we use residual network layers [19] and
batch normalization [21] to facilitate the learning process. On
top of the convolutional layers with shared weights, we apply
bottleneck layers of 1×1 convolutional filters for each stream
to reduce the size of the network.

D. Learning Objectives and Optimization

We jointly train the task-oriented grasping model and the
manipulation policy with simulated robot experiments of
grasping and manipulation. Each simulated episode in our
training dataset contains sampled grasp g, action a and the
resultant grasp success label SG, task success label ST . We use
cross-entropy loss L for training the grasp prediction functions
Q̂G and Q̂T |G. For training the policy π , we use the policy
gradient algorithm with gradients ∇ logπ(a|o,g;θ3). We use
the task success label as the reward of the manipulation policy.
Since we are using a Gaussian policy as described in Sec. IV-B,
this is equivalent to minimizing 1

2 || f (o,g;θ3)−a||2
Σ
·SG with

respect to θ3. Let the parameters of the neural network to
be denoted as θ = {θ1,θ2,θ3}, we jointly train our model by
solving the following optimization problem:

θ
∗ = argmin

θ

N∑
i=1

L(SG, Q̂G(o,g;θ1))

+1[SG = 1] ·L(ST , Q̂T |G(o,g;θ2))

+1[ST = 1] · 1
2
|| f (o,g;θ3)−a||2Σ.

(2)

V. SELF-SUPERVISION FOR GRASPING AND MANIPULATION

A. Procedural Generation of Tool Objects

We train our model in simulation with a large repository
of 3D models so as to generalize to unseen objects. However,
existing 3D model datasets do not contain enough objects
suitable for tool manipulation while exhibiting rich variations
in terms of their geometric and physical properties. As shown
in Figure 4, we leverage a common strategy of procedural
generation [3, 49] to produce a large set of diverse and realistic
objects that can be used as tools for tasks we are interested in.

While the generation process can be arbitrarily complex, we
choose to generate objects composed of two convex parts. The
two parts are connected by a fixed joint. We define three type of
composed shapes: T-shapes, L-shapes, and X-shapes. For each
object, two convex meshes are first sampled. Then the meshes
are randomly scaled along the x, y, and z axes. Depending on
the type of object shape, the parts are shifted and rotated with
respect to each other. We randomly sample physical dynamic
properties such as density and friction coefficients.

We use two sets of meshes to generate two different set of
objects: primitive and complex. We generate primitive meshes
that are composed by a set of parameterized shape primitives
including cuboids, cylinders, and polytopes. The dimensions
and textures are randomly chosen from predefined ranges. The
primitive meshes are generated by OpenScad [53]. We also
obtain convex object parts from a variety of realistic 3D object
models as the complex meshes. This done by running convex
decomposition [36] on each object from [2].

B. Data Generation with Simulated Self-Supervision

In order to collect large-scale datasets for training and
evaluating our model, we develop a self-supervision framework
to automatically generate training data. We leverage an open-
source real-time physics simulator, Bullet [6], which allows a
simulated robot to perform trial and error in millions of trails.
We record grasp and task success labels in each trial and use
them to train our models described in Section IV. For training
each task we collect the data in three rounds. After each round,
we train the grasping model and the manipulation policy using
the collected data to obtain an updated model. In each round
we run the simulation for 500K trials.

In the first round, we perform a random policy using a
GQCNN model trained on Dex-Net 2.0 Dataset [35]. The origi-
nal GQCNN model uses a cross entropy method (CEM) [45] to
sample robust grasps corresponds to the highest task-agnostic
grasp quality scores. But the trained GQCNN usually lead to
a collapsed mode of grasps which is most robust according
to the ranking of the predicted scores. Ideally we want to
collect data of diverse sampled grasps and evaluate how well
they can be used in each task. An alternative is to sample
uniformly sample grasps with grasp quality scores higher than
a threshold. In practice we found such sampling usually clusters
on the long edge of a tool object since there are more antipodal
grasps possible there. To encourage diverse exploration, we
instead use non-maximum suppression (NMS) [17] which is
widely used in object detection algorithms. The NMS algorithm
goes through the ranked antipodal grasps, and removes grasps
which have short Euclidean distances with previous grasps
with higher grasp quality scores. This guarantees all remaining
grasps are separate from each other and usually produces 10 to
30 distinguished modes. With these sampled grasp, the random
policy uniformly samples manipulation action from the action
space for each task.

In the following rounds, we use the ε-greedy strategy with
the updated grasping model. The grasping model uses the CEM
method described in Section IV with probability 1− ε1, and
uses the NMS method with GQCNN predictions as described
above with ε1 probability. The manipulation policy predicts and
manipulation action parameters in Section IV with probability
1−ε2, and use random actions with probability ε2. We set 0.2
for both ε1 and ε2.

VI. EXPERIMENTS

The goal of our experimental evaluation to answer following
questions: (1) Does our method improve task performance as

Figure 4: Example of objects in simulation. The first two rows show the procedurally generated objects based on shape primitives as well
as complex meshes. These objects are generated using three predefined composing rules to result in T-shapes, L-shapes, and X-shapes. The
last row shows the realistic shapes from existing 3D model datasets.

compared to baseline methods? (2) Does the joint training
qualitatively change the mode of grasping? (3) Can the model
be trained with simulated self-supervision work in the real
world?

We evaluate our method on two tabletop manipulation tasks:
sweeping and hammering. We define our hammering task as
a motion primitive that achieves fitting a peg in a hole with
tight tolerance, which is prevalent in assembly tasks as shown
in [54, 27]. Sweeping, on the other hand, is a primitive in
autonomous manipulation, such as in part positioning and
reorientation [33], grasping in clutter [9], object manipulation
without lifting [39]. Sweeping with tools has been studied in
the context of singulation and part retrieval [10, 29]. Each of
these tasks requires grasping objects in specific modes which
can often be different from the best stable grasp available,
thereby resulting in competing objectives.

We evaluate our model in both simulation and the real
world. The basic setup of both tasks includes a 7-DoF
Rethink Robotics Sawyer Arm with a parallel jaw gripper,
a 48′′× 30′′ table surface, and an overhead Kinect2 camera.
In simulation, the robot and camera are placed according to
the real-world camera calibration results, in order to obtain
consistent performance. For both experiments, we use models
solely trained using simulated data as described in Section IV.

A. Task Design

The table surface is split into two halves: a grasping region
and a manipulation region. Before each episode starts, an
object is sampled and randomly dropped onto the grasping
region to be used as the tool. A depth image is taken from
the overhead Kinect2 camera as the input of the model. The
model then predicts the 4-DOF grasp and the parameters of the
motion primitive. The robot grasps the object from the grasping
region and performs the task in the manipulation region. In our
task design, the motion primitive is a predefined single step
action. Our model predicts the starting gripper pose relative to
a reference point.
Sweeping: Target objects are randomly placed in the manip-
ulation region as the target objects. In the real world we use
two soda cans as the target objects, and in simulation we
randomly place one or two 3D models of cans. The task goal
is to sweep all target objects off the table using the tool. The
motion primitive of sweeping is a straight line trajectory of
the gripper parallel to the table surface. The gripper trajectory

starts from the pose (ax,ay,az,aφ) and moves 40cm along y-
axis of the world frame. (ax,ay,az,aφ) is predicted relative to
the mean position of the target objects. The task success is
achieved when all target objects contact the ground. For robust
sweeping, the tool ideally need to have a large flat surface in
contact with the target object.
Hammering: A peg and a slot are randomly placed in the
manipulation region, where the peg is horizontally half-way
inserted into the slot. The task goal is to use the tool to hammer
the peg fully into the slot. The motion primitive of hammering
is a rotation of the gripper along the z-axis. The trajectory
starts with the gripper pose (ax,ay,az,aφ) and ends after the
last arm joint rotates by 90 degree counterclockwise at full
speed. (ax,ay,az,aφ) is predicted relative to the position of the
peg. The task success is achieved when the whole peg is inside
the slot. This task requires a sufficient contact force between
the tool and the peg to overcome the resistance. Meanwhile the
tool should avoid collisions with the peg before the hammering.

B. Experiment Setup

Training uses 18,000 procedurally generated objects includ-
ing 9,000 PG-Primitive objects and 9,000 PG-Complex objects.
In addition to randomizing physical properties, we randomly
sample the camera pose and intrinsics by adding disturbances
to the values obtained from the real-world setup.

During testing, we use 3000 instances of each type of
procedurally generated object. We also test on 55 realistic
objects selected from Dex-Net 1.0 [34] and MPI Grasping
dataset [2]. These objects contain both tool-like and non-tool
like objects as shown in Figure 4. None of these test objects
are seen during training.

We compare our method to 4 baselines:

1) Antipodal+Random: Use a sampled antipodal grasp with
a random action uniformly sampled with x,y,z positions
in [−5,5] in terms of centimeters and θ in [− π

20 ,
π

20].
2) Task_Agn+Random: A task-agnostic grasp from Dex-Net

2.0 [35] with a random action.
3) Task_Agn+Trained: Same as above but with a manipula-

tion policy trained with our method. This is akin to the
current best solution.

4) Task_Ori+Random: An ablative version of our model with
task-oriented grasps executed with a randomized action.

Simulated Sweeping Simulated Hammering

Figure 5: Performance of simulated experiments. We perform an evaluation of our model for sweeping and hammering in simulation.
We compare performance separately on three object categories as shown in Figure 4: procedurally generated objects with primitive meshes
(PG-Primitive), procedurally generated objects with complex meshes (PG-Complex), and 3D objects from existing datasets (Realistic). Our
model outperforms all baselines using the three object categories in both tasks.

C. Simulated Experiments
We evaluate our method on both tasks using the simulated

setup described above. For each algorithmic method, we run
100,000 episodes in simulation and report the task success rate.
The task success analysis for each of the baselines and our
method is presented in Figure 5.

Our model outperforms the four baselines in both tasks
for all object categories. The contrast is more significant for
hammering than sweeping. This is because hammering requires
well-trained manipulation policy to direct the tool to hit the
peg. A small deviance from the optimal hammering trajectory
can let the tool miss the peg or collide with the slot. While
for the sweeping task, when the robot uses a long edge of
the tool to sweep, there is a high tolerance of manipulation
action errors. Even random actions can often succeed. Among
the three object categories, PG-Primitive is usually the easiest
to manipulate with. Complex meshes cause more grasping
failures and are harder for their geometric properties are harder
to reason about. Realistic objects are not usually good for
sweeping since they are more roundish and very few have long
edges. While the hammering performance with realistic objects
are much better, because many of these objects are cylinder
objects with a bulky head and even actual hammers.

D. Real-World Experiments
For our real-world experiments, we use 9 unseen objects

consisting of three categories as shown in Figure 6. T-shape
and L-shape objects have similar geometric properties with
our procedurally generated objects during training, whereas the
miscellaneous objects have structures and curvatures totally
unseen during training.

In the real world, we compare our model with two baseline
methods: antipodal grasping with trained manipulation policy
(antipodal + trained) and task-agnostic grasping with trained
manipulation policy (task-agnostic + trained). We perform each
task with each object for 5 robot trials for a total of 270 trials.
The per-category and overall task success rates are shown in
Table I. For all object categories, our model achieved better
performance compared to the baselines.

For sweeping, our model can successfully grasp the head
of T-shapes or the short edge of L-shapes, and sweep with
the longer part. For more complex miscellaneous objects, it
is less obvious for the model to figure out which part should
be grasped. But for most trials, the grasp predicted by our
model is intuitive to humans and leads to successful sweeping.
For T-shapes, the difference between task-agnostic and task-
oriented grasping is larger since the object usually only has
one long handle. In contrast for some L-shapes, the two edges
are both long enough for the task, grasping either edge does
not make a significant difference. For miscellaneous objects,
the model can have problems reasoning about novel object
parts. For instance, it sometimes chooses to grasp the handle
of the pan and sweep with the round part, which is unstable
for sweeping roundish target objects.

For hammering, our model performs equally well for T-
shapes and L-shapes. And the failures are usually caused
by occasional deviations during the execution of grasping or
manipulation. As a comparison, baseline models often choose
to grasp the head and hammer with the handle, which is sub-
optimal. Compared to T-shapes and L-shapes, there might not
be an obvious way to use miscellaneous objects as hammers.
Among miscellaneous objects, the pan can be used as a hammer
very well. The model tends to grasp the handle and hammer
with the bulky roundish part.

E. Qualitative Analysis

In Figure 7, we demonstrate the same object can be grasped
for different tasks by our trained model. Here we show the
modes of task-agnostic grasping and task-oriented grasping for
4 example objects, 2 in simulation and 2 in the real world.

For the sweeping task, it is challenging to sweep all target
objects off the table in one shot. It requires the tool to have a
flat contact surface to facilitate the manipulation of roundish
objects and to sweep across large enough area to catch both
of them. Our model learns to grasp the end of the tool object
and spare as much surface area as possible for sweeping. This
enables the robot to robustly sweep the cans most of the time.

T-Shapes L-Shapes Misc.

Figure 6: Real-world test objects. We used 9 unseen objects for
our real-world experiments. These objects are grouped into three
categories: T-shapes, L-shapes and miscellaneous objects.

Grasping ModelReal-World
Sweeping Antipodal

+ Trained
Task-Agnostic

+ Trained Our Model

T-Shapes 13.3 20.0 73.3
L-Shapes 23.7 46.7 80.0
Misc 33.3 13.3 60.0
Overall 24.4 23.6 71.1

Grasping ModelReal-World
Hammering Antipodal

+ Trained
Task-Agnostic

+ Trained Our Model

T-Shapes 46.7 60.0 86.7
L-Shapes 13.3 33.3 86.7
Misc 40.0 53.3 66.7
Overall 33.3 44.4 80.0

Table I: Performance of real-world experiments. We compare our
model with other grasping methods in terms of task success rates.
We use 9 real-world objects grouped into 3 categories. We perform 5
trials with each object for each method, for a total of 270 robot trials.
The per-task and overall task success rates are reported in each cell.

For the hammering task, the main concerns are overcoming
the resistance of the peg while avoiding collisions during
hammering. We expect the robot to grasp the far end of the
handle and hit the peg with the bulky part as the hammer head.
Ideally, this could generate the largest torque on the hammer
head when hitting the peg. In practice, we found the trained
model tends to grasp a little closer to the hammer head on the
handle. This is because we use a parallel jaw gripper and it is
hard to balance the tool when the fingers are far away from
the center of mass.

For robust task-agnostic grasping, the GQCNN model usually
chooses the thin part near the center of mass. Although this
sometimes still overlaps with the set of task-oriented grasps, it
is not guaranteed if the selected grasp from the task-agnostic
GQCNN is suitable for the task. Sometimes the gripper fingers
are on the right position, but the orientation of the grasp is the
opposite to the optimal task-oriented grasp. We often observe
the task-agnostic grasping model chooses to hammer with
the handle or sweep with a short edge. In Figure 7 we show
example task-agnostic grasps which are different from the
task-oriented grasps mentioned above.

Object Task-agnostic Sweeping Hammering

Figure 7: Qualitative results. Column 1 shows RGB images of the
tool objects. Column 2 shows example task-agnostic grasps. And
Columns 3 and 4 show task-oriented grasps chosen by our model
for the sweeping and hammering tasks. Our model favors wide flat
surfaces for sweeping and long moment arms for hammering.

VII. CONCLUSION

We develop a learning-based approach for task-oriented
grasping for tool-based manipulation trained using simulated
self-supervision. It jointly optimizes a task-oriented grasping
model and its accompanying manipulation policy to maximize
the task success rate. We leverage a physics simulator that
allows a robot to autonomously perform millions of grasping
and manipulation trials. The trial and error of the robot provides
training data to supervise the deep neural network models.
Our experimental results demonstrate that the task-oriented
grasps selected by our model are more suitable for downstream
manipulation tasks than the task-agnostic grasps.

In the future, our goal is to further improve the effectiveness
and robustness of our model by training on a large dataset
of realistic 3D models. Additionally, we plan to scale up our
model to complex manipulation tasks with end-to-end trained
closed-loop manipulation policies. Supplementary material is
available at: bit.ly/task-oriented-grasp

ACKNOWLEDGEMENT

We acknowledge the support of Toyota (1186781-31-
UDARO). We thank Ozan Sener for constructive discussions
about the problem formulation. We thank Alex Fu, Julian Gao
and Danfei Xu for helping with the real-world infrastructure.
We thank Erwin Coumans for helping with the Bullet simulator.

http://bit.ly/task-oriented-grasp

REFERENCES

[1] Christopher Baber. Cognition and tool use: Forms of
engagement in human and animal use of tools. CRC
Press, 2003.

[2] Jeannette Bohg, Antonio Morales, Tamim Asfour, and
Danica Kragic. Data-driven grasp synthesis – a survey.
IEEE Transactions on Robotics, 30(2):289–309, 2014.

[3] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart,
Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura
Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al.
Using simulation and domain adaptation to improve
efficiency of deep robotic grasping. arXiv preprint
arXiv:1709.07857, 2017.

[4] Solly Brown and Claude Sammut. Tool use and learning
in robots. In Encyclopedia of the Sciences of Learning,
pages 3327–3330. Springer, 2012.

[5] Matei T Ciocarlie and Peter K Allen. Hand posture
subspaces for dexterous robotic grasping. IJRR, 28(7):
851–867, 2009.

[6] Erwin Coumans and Yunfei Bai. pybullet, a python
module for physics simulation, games, robotics and
machine learning. http://pybullet.org/, 2016–2017.

[7] Hao Dang and Peter K Allen. Semantic grasping:
Planning robotic grasps functionally suitable for an object
manipulation task. In IROS, pages 1311–1317, 2012.

[8] Thanh-Toan Do, Anh Nguyen, Ian Reid, Darwin G
Caldwell, and Nikos G Tsagarakis. Affordancenet: An
end-to-end deep learning approach for object affordance
detection. arXiv preprint arXiv:1709.07326, 2017.

[9] Mehmet Dogar and Siddhartha Srinivasa. A framework for
push-grasping in clutter. Robotics: Science and systems,
1, 2011.

[10] Andreas Eitel, Nico Hauff, and Wolfram Burgard. Learn-
ing to singulate objects using a push proposal network.
arXiv preprint arXiv:1707.08101, 2017.

[11] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Sivlvio
Savarese, and Mrinal Kalakrishnan. Multi-task domain
adaptation for deep learning of instance grasping from
simulation. In ICRA, 2018.

[12] Carlo Ferrari and John Canny. Planning optimal grasps.
In ICRA, pages 2290–2295, 1992.

[13] Paul Fitzpatrick, Giorgio Metta, Lorenzo Natale, Sajit
Rao, and Giulio Sandini. Learning about objects through
action-initial steps towards artificial cognition. In ICRA,
volume 3, pages 3140–3145, 2003.

[14] James J. Gibson. The Ecological Approach to Visual
Perception. 1979.

[15] Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Peter K
Allen. The columbia grasp database. In ICRA, pages
1710–1716, 2009.

[16] Frank Guerin, Norbert Kruger, and Dirk Kraft. A survey
of the ontogeny of tool use: from sensorimotor experience
to planning. IEEE Transactions on Autonomous Mental
Development, 5(1):18–45, 2013.

[17] Richard Hartley and Andrew Zisserman. Multiple view

geometry in computer vision. Cambridge university press,
2003.

[18] Robert Haschke, Jochen J Steil, Ingo Steuwer, and Helge
Ritter. Task-oriented quality measures for dextrous
grasping. In Computational Intelligence in Robotics and
Automation, 2005. CIRA 2005. Proceedings. 2005 IEEE
International Symposium on, pages 689–694, 2005.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] Ana Huaman Quispe, Heni Ben Amor, Henrik Christensen,
and Mike Stilman. Grasping for a purpose: Using task
goals for efficient manipulation planning. arXiv preprint
arXiv:1603.04338, 2016.

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International conference on machine
learning, pages 448–456, 2015.

[22] Raghvendra Jain and Tetsunari Inamura. Learning of
tool affordances for autonomous tool manipulation. In
System Integration (SII), 2011 IEEE/SICE International
Symposium on, pages 814–819, 2011.

[23] Eric Jang, Sudheendra Vijaynarasimhan, Peter Pastor,
Julian Ibarz, and Sergey Levine. End-to-end learning
of semantic grasping. arXiv preprint arXiv:1707.01932,
2017.

[24] Yun Jiang, Marcus Lim, and Ashutosh Saxena. Learning
object arrangements in 3d scenes using human context.
arXiv preprint arXiv:1206.6462, 2012.

[25] Daniel Kappler, Jeannette Bohg, and Stefan Schaal.
Leveraging big data for grasp planning. In ICRA, pages
4304–4311. IEEE, 2015.

[26] Dov Katz, Arun Venkatraman, Moslem Kazemi, J Andrew
Bagnell, and Anthony Stentz. Perceiving, learning,
and exploiting object affordances for autonomous pile
manipulation. Autonomous Robots, 37(4):369–382, 2014.

[27] Shunsuke Komizunai, Fumiya Nishii’ Teppei Tsujita, Yuki
Nomura, and Takuya Owa. Experiments on hammering
a nail by a humanoid robot hrp-2. In Proceedings of
the 17th CISM-IFToMM Symposium on Robot Design,
Dynamics, and Control, 2008.

[28] Hema Swetha Koppula, Rudhir Gupta, and Ashutosh
Saxena. Learning human activities and object affordances
from RGB-D videos. The International Journal of
Robotics Research, 32(8):951–970, 2013.

[29] Michael Laskey, Caleb Chuck, Jonathan Lee, Jeffrey
Mahler, Sanjay Krishnan, Kevin Jamieson, Anca Dragan,
and Ken Goldberg. Comparing human-centric and
robot-centric sampling for robot deep learning from
demonstrations. In ICRA, pages 358–365, 2017.

[30] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep
learning for detecting robotic grasps. The International
Journal of Robotics Research, 34(4-5):705–724, 2015.

[31] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,
and Deirdre Quillen. Learning hand-eye coordination

http://pybullet.org/

for robotic grasping with deep learning and large-scale
data collection. The International Journal of Robotics
Research, 2016.

[32] Zexiang Li and S Shankar Sastry. Task-oriented optimal
grasping by multifingered robot hands. IEEE Journal on
Robotics and Automation, 4(1):32–44, 1988.

[33] Kevin M Lynch and Matthew T Mason. Stable pushing:
Mechanics, controllability, and planning. The Interna-
tional Journal of Robotics Research, 15(6):533–556, 1996.

[34] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose
Roderick, Michael Laskey, Mathieu Aubry, Kai Kohlhoff,
Torsten Kröger, James Kuffner, and Ken Goldberg. Dex-
net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with
correlated rewards. In ICRA, pages 1957–1964, 2016.

[35] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael
Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea,
and Ken Goldberg. Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic
grasp metrics. arXiv preprint arXiv:1703.09312, 2017.

[36] Khaled Mamou and Faouzi Ghorbel. A simple and
efficient approach for 3d mesh approximate convex
decomposition. In Image Processing (ICIP), 2009 16th
IEEE International Conference on, pages 3501–3504.
IEEE, 2009.

[37] Tanis Mar, Vadim Tikhanoff, Giorgio Metta, and Lorenzo
Natale. Self-supervised learning of grasp dependent tool
affordances on the icub humanoid robot. In ICRA, pages
3200–3206, 2015.

[38] Tanis Mar, Vadim Tikhanoff, Giorgio Metta, and Lorenzo
Natale. Self-supervised learning of tool affordances from
3d tool representation through parallel som mapping. In
ICRA, pages 894–901. IEEE, 2017.

[39] Tekin Meriçli, Manuela Veloso, and H Levent Akın. Push-
manipulation of complex passive mobile objects using
experimentally acquired motion models. Autonomous
Robots, 38(3):317–329, 2015.

[40] Andrew T Miller, Steffen Knoop, Henrik I Christensen,
and Peter K Allen. Automatic grasp planning using
shape primitives. In Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International Conference
on, volume 2, pages 1824–1829, 2003.

[41] François Osiurak, Christophe Jarry, and Didier Le Gall.
Grasping the affordances, understanding the reasoning: to-
ward a dialectical theory of human tool use. Psychological
review, 117(2):517, 2010.

[42] Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50k tries and 700
robot hours. In ICRA, pages 3406–3413, 2016.

[45] Reuven Y Rubinstein and Dirk P Kroese. The cross-

[43] Mario Prats, Pedro J Sanz, and Angel P Del Pobil. Task-
oriented grasping using hand preshapes and task frames.
In ICRA, pages 1794–1799. IEEE, 2007.

[44] Alberto Rodriguez, Matthew T Mason, and Steve Ferry.
From caging to grasping. The International Journal of
Robotics Research, 31(7):886–900, 2012.
entropy method: A unified approach to monte carlo sim-
ulation, randomized optimization and machine learning.
Information Science & Statistics, Springer Verlag, NY,
2004.

[46] Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng.
Robotic grasping of novel objects using vision. The
International Journal of Robotics Research, 27(2):157–
173, 2008.

[47] Dan Song, Kai Huebner, Ville Kyrki, and Danica Kragic.
Learning task constraints for robot grasping using graph-
ical models. In IROS, pages 1579–1585, 2010.

[48] Alexander Stoytchev. Behavior-grounded representation
of tool affordances. In ICRA, pages 3060–3065, 2005.

[49] Joshua Tobin, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization and generative models for robotic
grasping. CoRR, abs/1710.06425, 2017.

[50] Karthik Mahesh Varadarajan and Markus Vincze. Afrob:
The affordance network ontology for robots. In IROS,
pages 1343–1350, 2012.

[51] Ulrich Viereck, Andreas ten Pas, Kate Saenko, and Robert
Platt. Learning a visuomotor controller for real world
robotic grasping using easily simulated depth images.
arXiv preprint arXiv:1706.04652, 2017.

[52] Jonathan Weisz and Peter K Allen. Pose error robust
grasping from contact wrench space metrics. In ICRA,
pages 557–562, 2012.

[53] Wikibooks. Openscad user manual — wikibooks,
the free textbook project, 2018. URL
https://en.wikibooks.org/w/index.php?title=OpenSCAD_
User_Manual&oldid=3423143. [Online; accessed
26-May-2018].

[54] Matthew Murray Williamson. Robot arm control exploit-
ing natural dynamics. PhD thesis, Massachusetts Institute
of Technology, 1999.

[55] Yixin Zhu, Yibiao Zhao, and Song Chun Zhu. Under-
standing tools: Task-oriented object modeling, learning
and recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2855–
2864, 2015.

[56] Yuke Zhu, Alireza Fathi, and Li Fei-Fei. Reasoning about
object affordances in a knowledge base representation. In
ECCV, 2014.

https://en.wikibooks.org/w/index.php?title=OpenSCAD_User_Manual&oldid=3423143
https://en.wikibooks.org/w/index.php?title=OpenSCAD_User_Manual&oldid=3423143

	Introduction
	Related Work
	Problem Statement
	Task-Oriented Grasping for Tool Manipulation
	Learning Task-Oriented Grasp Prediction
	Learning the Manipulation Policy
	Neural Network Architecture
	Learning Objectives and Optimization

	Self-Supervision for Grasping and Manipulation
	Procedural Generation of Tool Objects
	Data Generation with Simulated Self-Supervision

	Experiments
	Task Design
	Experiment Setup
	Simulated Experiments
	Real-World Experiments
	Qualitative Analysis

	Conclusion

