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Announcements

• Please fill out the course survey
• Feedback to both instructor and TAs

• Positive and negative points are useful

• Post on Ed your completion screenshot (in a private post) as a form of 

participation!

• Capture the Flag contest results!



CTF Contest

23 teams participated, 15 qualified for tournament

Rankings
     1st place: Beto An, Kevin Zhao (controllers)

     2nd place: Angela Zhang, Tanuj Tekkale (lords of smiggles)

     3rd place: Rishi Astra (temp_yeet2)

Congratulations!
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Overview of Machine Learning
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Maximize Your
Expected Utility



How Do AI Systems Maximize Utility? 

Constraint satisfaction: searching intelligently for legal solutions

Example: Sudoku

Utility: Does the solution satisfy 

the rules / constraints?

Assumptions: We can write 

down the rules / constraints 

of the problem



How Do AI Systems Maximize Utility? 

Planning: reasoning with models

? ?
?? Example: Robot navigation

Utility: Path length, collisions, 

surfaces, energy, social factors

Assumptions: We have a 

model of the world and the 

effects of the agent’s actions



How Do AI Systems Maximize Utility? 

Example: Image classification

Utility: Classification accuracy on 

images not seen during training

Assumptions: We have 

access to a (usually large) 

labeled data set

Supervised Learning: learning from labeled examples



How Do AI Systems Maximize Utility? 

Example: Clustering species

Utility: “Best” explanation of data

Assumptions: Data points 

that should be clustered 

together are “close” together

Unsupervised Learning: discovering patterns in unlabeled 
data



How Do AI Systems Maximize Utility? 

Example: Robot walking

Utility: Time until fall, speed, 

energy efficiency

Assumptions: We can 

“reward” and “punish” good 

and bad performance, but don’t 

know what the correct action 

at each step should be

Reinforcement Learning: learning from experience



Properties of task environment

▪ Single-agent vs. multi-agent

▪ Deterministic vs. stochastic

▪ Fully observable vs. partially observable

▪ Episodic vs. sequential

▪ Static vs. dynamic

▪ Discrete vs. continuous

▪ Known vs. unknown



Single agent vs. multi-agent

▪ Not multi-agent if other agents can be considered 

part of the environment

▪ Only considered to be multi-agent if the agents 

are maximizing a performance metric that 

depends on other agents’ behavior

▪ Single agent example: Pacman with randomly 

moving ghosts

▪ Multi-agent example: Pacman with ghosts that 

use a planner to follow him
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Deterministic vs. stochastic

▪ Deterministic: next state of environment is 

completely determined by the current state and 

the action executed by the agent

▪ Stochastic: actions have probabilistic outcomes

▪ Strongly related to partial observability — most 

apparent stochasticity results from partial 

observation of a deterministic system

▪ Example: Coin flip
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Fully observable vs. partially observable

▪ Fully observable: agent’s sensors give it access 

to complete state of the environment at all times

▪ Can be partially observable due to noisy and 

inaccurate sensors, or because parts of the 

state are simply missing from the sensor data

▪ Example: Perfect GPS vs noisy pose estimation

▪ Example: IKEA assembly while blindfolded

Almost everything in the real world is partially observable



Observability
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Known vs. unknown

▪ Agent’s state of knowledge about the “rules of the game” / 

“laws of physics”

▪ Known environment: the outcomes for all actions are given

▪ Unknown: agent has to learn how it works to make good 

decisions

▪ Possible to be partially observable but known (solitaire)

▪ Possible to be fully observable but unknown (video game)



Model of the World
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research.nvidia.com/labs/gear



Building Robotic Foundation Models

One “AI Brain” for All (Humanoid) Robots



Recipe for Building Large Language Models
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❖ Versatility: General-purpose robot autonomy needs a 

versatile body.

❖ Costs: Hardware becomes cheaper and more robust 

to democratize transformative research.

❖ Safety: Humanoid robots can be more predictable 

and safer for human-robot interaction.

❖ Data: Their similar physique unlocks Internet-scale, 

human-centered data sources.

❖ …

Why Humanoids?

Research Principle #1:

First Generalist, then Better Specialist

[Credit: Yuke Zhu CoRL’23 Keynote]



Why Humanoids?

❖ Versatility: General-purpose robot autonomy needs a 

versatile body.

❖ Costs: Hardware becomes cheaper and more robust 

to democratize transformative research.

❖ Safety: Humanoid robots can be more predictable 

and safer for human-robot interaction.

❖ Data: Their similar physique unlocks Internet-scale, 

human-centered data sources.

❖ …
[Credit: Chad Jenkins]
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Why Humanoids?

❖ Versatility: General-purpose robot autonomy needs a 

versatile body.

❖ Costs: Hardware becomes cheaper and more robust 

to democratize transformative research.

❖ Safety: Humanoid robots can be more predictable 

and safer for human-robot interaction.

❖ Data: Their similar physique unlocks Internet-scale, 

human-centered data sources.

❖ …

[VIOLA, Zhu et al. CoRL 2022]

[Credit: Figure AI 2024]
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Ego4D dataset, CVPR 2022

AMASS dataset, ICCV 2019



Why Humanoids?

❖ Versatility: General-purpose robot autonomy needs a 

versatile body.

❖ Costs: Hardware becomes cheaper and more robust 

to democratize transformative research.

❖ Safety: Humanoid robots can be more predictable 

and safer for human-robot interaction.

❖ Data: Their similar physique unlocks Internet-scale, 

human-centered data sources.

❖ …

Ego4D dataset, CVPR 2022

Note: humanoid robotics is still incredibly hard (!) — huge challenges in mechanical designs, dynamics 

& control, sensor technologies, compute and power, AI algorithm designs…

AMASS dataset, ICCV 2019



Learning from Human Videos

“OKAMI: Teaching Humanoid Robots Manipulation Skills through Single Video Imitation.” Li et al. CoRL 2024

single video

demonstration

OKAMI

trajectory rollouts

in diverse scenes
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“OKAMI: Teaching Humanoid Robots Manipulation Skills through Single Video Imitation.” Li et al. CoRL 2024



Learning from Human Videos
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“OKAMI: Teaching Humanoid Robots Manipulation Skills through Single Video Imitation.” Li et al. CoRL 2024



Learning from Human Videos

“OKAMI: Teaching Humanoid Robots Manipulation Skills through Single Video Imitation.” Li et al. CoRL 2024

bagging (58.3%)

placing snacks on plate (75.0%) closing the drawer (75.0%)

sprinkling salt (58.3%) putting toy in basket (66.7%)

closing the laptop (83.3%)



HOVER: One Versatile Policy to Control All Modes

“HOVER: Versatile Neural Whole-Body Controller for Humanoid Robots.” He et al. 2024



Raise left hand and form a 

longhorn gesture.
Do a dabbing pose.

Signal a goodbye by touching 

the head with the right hand, 

then extending it forward.

1X 1X 1X



DexMimicGen: Automated Data Generation System

5 source 

demos

DexMimicGen

Human

teleoperation
1000 generated demos

“DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning.” Jiang*, Xie*, Lin*, et al. 2024



DexMimicGen can be used to train real-world visuomotor policy.

Real source demo 

Sim source demo 

Real2Sim

Transfer real demo to sim using digital twin to ensure the sim demos are valid in real

Human teleoperation

Generated demos 

DexMG



DexMimicGen can be used to train real-world visuomotor policy.

Generated demo (sim)

Generated demo (real)

Sim2Real

Real-world visuomotor policy

Transfer only successful generated demos from sim to real to train a visuomotor policy



DexMimicGen can be used to train real-world visuomotor policy.

Real-world visuomotor policy rollouts (10X)



Where to Go Next?



▪ Congratulations, you’ve seen the basics of modern AI
▪ … and done some amazing work putting it to use!

▪ How to continue:
▪ CS 395T Visual Recognition

▪ CS 391R Robot Learning

▪ ECE 382V Human Robot Interaction

▪ CS 388 Natural Language Processing

▪ CS 391L Machine Learning

▪ CS 393R Autonomous Robots

▪ CS 342 Neural Networks

▪ EE 381V Advanced Topics in Computer Vision

▪ CS 394R Reinforcement Learning: Theory and Practice

▪ … and more; ask if you’re interested

Where to Go Next?



Final Remarks

• We have come a long way! Thank you!

• We are very proud that you have made it to the end of this demanding course!

• We are impressed by your ingenuity and critical thinking in the in-class 

discussions, Ed posts, projects, and assignments!

• Thanks to Huihan and Shuijing for handling the course logistics.

• If this course helps you kickstart your future endeavors in AI, please email us and 

let us know!



Thank you

Saturday 12/14 1 – 3pm   ECJ 1.202

1 page (front and back) of notes

Closed book



That’s it!

Have a great winter break!

I had a great time teaching this course and

I hope you all enjoyed it as well
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