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Abstract

Tool manipulation is vital for facilitating robots to complete challenging task goals. It requires reasoning about the

desired effect of the task and, thus, properly grasping and manipulating the tool to achieve the task. Most work in robotics

has focused on task-agnostic grasping, which optimizes for only grasp robustness without considering the subsequent

manipulation tasks. In this article, we propose the Task-Oriented Grasping Network (TOG-Net) to jointly optimize both

task-oriented grasping of a tool and the manipulation policy for that tool. The training process of the model is based on

large-scale simulated self-supervision with procedurally generated tool objects. We perform both simulated and real-

world experiments on two tool-based manipulation tasks: sweeping and hammering. Our model achieves overall 71.1%

task success rate for sweeping and 80.0% task success rate for hammering.
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1. Introduction

The ability of using tools for problem solving is a common

trait exhibited by intelligent animals. In robotics, the task

of tool manipulation is the employment of a manipulable

object, i.e., a tool, to fulfill a task. This invites a series of

research challenges in understanding the semantic, geo-

metric, and functional properties of objects. According to

Brown and Sammut (2012), there are four key aspects to

learning task-oriented tool usage: (a) understanding the

desired effect; (b) identifying properties of an object that

make it a suitable tool; (c) determining the correct orienta-

tion of the tool prior to usage; and (d) manipulating the

tool. Therefore, a task-oriented grasp is a grasp that makes

it possible to correctly orient the tool and then manipulate

it to complete the task.

Consider a hammer as shown in Figure 1. The best grasp

predicted by a task-agnostic grasp prediction model that

optimizes for the robustness of lifting up, such as Dex-Net

(Mahler et al., 2017), is likely to reside close to the center

of mass. However, the hammering task can be best achieved

by holding the hammer at the end of the handle, thus to

generate a high moment at the point of impact on the head.

And yet when the same object is used for sweeping trash

off the table, it should be instead grasped by the head to

spare the largest contact surface area with the target objects.

Therefore, in order to select the best task-oriented grasp for

a particular task, we need to take into account the synergy

between grasping robustness and suitability for the manipu-

lation objective.

The problem of understanding and using tools has been

studied in robotics, computer vision, and psychology

(Baber, 2003; Gibson, 1979; Osiurak et al., 2010; Zhu

et al., 2015). Studies in robotics have primarily focused on

reasoning about the geometric properties of tools (Dang

and Allen, 2012; Song et al., 2010), and typically required

prior knowledge of object shapes, predefined affordance

labels, or semantic constraints. These requirements limit

the usefulness of such techniques in realistic environments

with uncertainty of perception and actuation. Some pio-

neering works have also grounded the tool grasping prob-

lem in an interactive environment (Mar et al., 2015, 2017).
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Nonetheless, their approaches rely on hand-engineered fea-

tures and simplified action spaces, allowing limited gener-

alization to novel objects and new manipulation tasks.

In this work, we consider a tool manipulation task as a

two-stage procedure. First, the robot picks up a tool resting

on the tabletop. Second, it manipulates this grasped tool to

complete a task. We propose the Task-Oriented Grasping

Network (TOG-Net), a learning-based model for jointly

predicting task-oriented grasps and subsequent manipula-

tion actions based on the visual inputs. To accommodate

the need for large amounts of training data for deep learn-

ing, we embrace the self-supervised learning paradigm

(Levine et al., 2016; Mar et al., 2017; Pinto and Gupta,

2016), where training labels are collected through the robot

performing grasping and manipulation attempts in a trial-

and-error fashion. To scale up our self-supervised data col-

lection, we leverage a real-time physics simulator

(Coumans and Bai, 2016) that allows a simulated robot to

execute the tasks with diverse procedurally generated 3D

objects. We evaluate our method on a hammering task and

a sweeping task, and show that our model learns robust

policies that generalize well to novel objects both in simu-

lation and the real world. In the real-world experiments,

our model achieves 71.1% task success rate for the sweep-

ing task and 80.0% for the hammering task using 9 unseen

objects as tools.

Our primary contributions are three-fold.

1. We propose a learning-based model for jointly learn-

ing task-oriented grasping and tool manipulation that

directly optimizes for task success.

2. To train this model, we develop a mechanism for gen-

erating large-scale simulated self-supervision with a

large repository of procedurally generated 3D objects.

3. We demonstrate that our model can generalize to using

novel objects as tools in both simulation and the real

world.

In addition to providing an extended version of our con-

ference paper (Fang et al., 2018b), this journal article pro-

vides two additional experiments. In the first experiment,

we analyze how the model generalize across objects by

training and testing on different types of shapes. In the sec-

ond experiment, we apply the proposed method on the

image containing multiple objects and select the best tool

object for each task. Supplementary material is available at:

bit.ly/task-oriented-grasp.

2. Related work

2.1. Task-agnostic grasping

Robotic grasping is a long-standing challenge that involves

perception and control. Classical methods approach the

grasping problem from a purely geometric perspective.

They optimize grasp quality measures based on analytic

models of constraints deriving from geometry and physics,

such as force closure and form closure (Ferrari and Canny,

1992; Rodriguez et al., 2012; Weisz and Allen, 2012).

While grasp quality measures offer a principled mathemati-

cal framework for grasp evaluation, their practical usage is

limited by the large space of possible grasps. Several tech-

niques have been proposed to restrict the search space of

grasp candidates. This includes representing objects with

shape primitives (Miller et al., 2003), simplifying the

search of grasps in a subspace of reduced dimensionality

(Ciocarlie and Allen, 2009), and leveraging a dataset of

objects with known grasps to speed up grasp selection for

novel objects (Goldfeder et al., 2009; Mahler et al., 2016).

Another limitation of these approaches is that they

require the full 3D geometry of the object, which restricts

their usage in unstructured real-world environments. The

recent development of machine learning techniques, espe-

cially deep learning, has enabled a surge of research that

applies data-driven methods to robotic grasping (Bohg

et al., 2014; Kappler et al., 2015). These learning methods

largely fall into two families depending on the source of

supervision: (1) supervised learning approaches (Herzog

et al., 2012; Kroemer et al., 2012; Lenz et al., 2015; Mahler

et al., 2017; Morrison et al., 2018; Saxena et al., 2008; ten

Pas, et al., 2017), where the models are trained with a data-

set of objects with ground-truth grasp annotations or

demonstrations; and (2) self-supervision approaches

(Bousmalis et al., 2017; Fang et al., 2018a; Jang et al.,

2017; Levine et al., 2016; Pinto and Gupta, 2016), where

grasp labels are automatically generated by a robot’s trial

and error on large numbers of real-world or simulated grasp

attempts. In the latter category, several works have also

extended algorithms from reinforcement learning

(Kalashnikov et al., 2018) for utilizing the self-supervision

labels as rewards for learning a grasping policy.

To address the data-hungry nature of deep neural net-

works, several works (Mahler et al., 2017; Viereck et al.,

2017) trained their models in simulation where 3D models

of all objects are available and ground-truth grasps can be

Fig. 1. The same object can be grasped by a robot in different

ways. A task-agnostic grasp can lift up the hammer but it might

not be suitable for specific manipulation tasks, such as sweeping

or hammering. We aim to directly optimize the grasp selection

for task success, by jointly choosing a task-oriented grasp and

the subsequent manipulation actions.
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automatically annotated using analytic models of form and

force closure. Using a large set of 3D models with ground-

truth grasps derived from these analytic models, these

works generated large datasets of images with annotations

for either the sampled grasps on images and corresponding

grasp qualities (Mahler et al., 2017) or the distance to the

nearest good grasp (Viereck et al., 2017). In both cases, the

images are generated by placing one or more objects in a

simulated scene, rendering an image of the scene from a

virtual depth camera, and calculating labels for multiple

crops of the image representing different grasps or gripper

positions, respectively. Only learning with rendered depth

images as opposed to rendered RGB images enabled the

trained models to transfer to execution on a real robot with-

out further fine-tuning, because physical depth cameras

produce images that are largely similar to rendered depth

images. Other works have also leveraged simulation for

learning models that use RGB images as input, with either

no transfer to real robots (Bousmalis et al., 2018) or use

domain adaptation to speed up real-world learning (Yan

et al., 2018).

2.2. Task-oriented grasping

A major portion of research in grasping aims at holding the

object in the robot gripper so as to not drop it despite exter-

nal wrenches. In practice, however, the end goal of grasping

is often to manipulate an object to fulfill a goal-directed

task once it has been grasped. When the grasping problem

is contextualized in manipulation tasks, a grasp planner that

solely satisfies the stability constraints is no longer suffi-

cient to satisfy the task-specific requirements. In the classi-

cal grasping literature, researchers have developed task-

oriented grasp quality measures using a task wrench space

(Haschke et al., 2005; Li and Sastry, 1988; Prats et al.,

2007). Data-driven approaches have also been used to learn

task-related constraints for grasp planning (Dang and

Allen, 2012; Song et al., 2010). These studies incorporate

semantic constraints, which specify which object regions to

hold or avoid, based on a small dataset of grasp examples.

Recently, several works further proposed to train a vision-

based deep-learning model from a larger synthetic dataset

for estimating the semantic constraints more robustly

(Detry et al., 2017; Kokic et al., 2017). However, these

grasping methods usually do not entail the success of the

downstream manipulation tasks, and the hand-labeled

semantic constraints cannot generalize across a large vari-

ety of objects.

In contrast, our work jointly learns the task-aware grasp-

ing model and the manipulation policy given a grasp. Thus,

our grasping model is directly optimized to fulfill its down-

stream manipulation tasks. Furthermore, we employ deep

neural networks to train our task-aware grasping models on

a large repository of 3D objects, enabling it to generalize

from this repository of objects to unseen objects as well as

from simulation to the real world.

2.3. Affordance learning

Another line of related work centers around understanding

the affordances of objects (Do et al., 2017; Koppula et al.,

2013; Zhu et al., 2014, 2015). The notion of affordances

introduced by Gibson (1979) characterizes the functional

properties of objects and has been widely used in the

robotics community as a framework of reasoning about

objects (Katz et al., 2014; Varadarajan and Vincze, 2012).

Prior art has developed methods to learn different forms

of object affordance such as semantic labels (Zhu et al.,

2014), spatial maps (Jiang et al., 2012), and motion trajec-

tories (Zhu et al., 2015). Our work follows a progression of

previous work on behavior-grounded affordance learning

(Fitzpatrick et al., 2003; Jain and Inamura, 2011; Mar

et al., 2015, 2017; Stoytchev, 2005), where the robot learns

object affordance by observing the effects of actions per-

formed on the objects. Nonetheless, we do not explicitly

supervise our model to learn and represent goal-directed

object affordances. Instead, we demonstrate that our mod-

el’s understanding of object affordance naturally emerges

from training grasping and manipulation simultaneously.

Recent work by Mar et al. (2017) has the closest resem-

blance to our problem formulation; however, their action

space consists of a small set of discrete actions, whereas we

employ a multi-dimensional continuous action space. Their

method uses self-organizing maps with hand-designed tool

pose and affordance descriptors, whereas we eschew feature

engineering in favor of end-to-end deep learning.

3. Problem statement

Our goal is to control a robot arm to perform tool-based

manipulation tasks using novel objects. Each task is a two-

stage process. In the first stage, the robot grasps an object

as a tool for a task. In the second stage, the robot manipu-

lates the tool to interact with the environment and achieve

the task goal. The visual appearance of the tool is provided

for the robot to accomplish this.

3.1. Notation of grasping

The robot operates in a workspace based on camera obser-

vations, where O denotes the observation space. We con-

sider the grasping problem in the 3D space, where G
denotes the space of possible grasps. Given a pair of obser-

vation o 2 O and grasp g 2 G, let SG(o, g) 2 f0, 1g denote

a binary-valued grasp success metric, where SG = 1 indi-

cates that the grasp is successful according to the prede-

fined metric. In practice, the underlying sensing and motor

noise introduce uncertainty to the execution of a grasp. We

measure the robustness of a grasp QG(o, g) by the probabil-

ity of grasp success under uncertainty, where

QG(o, g)= Pr (SG = 1jo, g). This grasp metric SG is task-

agnostic, which evaluates the quality of a grasp without

grounding to a specific task. As we noted in the previous

section, data-driven grasping methods (Mahler et al., 2017;

Fang et al. 3



Viereck et al., 2017) have focused on optimizing task-

agnostic grasps.

3.2. Problem setup

By contrast, we contextualize the grasping problem in tool

manipulation tasks. In our setup, the grasping stage is fol-

lowed by a manipulation stage, where a policy p produces

actions to interact with the environment once the object is

grasped. Intuitively, both the choice of grasps and the

manipulation policy play an integral role in the success rate

of a task.

Let ST (o, g) 2 f0, 1g denote a binary-valued task-spe-

cific success metric, where ST = 1 indicates that the task T

was successfully done based on the goal specification.

Clearly the grasp success is the premise of the task success,

i.e., ST = 1 entails SG = 1. Given a manipulation policy p

for the task, we measure the task quality Qp
T of a task-

oriented grasp by the probability of task success under pol-

icy p, where Qp
T (o, g)= Pr (ST = 1jo, g). Thereafter, the

overall learning objective is to train both policies simulta-

neously such that

g�,p�= argmax
g,p

Qp
T (o, g) ð1Þ

We aim at selecting the optimal grasp g� that is most likely

to lead to the completion of the task, and at the same time

finding the best policy p� to perform the task conditioned

on a grasp. In practice, we implement both the grasping

policy and the manipulation policy using deep neural net-

works. We detail the design of the neural network models

and their training procedures in the next section.

3.3. Assumptions

We consider the problem of task-oriented grasp planning

with a parallel-jaw gripper based on point clouds from a

depth camera. The training of our model uses simulated

data generated from a real-time physics simulator

(Coumans and Bai, 2016). Our design decision is inspired

by the effective use of depth cameras in transferring the

grasping model and manipulation policy trained in simula-

tion to reality (Mahler et al., 2017; Viereck et al., 2017).

Further, to reduce the search space of grasping candidates,

we restrict the pose of the gripper to be perpendicular to the

table plane. In this case, each grasp g= (gx, gy, gz, gf) has

four degrees of freedom (DOFs), where (gx, gy, gz) 2 R
3

denotes the position of the gripper center, and gf 2 ½0, 2p)
denotes the rotation of the gripper in the table plane. Each

observation o 2 R
H ×W
+ is represented as a depth image from

a fixed overhead RGB-D camera with known intrinsics.

4. Task-oriented grasping for tool

manipulation

As shown in Figure 2, our TOG-Net consists of a task-

oriented grasping model and a manipulation policy. The

two modules are jointly trained to achieve task success

together. The grasping model decouples the task success

prediction using the chain rule to improve the data effi-

ciency. In this section, we first present the design and

implementation of the two modules, and then describe how

they are jointly trained using simulated self-supervision.

The TOG-Net prediction is described in Algorithm 1.

Given the input depth image o, we first sample 200 antipo-

dal grasp candidates as G based on the gradients (Mahler

et al., 2017). We run the cross-entropy method (CEM)

(Rubinstein and Kroese, 2004) for K = 3 iterations as in

Mahler et al. (2017), in order to rank the grasp candidates

and select the one that corresponds to the highest task qual-

ity. In each iteration, we first predict the task quality

Q̂p
T (o, g) for each candidate grasp g. If it is not the last

iteration, we sort the grasps in the descending order of the

computed Q̂p
T (o, g) and keep the top l = 0:25 grasps. Then

we fit a Gaussian mixture model (GMM) on these grasps

and sample N = 50 grasps from the resultant GMM. In the

last iteration, we just the choose the grasp with the highest

predicted task quality and we compute the action for the

chosen grasp using the stochastic policy p(ajo, g).

4.1. Task-oriented grasp prediction

High-quality task-oriented grasps should simultaneously

satisfy two types of constraints. First, the tool must be stably

held in the robot gripper, which is the goal of task-agnostic

grasping. Second, the grasp must satisfy a set of physical

and semantic constraints that are specific to each task.

For a given observation o 2 O, a small subset of grasps

Ga � G can robustly lift up the object with a grasp

quality higher than a, i.e., QG(o, g)ø a. Hence, the task

agnostic grasp prediction problem involves finding the cor-

responding grasp g that maximizes the grasp quality

Algorithm 1. TOG-Net Prediction.

Require: o: depth image
Require: T : task ID
Require: K: number of CEM iterations
Require: N : number of sampled grasps in each iteration
Require: l: proportion of grasps used in the refitting
1: Sample a set of antipodal grasps G from o
2: for k  1, . . . ,K do
3: for each g 2 G do
4: Compute Q̂p

T (o, g) Q̂p
T jG(o, g) � Q̂G(o, g)

5: end for
6: Sort G in the descending order of Qp

T (o, g)
7: if k\K then
8: Keep the top ljGj grasps in G
9: Fit the GMM on G
10: Sample N grasps from the GMM as G
11: end if
12: end for
13: Take the first element in G as g
14: Sample action a;p(ajo, g)
15: return g, a
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QG(o, g)= Pr (SG = 1jo, g). This prediction problem can

be solved with a variety of methods, and we build upon the

approach of Mahler et al. (2017) that uses quality function

approximation with algorithmic supervision via analytic

models.

As noted in the problem statement, the overall objective

is maximizing the probability of task success Qp
T (o, g)

under a policy p, grasp g 2 G. However, directly solving

this problem results in a discrete space search over a large

space of grasps, and then a subsequent optimization prob-

lem to solve for a manipulation policy given each grasp.

Furthermore, we note that tool manipulation task

execution only succeeds if the grasp has succeeded.

However, not all grasps g 2 Ga result in a successful task.

Specifically, we can define a conditional robustness metric

Qp
T jG that measures the probability of task success (under

policy p) conditioned on a successful grasp, where

Qp
T jG(o, g)= Prp (ST = 1jSG = 1, o, g). Then, task-oriented

grasps form a subset of task-agnostic grasps: Ga, d � Ga,

i.e., the grasps which lead to task success with a task qual-

ity conditioned on the grasp Qp
T jG(o, g)ø d where d is a

chosen threshold.

This formulation lets us effectively decouple the two

problems as: (1) finding robust task-agnostic grasps;

and (2) finding the best task-oriented grasp among these

robust grasps. The key observation is that the task qual-

ity metric Qp
T (o, g) can be factorized into two indepen-

dently computed terms: QT jG(o, g) and QG(o, g).
Formally, the task robustness QT (o, g) can be decom-

posed as follows:

Qp
T (o, g)=Prp(ST = 1jo, g)

=Prp(ST = 1, SG = 1jo, g)
=Prp(ST = 1jSG = 1, o, g) � Pr (SG = 1jo, g)
= Qp

T jG(o, g) � QG(o, g)

Our model learns to approximate the values of grasp

quality QG(o, g) and task quality conditioned on a grasp

Qp
T jG(o, g) using deep neural networks given an object o

and a grasp g as inputs. We denote the predicted values as

Q̂G(o, g; u1) and Q̂p
T jG(o, g; u2), where u1 and u2 represent

the neural network parameters.

4.2. Manipulation policy

To complete the task with different tools and different

grasps, the manipulation policy should be conditioned on o

and g. The manipulation policy can be either an external

motion planner or a learned policy. While our pipeline is

not limited to a specific action space, we choose to control

the robot in an open-loop manner using parameterized

motion primitives. Each task has a single predefined type

of motion primitive as a parameterized trajectory parallel to

the planar table surface. After the motion primitive is cho-

sen based on the task environment, the manipulation policy

predicts the continuous manipulation action

a= (ax, ay, az, af) 2 R
3 as the parameters of the motion

primitive, where (ax, ay, az) and af are the translation and

rotation of the motion primitive. We use a Gaussian policy

p(ajo, g; u3)=N (f (o, g; u3),S), where f (o, g; u3) is a

Fig. 2. Model overview. Our model consists of a task-oriented grasping model and a manipulation policy. Given the visual inputs of

the object, we sample multiple grasp candidates. The task-oriented grasping model computes a grasp quality score for each candidate

based on the planned task, and chooses the grasp with the highest score. Given the observation of the scene, the manipulation policy

outputs actions conditioned on the selected grasp. The two modules are trained jointly using simulated self-supervision.
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neural network for predicting the mean with parameters u3

and the covariance matrix S is a constant diagonal matrix.

4.3. Neural network architecture

In Figure 3, we propose a three-stream neural network

architecture for jointly predicting Q̂G and Q̂p
T jG and a.

Following the practice of Mahler et al. (2017), we convert

o and g into gripper depth z and image crops as inputs to

the neural network. The gripper depth is defined as the dis-

tance from the center of the two fingertips to the object sur-

face. The image crops are centered at the grasp center

(gx, gy, gz) and aligned with the grasp axis orientation f.

Mahler et al. (2017) used image crops of size 32× 32 to

focus on the contact between the gripper and the tool. To

achieve the task success, our model is supposed to reason

about the interactions between the tool and the task envi-

ronment which requires a holistic understanding of the

shape of the tool. Thus, our model predicts Q̂p
T jG and a

using larger image crops of size 64× 64 which covers most

of training and testing objects. Meanwhile the center crop

of 32× 32 is used to predict Q̂G. Our neural network is

composed of three streams that share parameters in their

low-level convolutional layers, extracting identical image

features, denoted by dotted lines. Building atop the grasp

quality convolutional neural network (GQCNN) of Mahler

et al. (2017), we use residual network layers (He et al.,

2016) to facilitate the learning process. On top of the con-

volutional layers with shared weights, we apply bottleneck

layers of 1× 1 convolutional filters for each stream to

reduce the size of the network.

4.4. Learning objectives and optimization

We jointly train the task-oriented grasping model and the

manipulation policy with simulated robot experiments of

grasping and manipulation. Each simulated episode in our

training dataset contains sampled grasp g, action a, the

grasp success label SG, and the task success label ST . We

use cross-entropy loss L for training the grasp prediction

functions Q̂G and Q̂p
T jG. For training the policy p, we

use the policy gradient algorithm with gradients

r logp(ajo, g; u3). We use the task success label as the

reward of the manipulation policy. As we are using a

Gaussian policy as described above, this is equivalent to

minimizing 1
2
k f (o, g; u3)� a k2

S
�SG with respect to u3.

Let the parameters of the neural network to be denoted as

u = fu1, u2, u3g, we jointly train our model by solving the

following optimization problem:

u�= argmin
u

PN

i = 1

L(SG, Q̂G(o, g; u1))

+ 1½SG = 1� � L(ST , Q̂
p
T jG(o, g; u2))

+ 1½ST = 1� � 1
2
jjf (o, g; u3)� ajj2S

ð2Þ

where 1(�) is the indicator function.

5. Self-supervision for grasping and

manipulation

5.1. Procedural generation of tool objects

We train our model in simulation with a large repository of

3D models so as to generalize to unseen objects. However,

existing 3D model datasets do not contain enough objects

suitable for tool manipulation while exhibiting rich varia-

tions in terms of their geometric and physical properties.

As shown in Figure 4, we leverage a common strategy of

procedural generation (Bousmalis et al., 2017; Tobin

et al., 2017) to produce a large set of diverse and realistic

objects that can be used as tools for tasks we are inter-

ested in.

Fig. 3. TOG-Net. The inputs to the network are two depth image crops and the sampled gripper depth z. The network predicts task-

agnostic grasp quality, conditioned task-oriented grasp quality, and manipulation actions. The convolutional neural network (CNN)

modules share parameters as denoted by the dashed lines. Residual network layers and batch normalization are used in the CNN modules.
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While the generation process can be arbitrarily complex,

we choose to generate objects composed of two convex

parts. The two parts are connected by a fixed joint. We

define three types of composed shapes: T-shapes, L-shapes,

and X-shapes. For each object, two convex meshes are first

sampled. Then the meshes are randomly scaled along the

x-, y-, and z-axes. Depending on the type of object shape,

the parts are shifted and rotated with respect to each other.

We randomly sample physical dynamic properties such as

density and friction coefficients.

We use two sets of meshes to generate two different set

of objects: primitive and complex. We generate primitive

meshes that are composed by a set of parameterized shape

primitives including cuboids, cylinders, and polytopes. The

dimensions and textures are randomly chosen from prede-

fined ranges. The primitive meshes are generated by

OpenSCAD. We also obtain convex object parts from a

variety of realistic 3D object models as the complex

meshes. This done by running convex decomposition

(Mamou and Ghorbel, 2009) on each object from the data-

set used by Kappler et al. (2015).

5.2. Data generation with simulated self-

supervision

In order to collect large-scale datasets for training and eval-

uating our model, we develop a self-supervision framework

to automatically generate training data. We leverage an

open-source real-time physics simulator, PyBullet

(Coumans and Bai, 2016), which allows a simulated robot

to perform trial and error in millions of trials. We record

grasp and task success labels in each trial and use them to

train our models described previously. For training each

task we collect the data in three rounds. After each round,

we train the grasping model and the manipulation policy

using the collected data to obtain an updated model. In

each round we run the simulation for 500,000 trials.

In the first round, we perform a random policy using a

GQCNN model trained on the Dex-Net 2.0 Dataset

(Mahler et al., 2017). The original GQCNN model uses a

CEM (Rubinstein and Kroese, 2004) to sample robust

grasps corresponding to the highest task-agnostic grasp

quality scores. However, the trained GQCNN usually leads

to a collapsed mode of grasps that is most robust according

to the ranking of the predicted scores. Ideally we want to

collect data of diverse sampled grasps and evaluate how

well they can be used in each task. An alternative is to uni-

formly sample grasps with grasp quality scores higher than

a threshold. In practice, we found such sampling usually

clusters on the long edge of a tool object because there are

more antipodal grasps possible there. To encourage diverse

exploration, we instead use non-maximum suppression

(NMS) (Hartley and Zisserman, 2003), which is widely

used in object detection algorithms. The NMS algorithm

goes through the ranked antipodal grasps, and removes

grasps which have short Euclidean distances with previous

grasps with higher grasp quality scores. This guarantees all

remaining grasps are separate from each other and usually

produces 10–30 distinct modes. With these sampled grasps,

the random policy uniformly samples manipulation actions

from the action space for each task.

In the following rounds, we use the e-greedy strategy

with the updated grasping model. The grasping model uses

the CEM with probability 1� e1, and uses the NMS

method with GQCNN predictions as described above with

e1 probability. The manipulation policy predicts and manip-

ulation action parameters with probability 1� e2, and use

random actions with probability e2. We set 0.2 for both e1

and e2.

6. Experiments

The goal of our experimental evaluation is to answer the

following questions. (1) Does our method improve task per-

formance compared with baseline methods? (2) Does the

joint training qualitatively change the mode of grasping?

(3) Can the model train with simulated self-supervision

work in the real world?

We evaluate our method on two tabletop manipulation

tasks: sweeping and hammering. We define our hammering

task as a motion primitive that achieves fitting a peg in a

hole with tight tolerance, which is prevalent in assembly

tasks (Komizunai et al., 2008; Williamson, 1999).

Sweeping, on the other hand, is a primitive in autonomous

manipulation, such as in part positioning and reorientation

Fig. 4. Example of objects in simulation. The first two rows show the procedurally generated objects based on shape primitives as

well as complex meshes. These objects are generated using three predefined composing rules to result in T-shapes, L-shapes, and X-

shapes. The last row shows the realistic shapes from existing 3D model datasets.
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(Lynch and Mason, 1996), grasping in clutter (Dogar and

Srinivasa, 2011), and object manipulation without lifting

(Mericxli et al., 2015). Sweeping with tools has been studied

in the context of singulation and part retrieval (Eitel et al.,

2017; Laskey et al., 2017). Each of these tasks requires

grasping objects in specific modes which can often be dif-

ferent from the best stable grasp available, thereby resulting

in competing objectives.

We evaluate our model in both simulation and the real

world. The basic setup of both tasks includes a 7-DOF

Rethink Robotics Sawyer Arm with a parallel jaw gripper,

a 4800× 3000 table surface, and an overhead Kinect2 camera.

In simulation, the robot and camera are placed according to

the real-world camera calibration results, in order to obtain

consistent performance. For both experiments, we use mod-

els solely trained using simulated data.

6.1. Task design

The real-world and simulated environments are shown in

Figures 5 and 6. Each environment consists of a robot arm,

a table surface, and an overhead camera sensor. The robot

Fig. 5. Real-world environments. Sweeping and hammering are performed by a Sawyer robot arm in the real world. For sweeping, the

robot grasps the tool object and use it to sweep the target objects (soda cans) off the table. For hammering, the robot hammers the peg

into a slot using the tool object. A Kinect2 camera is mounted above the table to provide depth images as the input.

Fig. 6. Simulated environments. Simulated experiments are performed using a PyBullet physical simulation engine (Coumans and

Bai, 2016). The simulation uses the CAD model of the Sawyer robot along with control application programming interfaces (APIs)

that mimic the real-world setup. 3D shapes of the target soda cans, the peg, and the slot are loaded to the simulated scene. Realistic

and procedurally generated objects are used as the tool objects.
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in our environments is a 7-DOF Sawyer arm with an elec-

tric parallel gripper. Position control of the gripper is exe-

cuted via the Intera 5 software platform. The simulated

environments are performed using PyBullet physical simu-

lation engine (Coumans and Bai, 2016). 3D models of the

robot and the scene are loaded to the simulator with realis-

tic physical parameters. In simulation, we implemented a

control interface that mimics the Intera 5 control interface

in the real world. As the robot uses open-loop position con-

trol in our task design, we do not need to simulate the con-

trol latency.

The table surface is a 1:22 m× 0:7 m rectangle, split

into two halves: a grasping region and a manipulation

region. Before each episode starts, an object is sampled

and randomly dropped onto the grasping region to be used

as the tool. A depth image is taken from the overhead

Kinect2 camera as the input of the model. The model then

predicts the 4-DOF grasp and the parameters of the motion

primitive. The robot grasps the object from the grasping

region and performs the task in the manipulation region. In

our task design, the motion primitive is a predefined single

step action. Our model predicts the starting gripper pose

relative to a reference point predefined for each task.

6.1.1. Sweeping. Target objects are randomly placed in the

manipulation region as the target objects. In the real world

we use two soda cans as the target objects, and in simulation

we randomly place one or two 3D models of cans. The task

goal is to sweep all target objects off the table using the tool.

The motion primitive of sweeping is a straight line trajectory

of the gripper parallel to the table surface. The gripper tra-

jectory starts from the pose (ax, ay, az, af) and moves 40 cm

along the y-axis of the world frame. Here (ax, ay, az, af) is

predicted relative to the mean position of the target objects.

The task success is achieved when all target objects contact

the ground. For robust sweeping, the tool ideally need to

have a large flat surface in contact with the target object.

6.1.2 Hammering. A peg and a slot are randomly placed in

the manipulation region, where the peg is horizontally half-

way inserted into the slot. The task goal is to use the tool to

hammer the peg fully into the slot. The motion primitive of

hammering is a rotation of the gripper along the z-axis. The

trajectory starts with the gripper pose (ax, ay, az, af) and

ends after the last arm joint rotates by 908 counterclockwise

at full speed. Here (ax, ay, az, af) is predicted relative to the

position of the peg. The task success is achieved when the

whole peg is inside the slot. This task requires a sufficient

contact force between the tool and the peg to overcome the

resistance. Meanwhile, the tool should avoid collisions with

the peg before the hammering.

6.2. Experiment setup

Training used 18,000 procedurally generated objects

including 9,000 PG-Primitive objects and 9,000 PG-

Complex objects. In addition to randomizing physical

properties, we randomly sample the camera pose and

intrinsics by adding disturbances to the values obtained

from the real-world setup.

During testing, we used 3,000 instances of each type of

procedurally generated object. We also test on 55 realistic

objects selected from Dex-Net 1.0 (Mahler et al., 2016)

and the MPI Grasping Dataset (Bohg et al., 2014). These

objects contain both tool-like and non-tool-like objects as

shown in Figure 4. None of these test objects are seen dur-

ing training.

We compare our method with four baselines.

1. Antipodal + Random: Use a sampled antipodal grasp

with a random action uniformly sampled with x, y, z
positions in ½�5, 5� in terms of centimeters and u in

½� p
20
, p

20
�.

2. Task_Agn + Random: A task-agnostic grasp from Dex-

Net 2.0 (Mahler et al., 2017) with a random action.

3. Task_Agn + Trained: Same as above but with a manip-

ulation policy trained with our method. This is akin to

the current best solution.

4. Task_Ori + Random: An ablative version of our model

with task-oriented grasps executed with a randomized

action.

6.3 Simulated experiments

We evaluate our method on both tasks using the simulated

setup described previously. For each algorithmic method,

we run 100,000 episodes in simulation and report the task

success rate. The task success analysis for each of the base-

lines and our method is presented in Figure 7.

Our model outperforms the four baselines in both tasks

for all object categories. The contrast is more significant for

hammering than sweeping. This is because hammering

requires well-trained manipulation policy to direct the tool

to hit the peg. A small deviance from the optimal hammer-

ing trajectory can let the tool miss the peg or collide with

the slot. Meanwhile, for the sweeping task, when the robot

uses a long edge of the tool to sweep, there is a high toler-

ance of manipulation action errors. Even random actions

can often succeed. Among the three object categories, PG-

Primitive is usually the easiest to manipulate with. Complex

meshes cause more grasping failures and are harder for

their geometric properties to reason about. Realistic objects

are not usually good for sweeping because they are more

roundish and very few have long edges. The hammering

performances with realistic objects are much better, because

many of these objects are cylinder objects with a bulky

head and even actual hammers.

6.4. Real-world experiments

For our real-world experiments, we used nine unseen

objects consisting of three categories as shown in Figure 8.

T-shape and L-shape objects have similar geometric
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properties with our procedurally generated objects during

training, whereas the miscellaneous objects have structures

and curvatures totally unseen during training.

In the real world, we compared our model with two base-

line methods: antipodal grasping with trained manipulation

policy (antipodal + trained) and task-agnostic grasping

with trained manipulation policy (task-agnostic + trained).

We performed each task with each object for 5 robot trials

for a total of 270 trials. The per-category and overall task

success rates are listed in Table 1. For all object categories,

our model achieved better performance compared with the

baselines.

For sweeping, our model can successfully grasp the

head of T-shapes or the short edge of L-shapes, and sweep

with the longer part. For more complex miscellaneous

objects, it is less obvious for the model to figure out which

part should be grasped. However, for most trials, the grasp

predicted by our model is intuitive to humans and leads to

successful sweeping. For T-shapes, the difference between

task-agnostic and task-oriented grasping is larger because

the object usually only has one long handle. In contrast, for

some L-shapes, the two edges are both long enough for the

task, so grasping either edge does not make a significant

difference. For miscellaneous objects, the model can have

problems reasoning about novel object parts. For instance,

it sometimes chooses to grasp the handle of the pan and

sweep with the round part, which is unstable for sweeping

roundish target objects.

For hammering, our model performs equally well for T-

shapes and L-shapes. The failures are usually caused by

occasional deviations during the execution of grasping or

manipulation. As a comparison, baseline models often

choose to grasp the head and hammer with the handle,

which is sub-optimal. Compared with T-shapes and L-

shapes, there might not be an obvious way to use

Fig. 7. Performance of simulated experiments. We perform an evaluation of our model for sweeping and hammering in simulation.

We compare performance separately on three object categories as shown in Figure 4: procedurally generated objects with primitive

meshes (PG-Primitive), procedurally generated objects with complex meshes (PG-Complex), and 3D objects from existing datasets

(Realistic). Our model outperforms all baselines using the three object categories in both tasks.

Fig. 8. Real-world test objects. We used nine unseen objects for

our real-world experiments. These objects are grouped into three

categories: T-shapes, L-shapes, and miscellaneous objects.

Table 1. Performance of real-world experiments. We compared

our model with other grasping methods in terms of task success

rates. We used nine real-world objects grouped into three

categories. We performed five trials with each object for each

method, for a total of 270 robot trials. The per-task and overall

task success rates are reported in each cell.

Real-world
sweeping

Grasping model

Antipodal
+ trained

Task-agnostic
+ trained

Our model

T-shapes 13.3 20.0 73.3
L-shapes 23.7 46.7 80.0
Miscellaneous 33.3 13.3 60.0
Overall 24.4 23.6 71.1

Real-world
hammering

Grasping model

Antipodal
+ trained

Task-agnostic
+ trained

Our model

T-shapes 46.7 60.0 86.7
L-shapes 13.3 33.3 86.7
Miscellaneous 40.0 53.3 66.7
Overall 33.3 44.4 80.0
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miscellaneous objects as hammers. Among miscellaneous

objects, the pan can be used as a hammer very well. The

model tends to grasp the handle and hammer with the

bulky roundish part.

6.5 Qualitative analysis of grasps

In Figure 9, we demonstrate that the same object can be

grasped for different tasks by our trained model. Here we

show the modes of task-agnostic grasping and task-oriented

grasping for four example objects, two in simulation and

two in the real world.

For the sweeping task, it is challenging to sweep all tar-

get objects off the table in one shot. It requires the tool to

have a flat contact surface to facilitate the manipulation of

roundish objects and to sweep across a large enough area

to catch both of them. Our model learns to grasp the end of

the tool object and spare as much surface area as possible

for sweeping. This enables the robot to robustly sweep the

cans most of the time.

For the hammering task, the main concerns are over-

coming the resistance of the peg while avoiding collisions

during hammering. We expect the robot to grasp the far

end of the handle and hit the peg with the bulky part as the

hammer head. Ideally, this could generate the largest torque

on the hammer head when hitting the peg. In practice, we

found the trained model tends to grasp a little closer to the

hammer head on the handle. This is because we use a

parallel jaw gripper and it is hard to balance the tool when

the fingers are far away from the center of mass.

For robust task-agnostic grasping, the GQCNN model

usually chooses the thin part near the center of mass.

Although this sometimes still overlaps with the set of task-

oriented grasps, it is not guaranteed if the selected grasp

from the task-agnostic GQCNN is suitable for the task. In

Figure 9, we show example task-agnostic grasps that are

different from the task-oriented grasps mentioned

previously.

6.6 Analysis of generalization across objects

We performed experiments analyzing the generalizability of

our model across different shapes as shown in Figure 10.

We trained and tested models as described in the previous

sections, except that the training objects and the testing

objects only contain one type of shape in each experiment.

More specifically, for each task, we trained three models

for T-shapes, L-shapes, and X-shapes, respectively. Then

each trained model is tested on each type of shape. Looking

at the diagonal of each matrix, we concluded that L-shapes

and T-shapes prove to be most useful for sweeping and

hammering, respectively. Comparing elements on the diag-

onal with other elements, we found the model usually

achieves the best performance when it is tested on the same

type of shape as it was trained. When testing the model

trained with X-shapes on X-shapes for hammering, the per-

formance is slightly worse than models trained with T-

shapes and L-shapes. This is because X-shapes are usually

not very good for use as hammers, thus the model can get

stuck in local optima during the learning process. When

testing on different types of shapes, the task success rates

decrease but are still reasonably good.

6.7 Tool selection

The TOG-Net trained for grasping a single object can also

be used for tool selection. Given multiple objects placed on

the table, we take the depth image that includes all candi-

date objects. We sample antipodal grasps over the depth

image as candidate grasps and we forward the trained

TOG-Net using the corresponding image crops as inputs to

predict the grasps. As long as each image crop only con-

tains the information of a single object, the predicted task

quality scores will not be affected by other objects on the

table. As in the original setup, we choose the grasp with

the highest score and the corresponding object to be used

as the tool.

We show heatmaps of the predicted grasps in Figure 11

to visualize the model’s preference over multiple objects

for each task. We placed seven objects in random poses on

the table, including four realistic shapes and three procedu-

rally generated objects. Given the depth image of the table,

we sampled 2,000 antipodal grasps on all objects and pre-

dicted the quality scores. We visualized the grasp-quality

scores for task-agnostic grasping and task-quality scores

Fig. 9. Qualitative analysis of grasps. Column 1 shows RGB

images of the tool objects. Column 2 shows example task-

agnostic grasps. Columns 3 and 4 show task-oriented grasps

chosen by our model for the sweeping and hammering tasks. Our

model favors wide flat surfaces for sweeping and long moment

arms for hammering.

Fang et al. 11



Fig. 10. Generalization across shapes. We trained models on T-shapes, L-shapes, and X-shapes, respectively, as described in Figure 6.

We evaluated the performance of each trained model on each type of shape. The resultant task success rates are reported in the two

confusion matrices.

Fig. 11. Tool selection. With multiple objects resting on the table surface, our model can be used to select the optimal grasp on the suitable tools.

We compared the task-oriented grasps for the two tasks and the task-agnostic grasps. The heatmap of the predicted task qualities are overlaid on

the camera image. The red border indicates the object where the grasp with the highest predicted task quality is from.
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for hammering and sweeping. To visualize the metrics in a

comparable scale, we normalized the quality scores by the

maximum predicted value of each task. We smoothed the

heatmap using a Gaussian kernel with kernel size of 11

pixels. We overlayed the predicted heatmap on the RGB

image crop of each object and we use a red border to indi-

cate the best tool object chosen by the trained model.

The heatmaps highlight different objects and different

regions for each task. For task-agnostic grasping, the high-

est grasp quality scores were on objects 1, 2, 3, 4, and 5.

These objects have cylinder handles of suitable radius for

the gripper to grasp, which makes them safe choices for

task-agnostic grasping.

For hammering, the highest task quality was on object 1,

which is a hammer with a long handle. The grasping region

that is suitable for hammering is on the middle of the han-

dle. Other objects including 2, 3, 4, and 7 were also chosen

for hammering. Three of these objects are T-shapes or X-

shapes that look like an ordinary hammer. Although object

7 (screwdriver) does not have a obvious hammer head, the

model predicts that the robot can grasp the middle of the

screwdriver and use the bulky handle as the hammer head.

For sweeping, the highest task quality score is predicted

on object 4, which is a procedurally generated X-shaped

object. The robot can grasp one of the two cylinder parts

and uses the other to sweep the target objects. By inspecting

objects 1, 2, 3, and 4, we note that the heatmaps highlight

more on the short handle than hammering. In particular, for

object 2, the head is too short to sweep both soda cans, so

the robot tends to only grasp the head and use the long han-

dle to contact with target objects. Object 7 has barely any

predicted grasps for sweeping because either end is too thin

for sweeping.

7. Discussion

Our method was proposed to solve tool-based manipulation

as a two-stage problem composed of a task-oriented grasp-

ing stage and a manipulation stage. Under this problem for-

mulation, we made several assumptions as described in

previous sections. Clearly, there are more general and com-

plex setups for each stage, which can lead to interesting

technical challenges.

Following the practice of previous learning-based grasp-

ing works, our experiment setup chooses an action space

using 4-DOF position control. To complete more challen-

ging task goals, we would like the gripper to move and

rotate freely in the 3D space. The action space would be

much larger for such 6-DOF grasping and manipulation.

However, the current sampling-based grasp prediction suf-

fers from limited scalability. In the 6-DOF action space, the

number of samples required by the CEM would increase

exponentially. Instead of using sampling-based approaches,

one can borrow ideas from object detection networks for

2D and 3D visual data. For example, one can use fully con-

nected networks to predict all possible grasps directly from

the whole image. Instead of sampling antipodal grasps

using a hard-coded approach, one can design and train a

neural network to efficiently predict the efficiently grasp

proposals.

The motion primitives constrain how the manipulation

tasks can be performed. It would be interesting to replace

the motion primitives with manipulation policy using low-

level control. Training a policy to perform high-frequency

torque control of the robot arm would make the model

more general and improve the task success rates. First, the

motion primitives written by human might not be optimal.

Directly optimizing a low-level control policy would likely

to outperform the hard-coded motion primitives. Second,

the mechanism of the robot arm is different from human

bodies, so the robot does not need to complete the task in

the same way as a human would. With more freedom in the

manipulation policy, the robot might be able to learn inter-

esting behaviors that are beyond human’s expectation.

Moving beyond the single-step motion primitives, the pol-

icy would need to be learned in a reinforcement learning

setup or be learned from human experts’ demonstrations.

Such policies would be more complicated, so the data effi-

ciency of the learning algorithm would be a major

challenge.

One of the critical problems is to design feature repre-

sentations that can be better generalized to unseen objects.

In our experiments, we observed that models trained on

one type of shape usually had inferior performance on dif-

ferent types of shapes. To generalize to unseen objects, we

would need the training objects to contain objects of vari-

ous shapes, sizes, and physical attributes in order to cover

the distribution of testing objects. However, achieving a

good coverage of real-world objects would be challenging

and expensive. There could several directions to improve

the ability of generalization from the representation per-

spective. One promising direction is to design a structured

representation of object affordances in a way that it can be

shared across different objects. For instance, knives and

scissors have very different appearances but they both have

sharp edges for cutting. In our current model design, it

would be difficult to train on knives and test on scissors.

With structured representations of object affordances, the

knowledge learned for knives might be transferred to scis-

sors more easily. Another direction is to resort to the meta-

learning paradigm and learn feature presentations that can

quickly adapt to unseen objects after training on a few trials

on these objects.

8. Conclusion

We have developed a learning-based approach for task-

oriented grasping for tool-based manipulation trained using

simulated self-supervision. It jointly optimizes a task-

oriented grasping model and its accompanying manipula-

tion policy to maximize the task success rate. We have

leveraged a physics simulator that allows a robot to
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autonomously perform millions of grasping and manipula-

tion trials. The trial and error of the robot provides training

data to supervise the deep neural network models. Our

experimental results demonstrate that the task-oriented

grasps selected by our model are more suitable for down-

stream manipulation tasks than the task-agnostic grasps.

In the future, our goal is to further improve the effective-

ness and robustness of our model by training on a large

dataset of realistic 3D models. In addition, we plan to scale

up our model to complex manipulation tasks with end-to-

end trained closed-loop manipulation policies.
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