CS 343H **Review and Conclusion**

The University of Texas at Austin

Prof. Yuke Zhu

- Feedback to both instructor and TAs Positive and negative points are useful • Post on Ed your completion screenshot (in a private post) as a form of •
- Please fill out the course survey
 - participation!

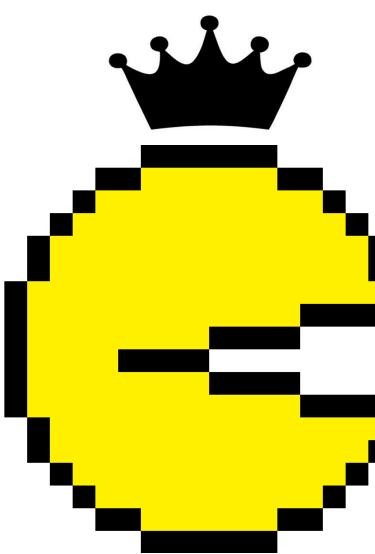
• Capture the Flag contest results!

CTF Contest

23 teams participated, 15 qualified for tournament

Rankings 1st place: Beto An, Kevin Zhao (controllers) 2nd place: Angela Zhang, Tanuj Tekkale (lords of smiggles) 3rd place: Rishi Astra (temp_yeet2)

Congratulations!



Overview of AI Topics

Search / Planning

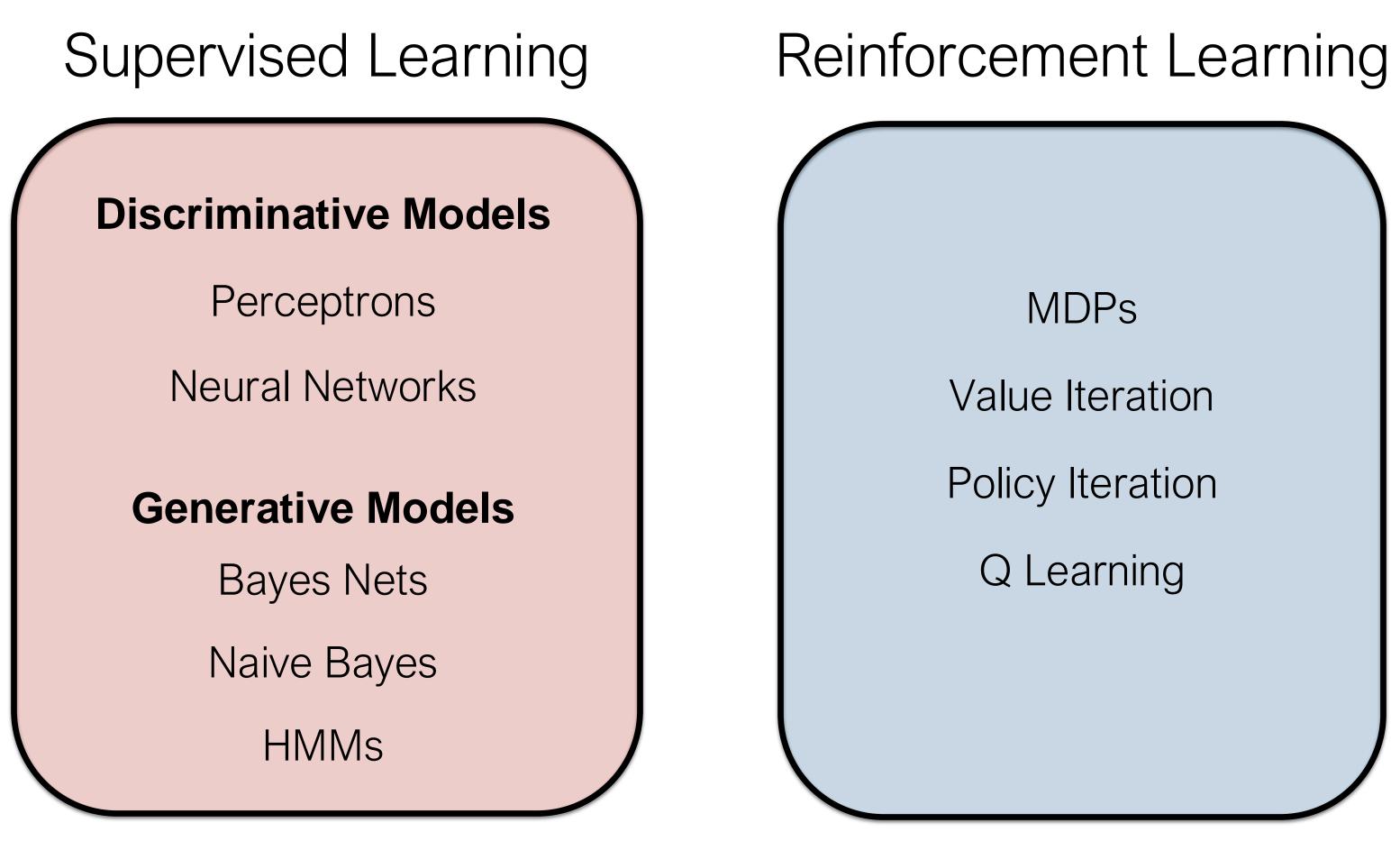
Uninformed Search Minimax A* Search Expectimax CSPs MDPs Local Search

Machine Learning

Reinforcement Learning Probability Theory Bayes Nets HMMs Particle Filters Decision Networks

Naive Bayes Perceptrons Neural Networks Deep Learning Clustering

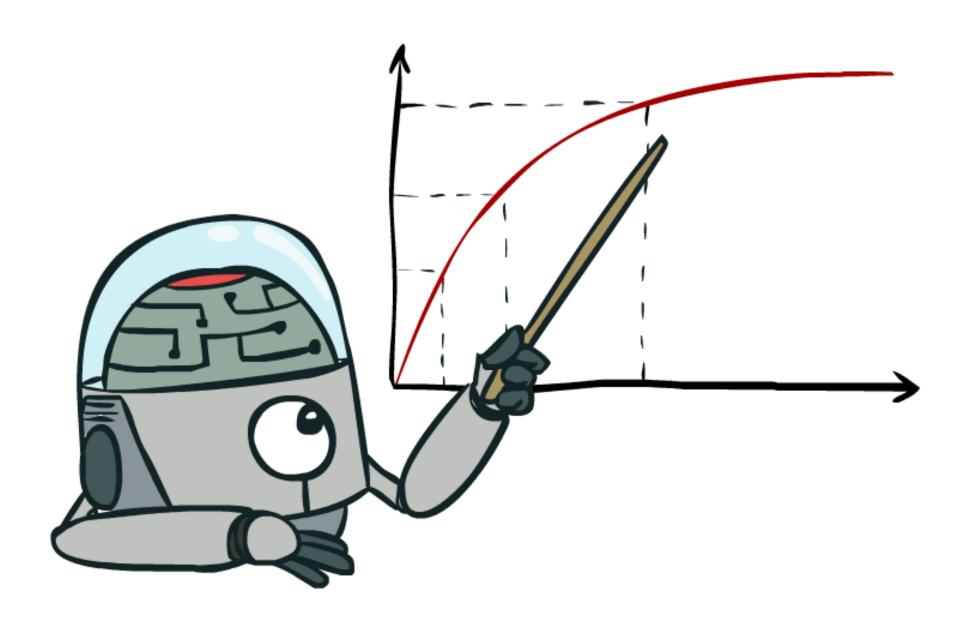
Overview of Machine Learning



Unsupervised Learning

K-Means Clustering

Maximize Your Expected Utility



8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

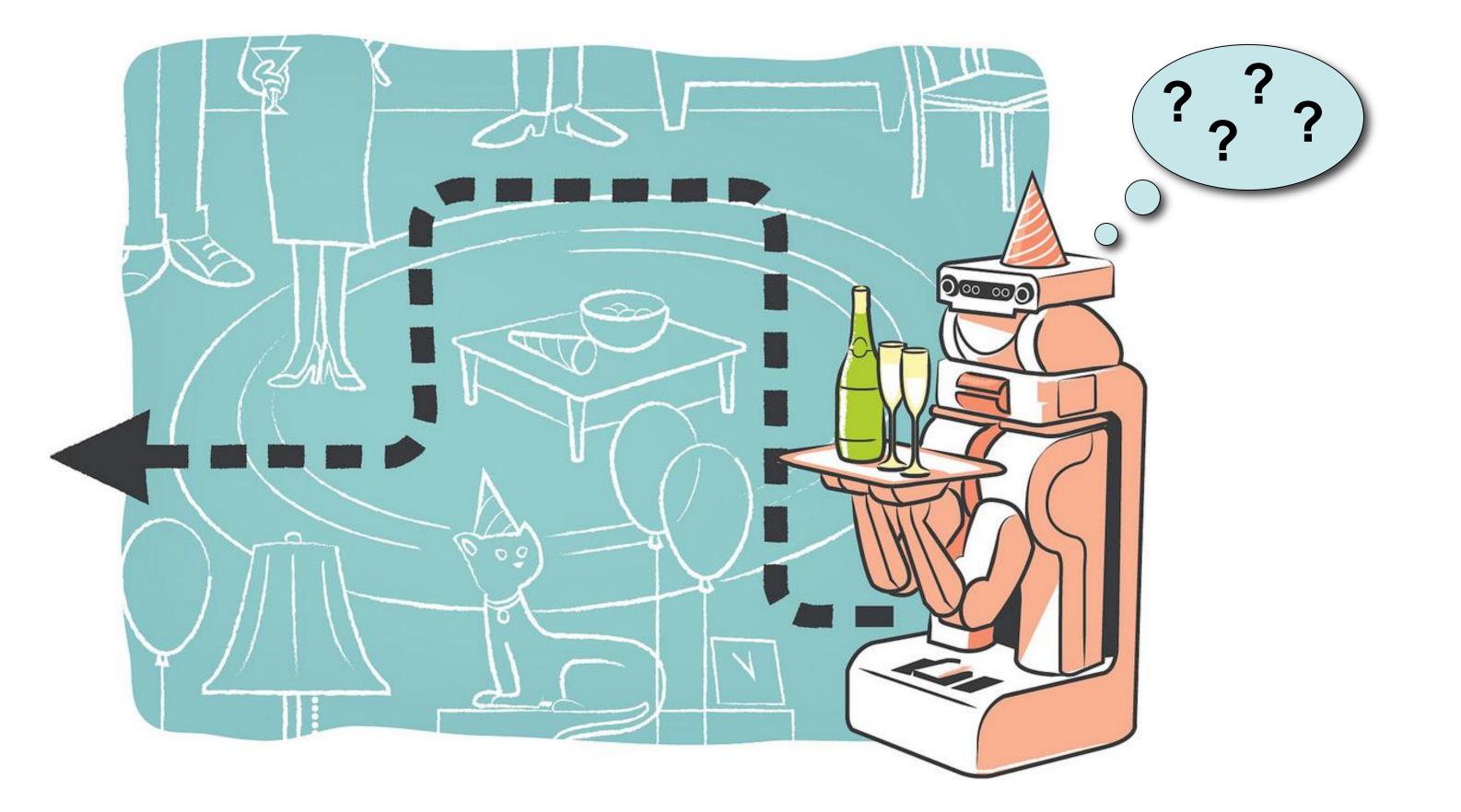
Constraint satisfaction: searching intelligently for legal solutions

Example: Sudoku

Utility: Does the solution satisfy the rules / constraints?

Assumptions: We can write down the rules / constraints of the problem

Planning: reasoning with models



Example: Robot navigation

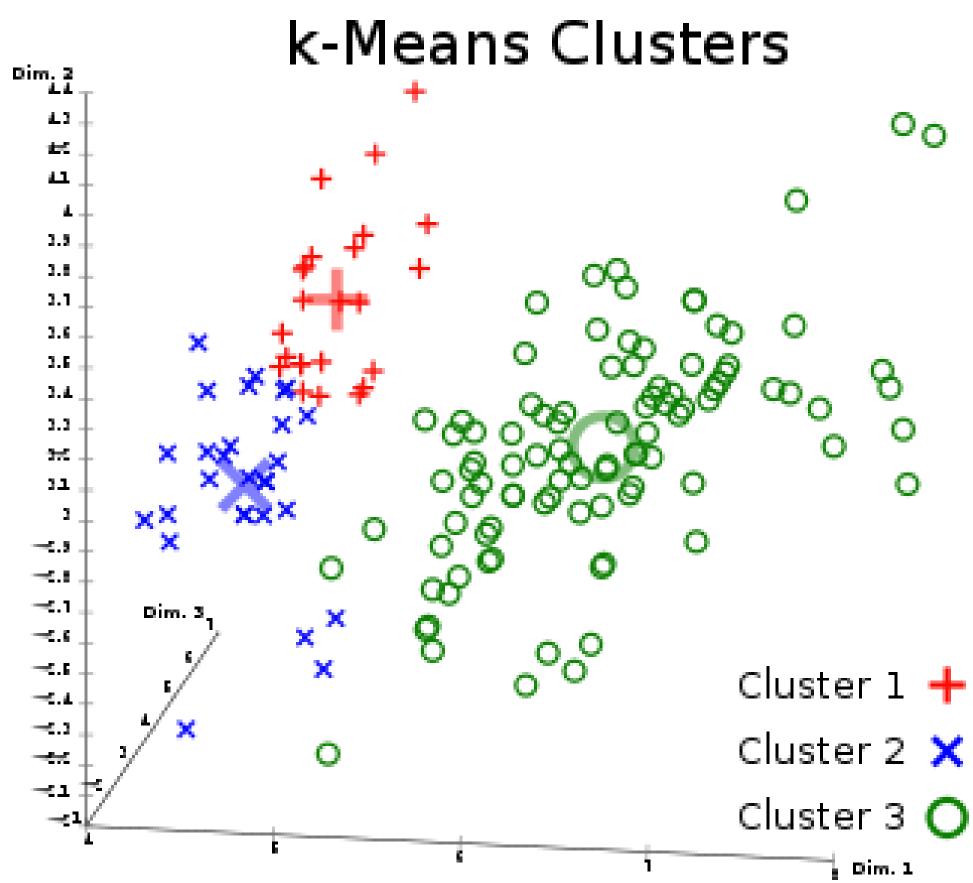
Utility: Path length, collisions, surfaces, energy, social factors

Assumptions: We have a model of the world and the effects of the agent's actions

Supervised Learning: learning from labeled examples

Example: Image classification **Utility:** Classification accuracy on images not seen during training **Assumptions:** We have

access to a (usually large) labeled data set



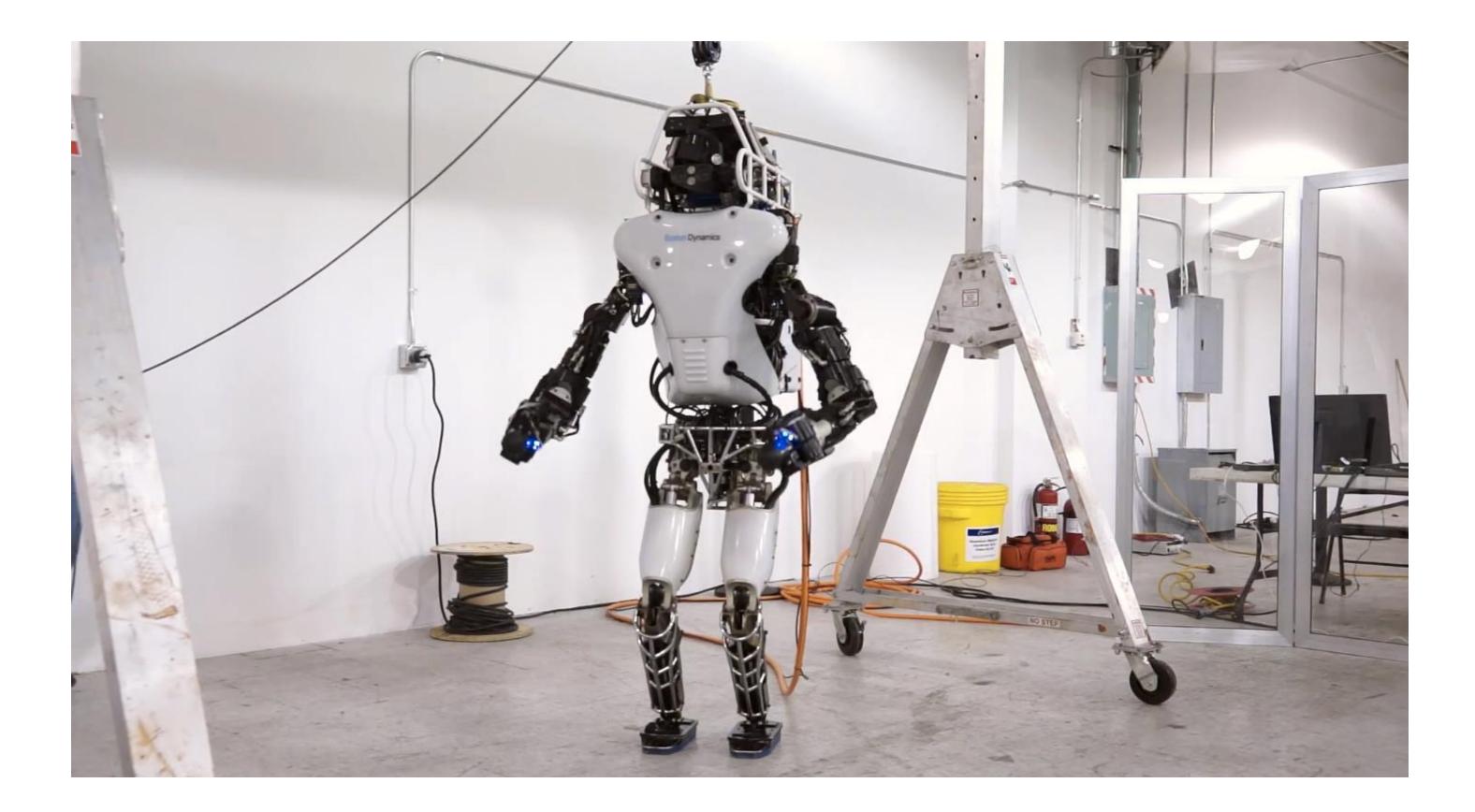
Unsupervised Learning: discovering patterns in unlabeled data

Example: Clustering species

Utility: "Best" explanation of data

Assumptions: Data points that should be clustered together are "close" together

Reinforcement Learning: learning from experience



Example: Robot walking

Utility: Time until fall, speed, energy efficiency

Assumptions: We can "reward" and "punish" good and bad performance, but don't know what the correct action at each step should be

Properties of task environment

- Single-agent vs. multi-agent
- Deterministic vs. stochastic
- Fully observable vs. partially observable
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Known vs. unknown

Single agent vs. multi-agent

- Not multi-agent if other agents can be considered part of the environment
- Only considered to be multi-agent if the agents are maximizing a performance metric that depends on other agents' behavior
- Single agent example: Pacman with randomly moving ghosts
- Multi-agent example: Pacman with ghosts that use a planner to follow him

Single

Uninformed Search A* Search Local Search CSPs

Single / Multi Agent

Multi

Minimax

Expectimax

MDPs

Reinforcement Learning

Deterministic vs. stochastic

- Deterministic: next state of environment is completely determined by the current state and the action executed by the agent
- Stochastic: actions have probabilistic outcomes
- Strongly related to partial observability most apparent stochasticity results from partial observation of a deterministic system
- Example: Coin flip

Deterministic

Uninformed Search A* Search Local Search CSPs

Minimax

Determinism

Stochastic

Expectimax

MDPs

Reinforcement Learning

Decision Diagrams

- Fully observable: agent's sensors give it access to complete state of the environment at all times
- Can be partially observable due to noisy and inaccurate sensors, or because parts of the state are simply missing from the sensor data
- Example: Perfect GPS vs noisy pose estimation
- Example: IKEA assembly while blindfolded

Almost everything in the real world is partially observable

Fully Observable

Minimax Uninformed Search Expectimax A* Search Local Search MDPs CSPs Reinforcement Learning

Observability

Partially Observable

Bayes Nets

HMMs

Decision Networks

- Agent's state of knowledge about the "rules of the game" / "laws of physics"
- Known environment: the outcomes for all actions are given • Unknown: agent has to learn how it works to make good
- decisions
- Possible to be partially observable but known (solitaire) Possible to be fully observable but unknown (video game)

Model of the World

Known

Uninformed Search

A* Search

Local Search

CSPs

Classic Planning

Minimax

Expectimax

MDPs

Value Iteration

Decision Diagrams

Unknown

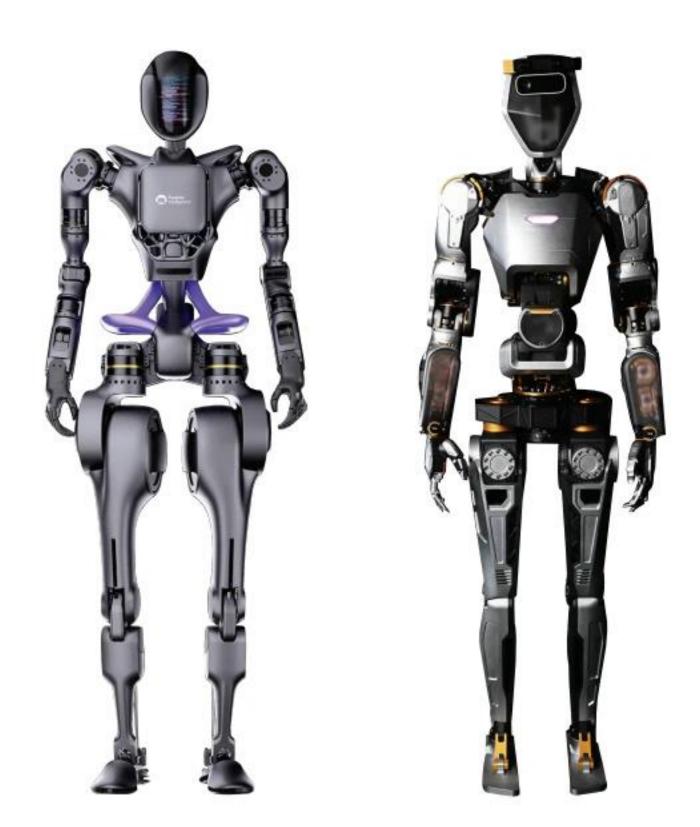
Q Learning

Learning parameters of Bayes Net

research.nvidia.com/labs/gear



Building Robotic Foundation Models



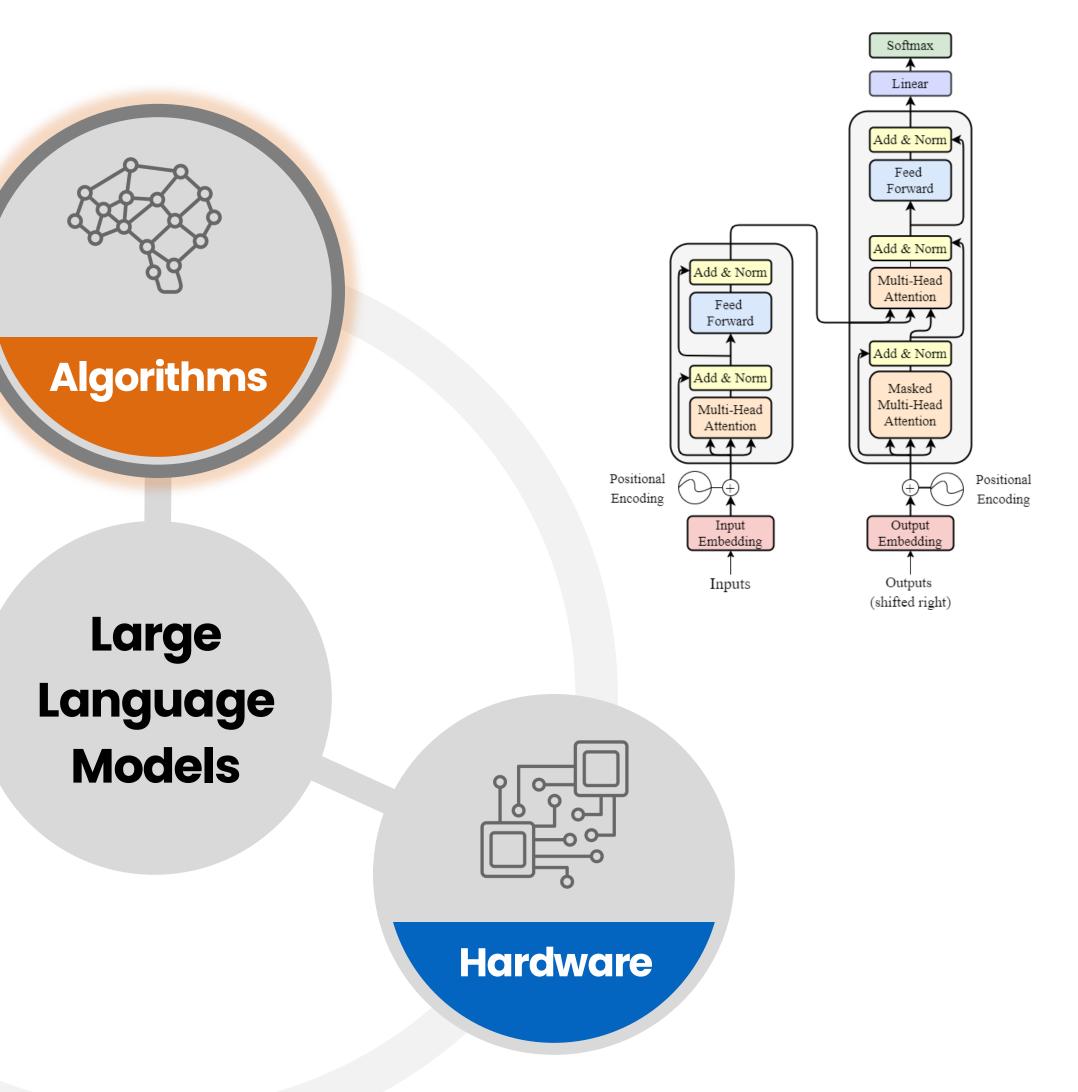
One "Al Brain" for All (Humanoid) Robots

Data

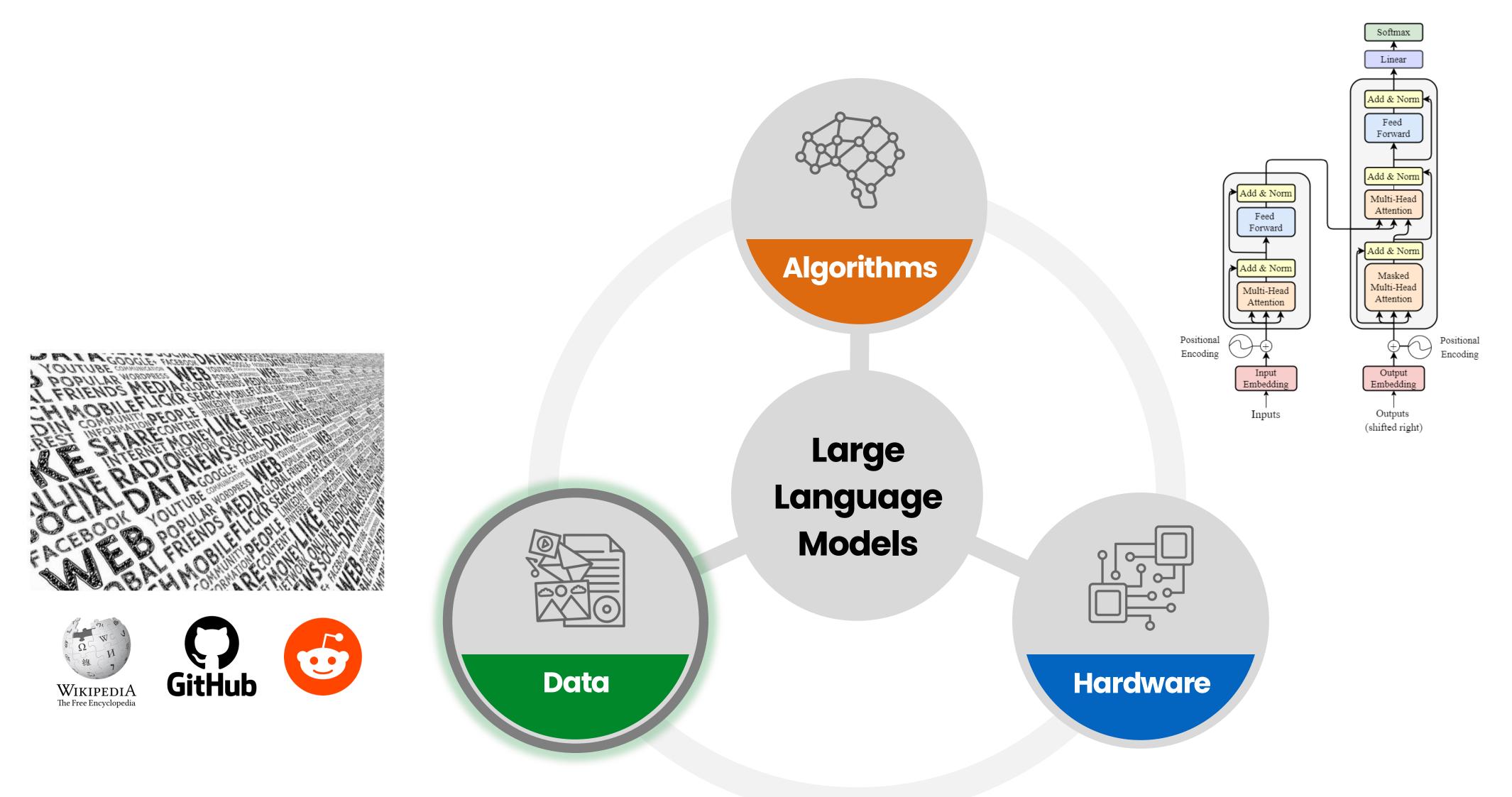
Algorithms

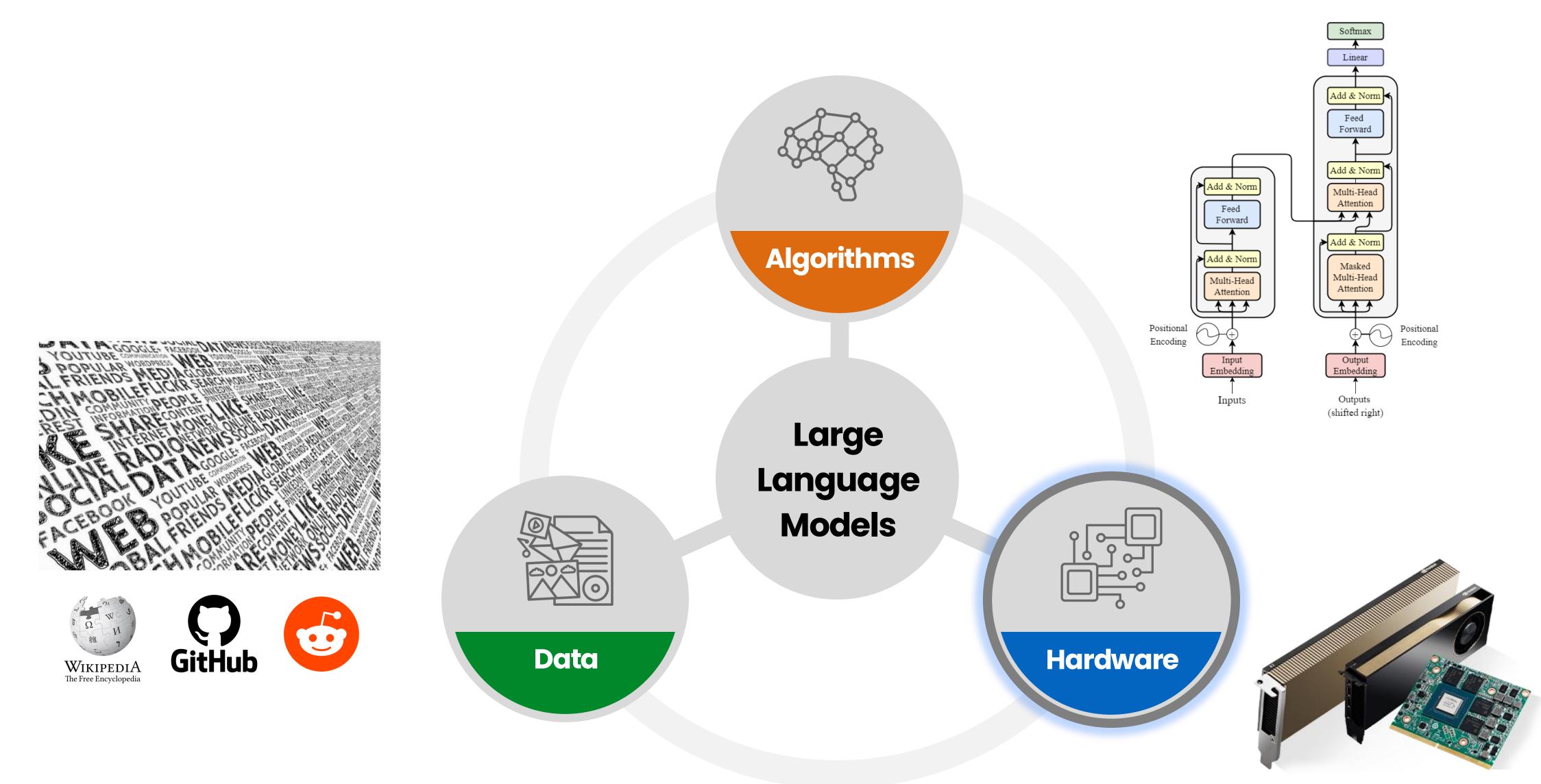
Large Language Models

Hardware



Data





Recipe for Building Robotic Foundation Models

Data

Algorithms

Robotic Foundation **Models**

Hardware

Recipe for Building Robotic Foundation Models

Scalable Algorithms

Powerful robot learning models that scale with data and compute

Robotic Foundation Models

Data Engine

New mechanisms to produce massive training data

Algorithms

Hardware

Human-like Embodiment

Humanoid robot platform for broad applications

Recipe for Building Robotic Foundation Models

Scalable Algorithms

Powerful robot learning models that scale with data and compute

Robotic Foundation Models

Data Engine

New mechanisms to produce massive training data

Algorithms

Hardware

Human-like Embodiment

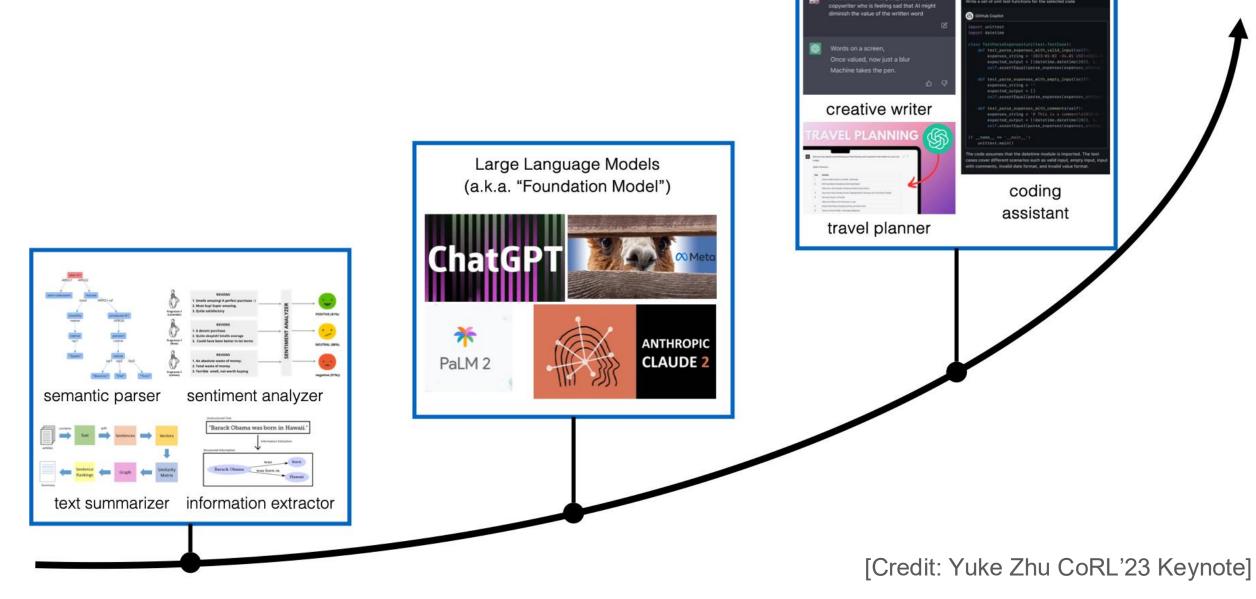
Humanoid robot platform for broad applications

- **Versatility:** General-purpose robot autonomy needs a • versatile body.
- **Costs:** Hardware becomes cheaper and more robust • to democratize transformative research.
- **Safety:** Humanoid robots can be more predictable • and safer for human-robot interaction.
- **Data:** Their similar physique unlocks Internet-scale, • human-centered data sources.

. . .

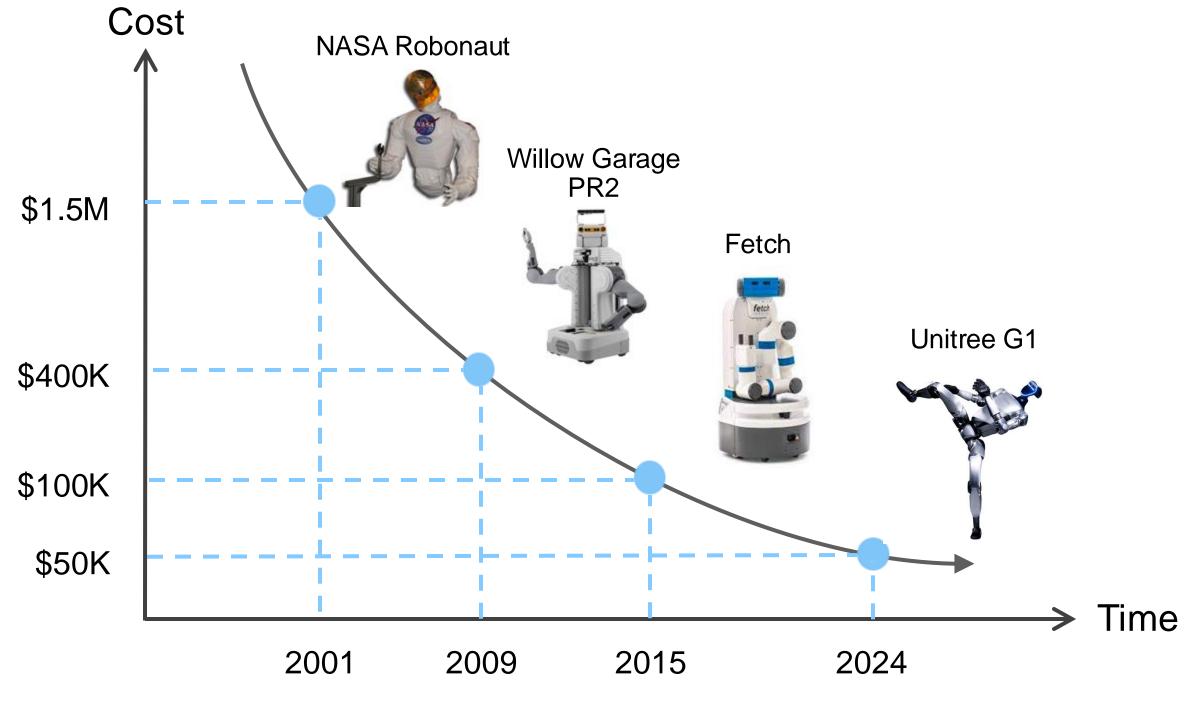
Research Principle #1:

First Generalist, then Better Specialist



- **Versatility:** General-purpose robot autonomy needs a ** versatile body.
- **Costs:** Hardware becomes cheaper and more robust * to democratize transformative research.
- **Safety:** Humanoid robots can be more predictable • and safer for human-robot interaction.
- **Data:** Their similar physique unlocks Internet-scale, • human-centered data sources.

. . .



[[]Credit: Chad Jenkins]

- Versatility: General-purpose robot autonomy needs a versatile body.
- Costs: Hardware becomes cheaper and more robust to democratize transformative research.
- Safety: Humanoid robots can be more predictable and safer for human-robot interaction.
- Data: Their similar physique unlocks Internet-scale, human-centered data sources.

*



[VIOLA, Zhu et al. CoRL 2022]

[Credit: Figure AI 2024]

- Versatility: General-purpose robot autonomy needs a versatile body.
- Costs: Hardware becomes cheaper and more robust to democratize transformative research.
- Safety: Humanoid robots can be more predictable and safer for human-robot interaction.
- Data: Their similar physique unlocks Internet-scale, human-centered data sources.

*

- Versatility: General-purpose robot autonomy needs a versatile body.
- Costs: Hardware becomes cheaper and more robust to democratize transformative research.
- Safety: Humanoid robots can be more predictable and safer for human-robot interaction.
- Data: Their similar physique unlocks Internet-scale, human-centered data sources.

* ...

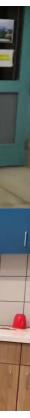
Note: humanoid robotics is still incredibly hard (!) — huge challenges in mechanical designs, dynamics & control, sensor technologies, compute and power, AI algorithm designs...

Learning from Human Videos

single video demonstration

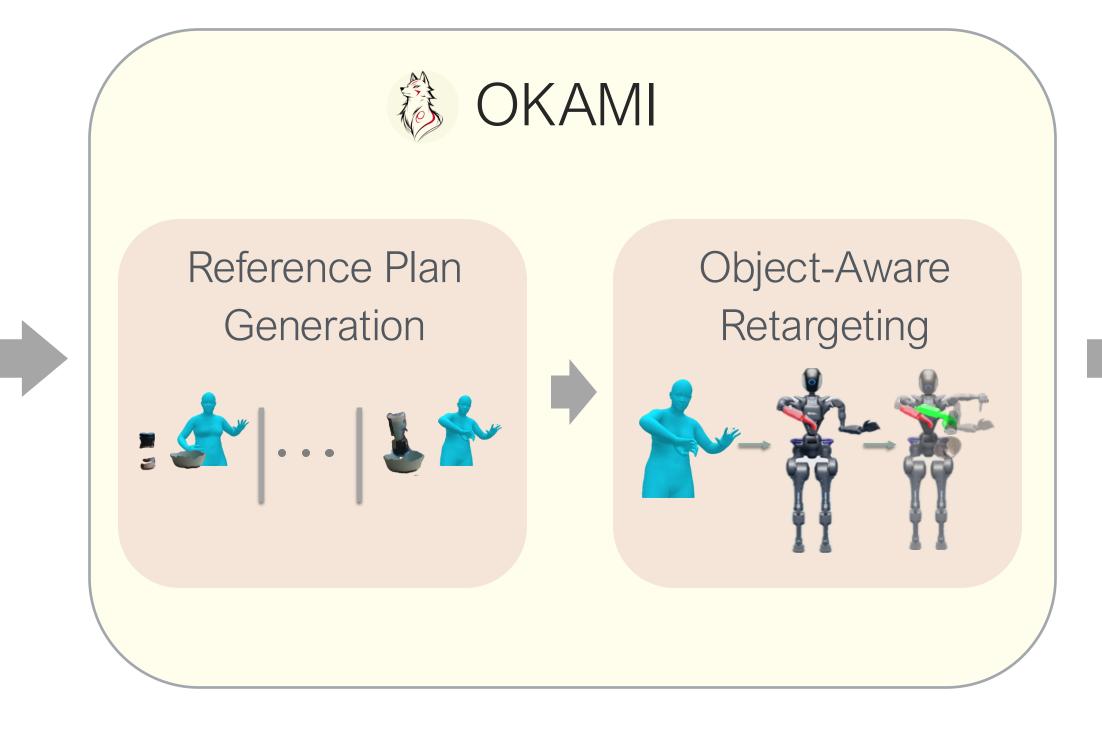
trajectory rollouts in diverse scenes

"OKAMI: Teaching Humanoid Robots Manipulation Skills through Single Video Imitation." Li et al. CoRL 2024



Learning from Human Videos

single video demonstration



trajectory rollouts in diverse scenes

"OKAMI: Teaching Humanoid Robots Manipulation Skills through Single Video Imitation." Li et al. CoRL 2024

Learning from Human Videos

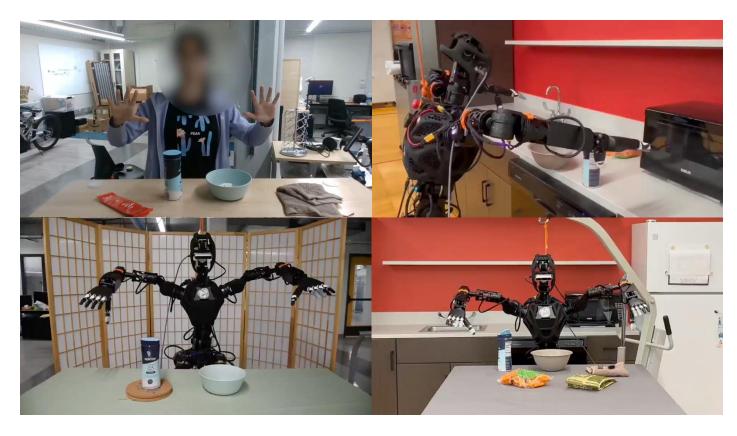
single video demonstration

trajectory rollouts in diverse scenes

"OKAMI: Teaching Humanoid Robots Manipulation Skills through Single Video Imitation." Li et al. CoRL 2024

Learning from Human Videos

bagging (58.3%)



placing snacks on plate (75.0%)

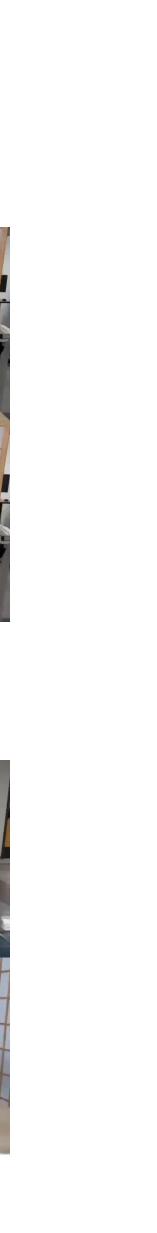
sprinkling salt (58.3%)

putting toy in basket (66.7%)

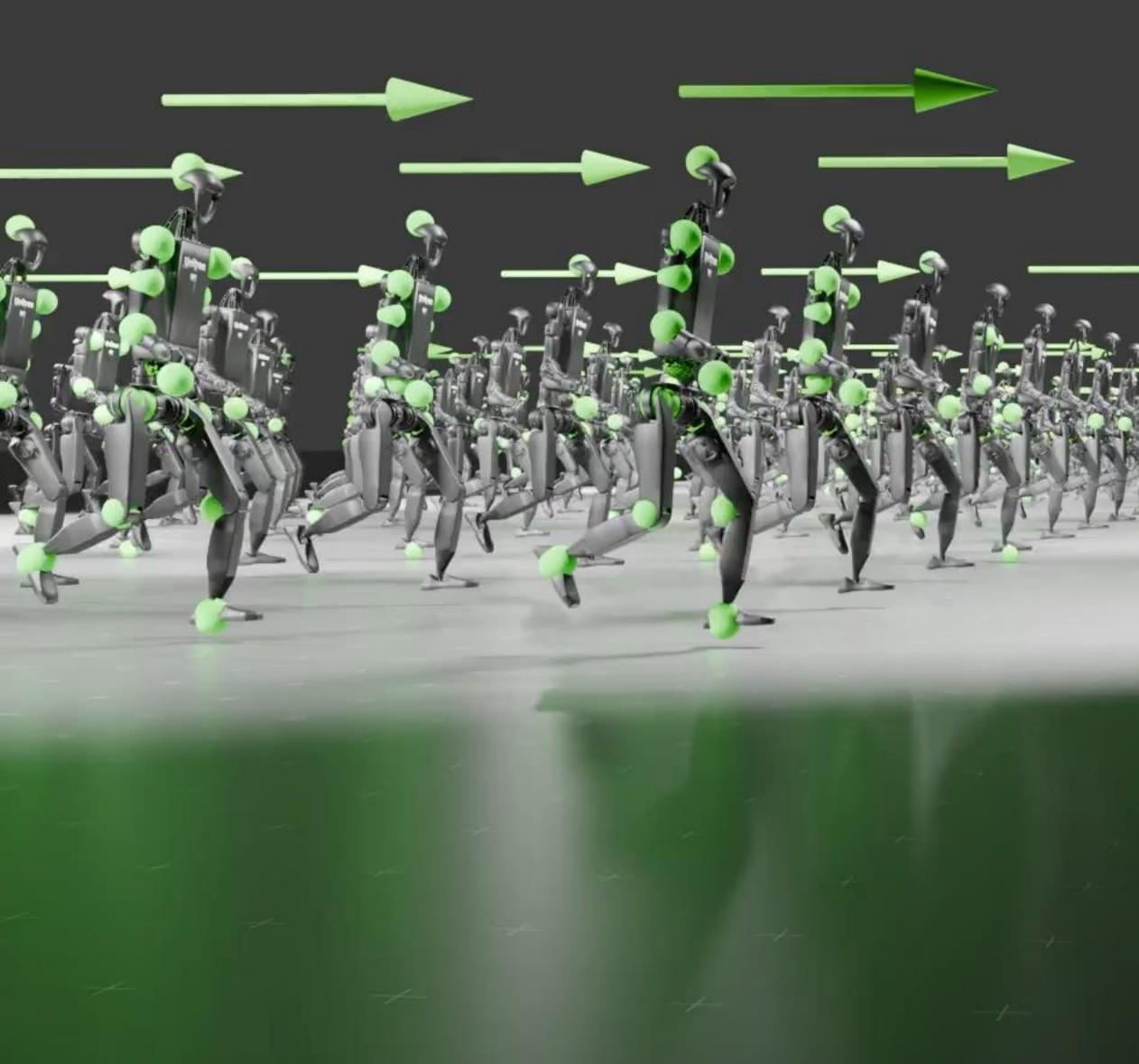
closing the drawer (75.0%)

closing the laptop (83.3%)

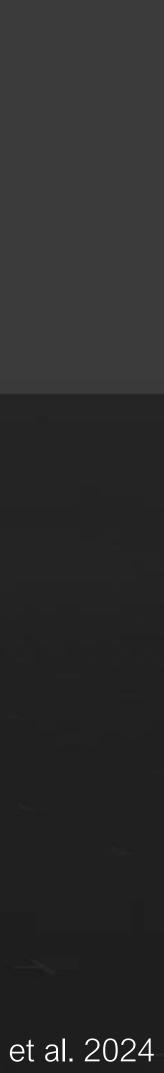
"OKAMI: Teaching Humanoid Robots Manipulation Skills through Single Video Imitation." Li et al. CoRL 2024

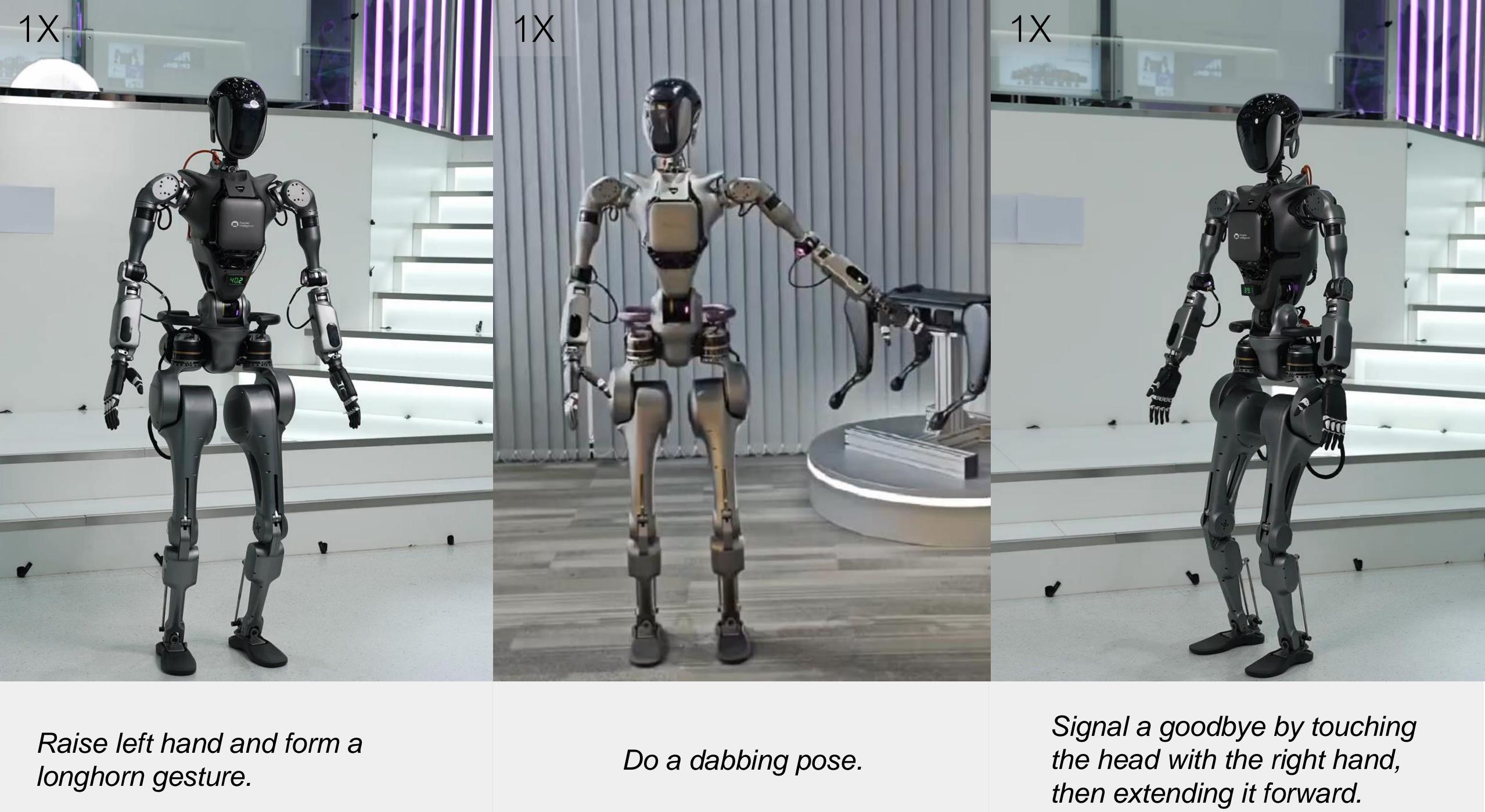


HOVER: One Versatile Policy to Control All Modes

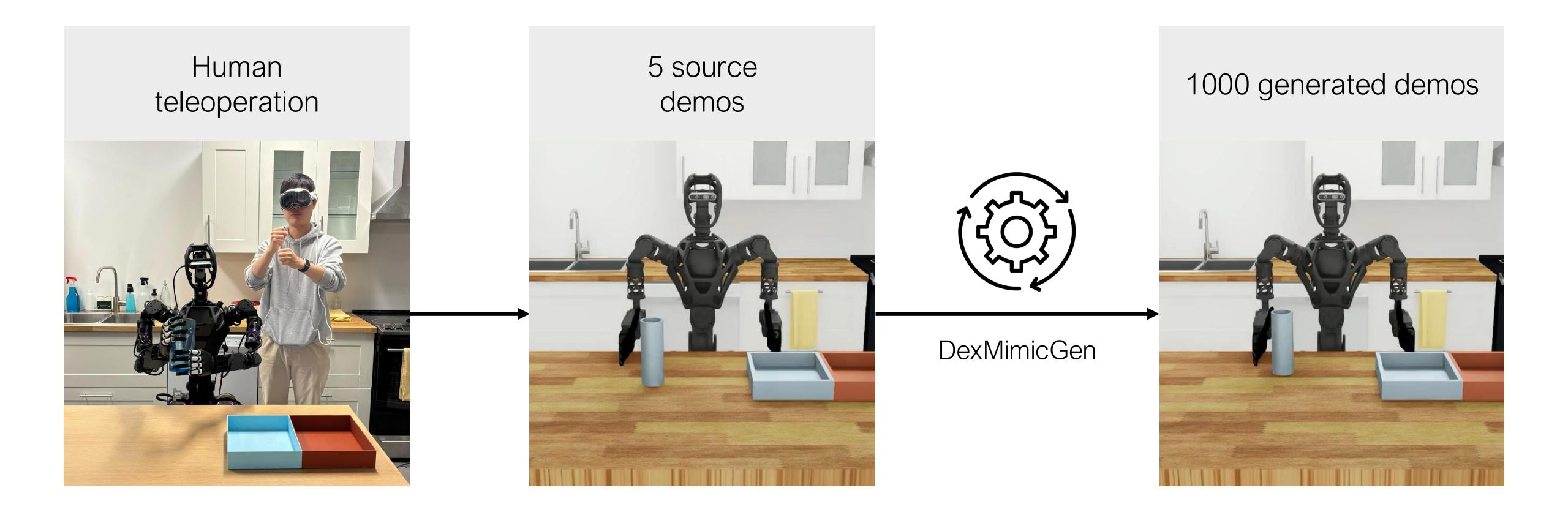


"HOVER: Versatile Neural Whole-Body Controller for Humanoid Robots." He et al. 2024



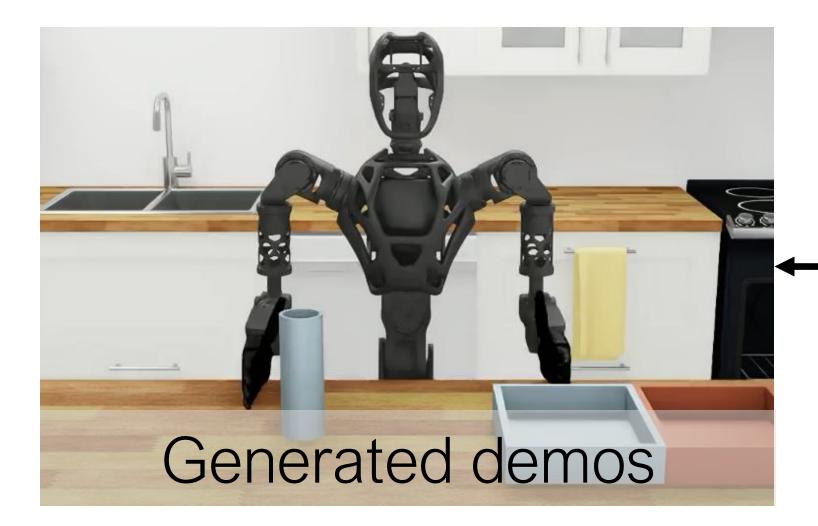


DexMimicGen: Automated Data Generation System

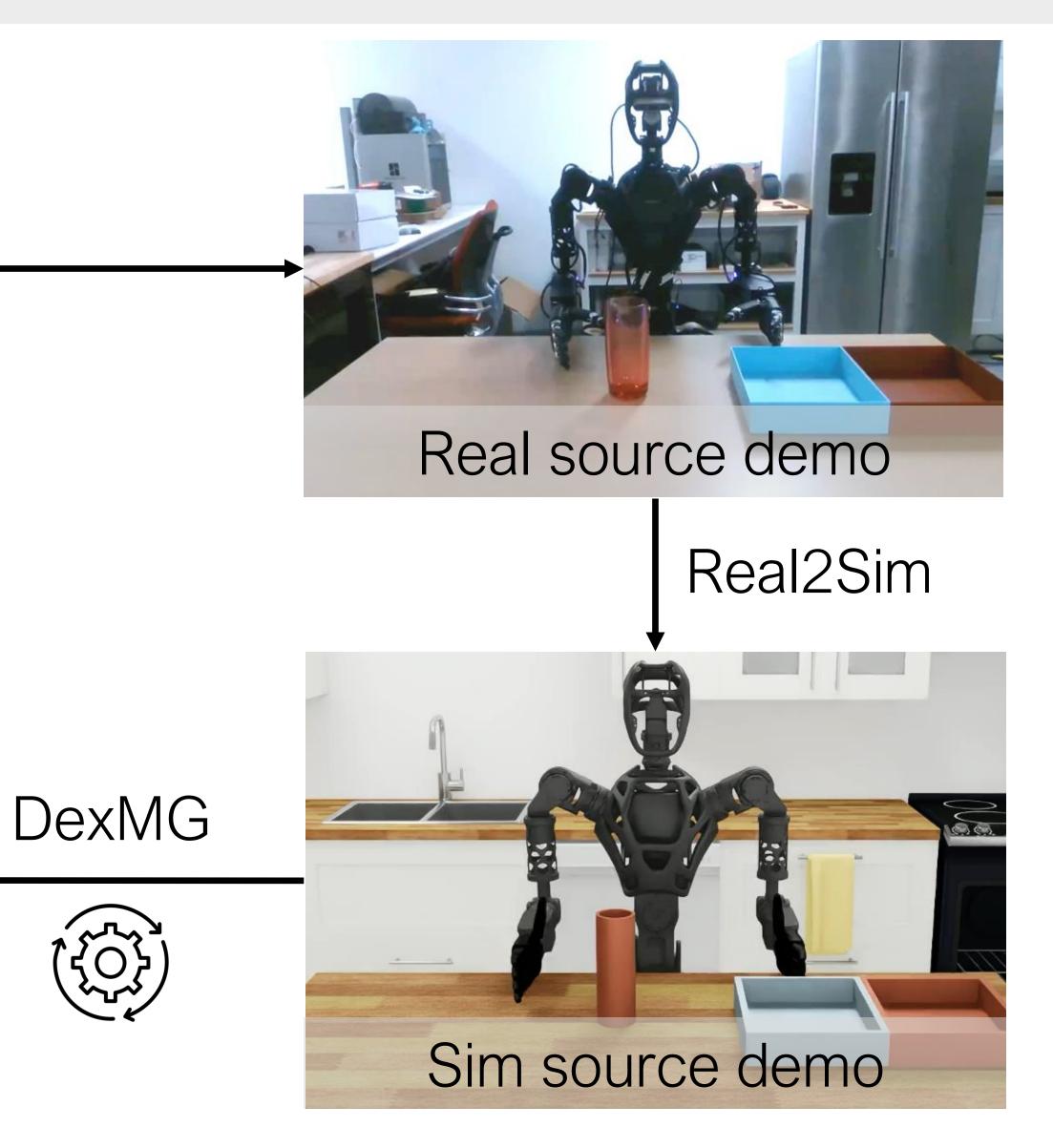


"DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning." Jiang*, Xie*, Lin*, et al. 2024

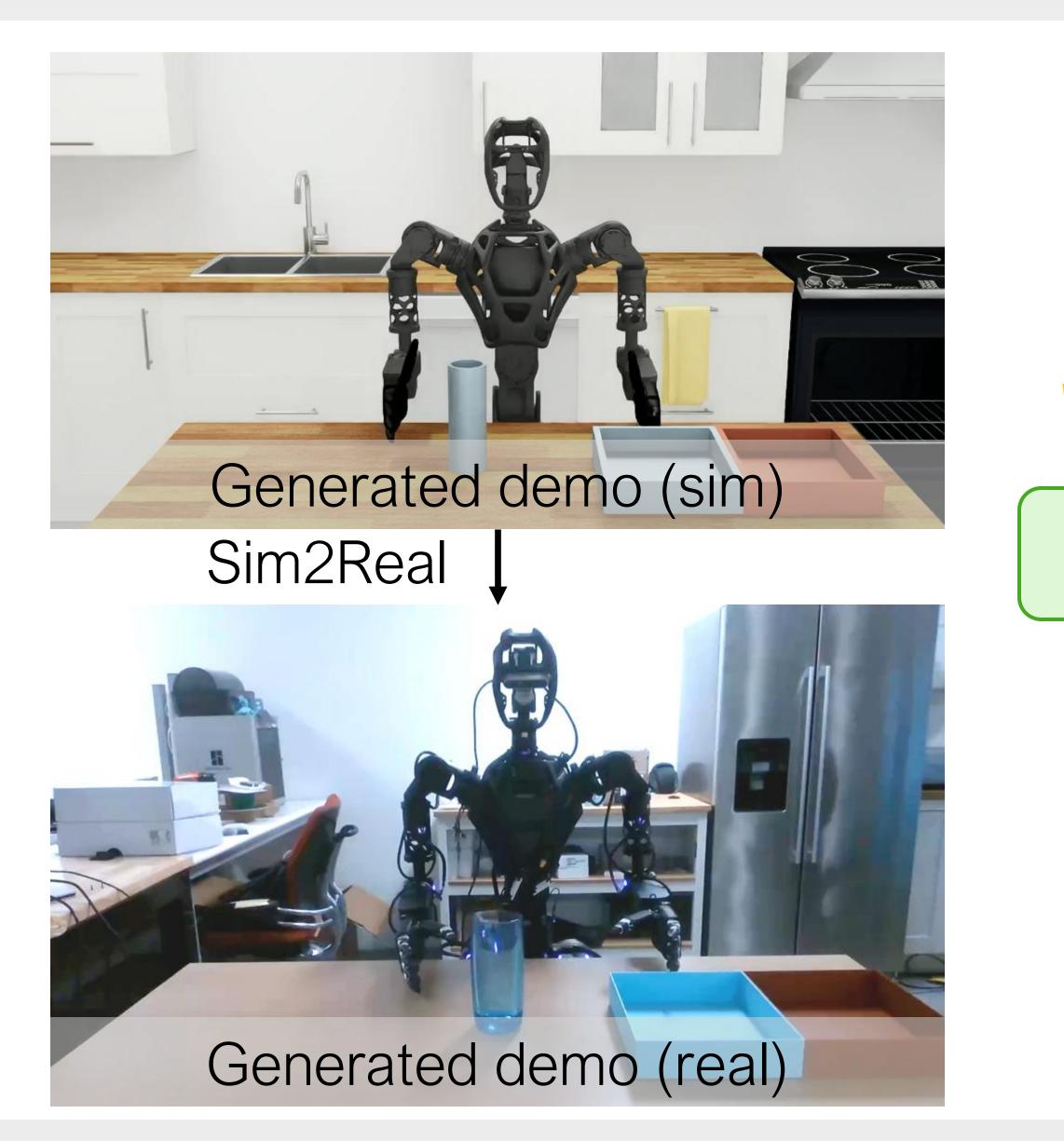
DexMimicGen can be used to train real-world visuomotor policy.



Transfer real demo to sim using digital twin to ensure the sim demos are valid in real



DexMimicGen can be used to train real-world visuomotor policy.

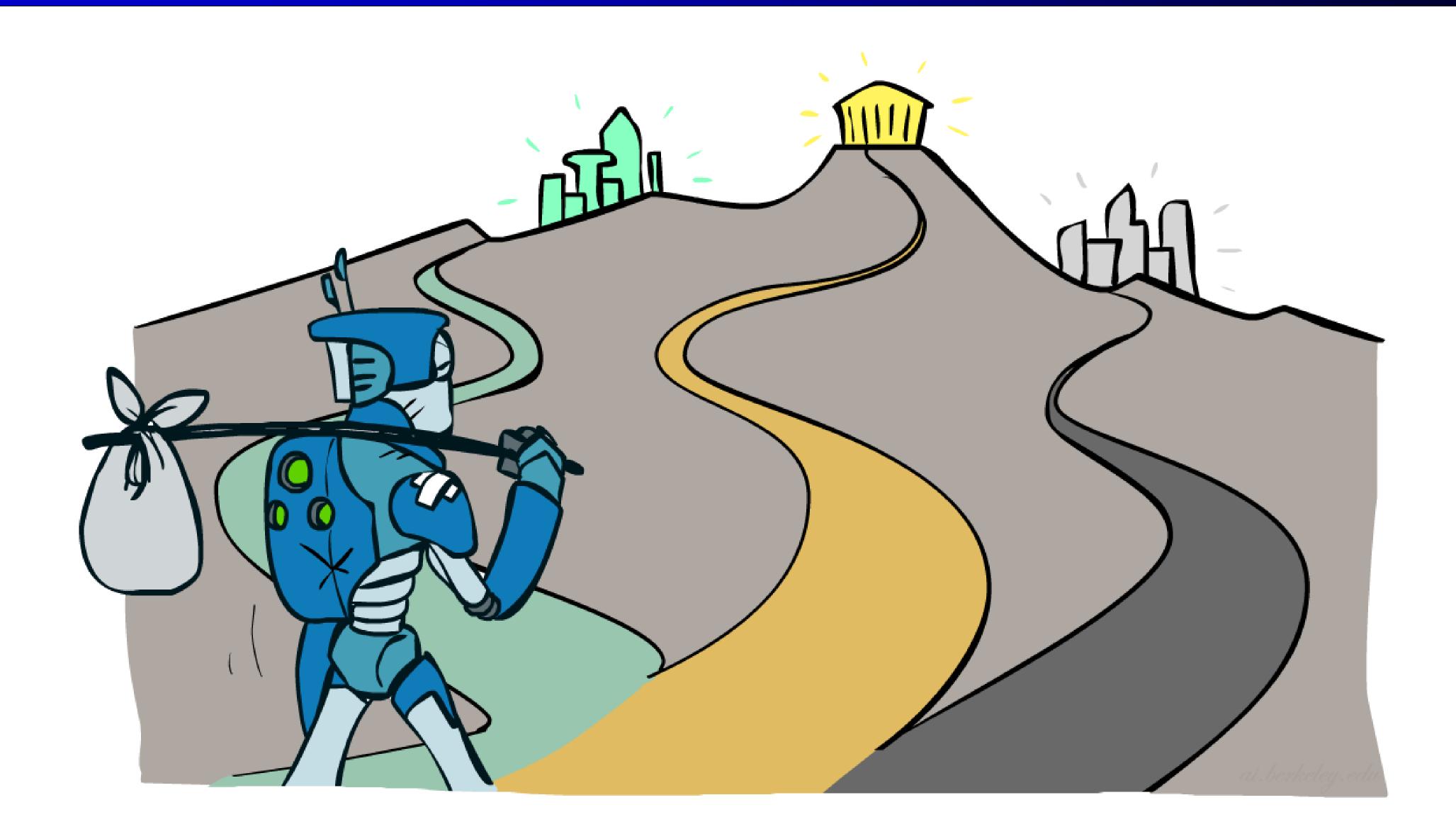


Transfer only successful generated demos from sim to real to train a visuomotor policy

DexMimicGen can be used to train real-world visuomotor policy.

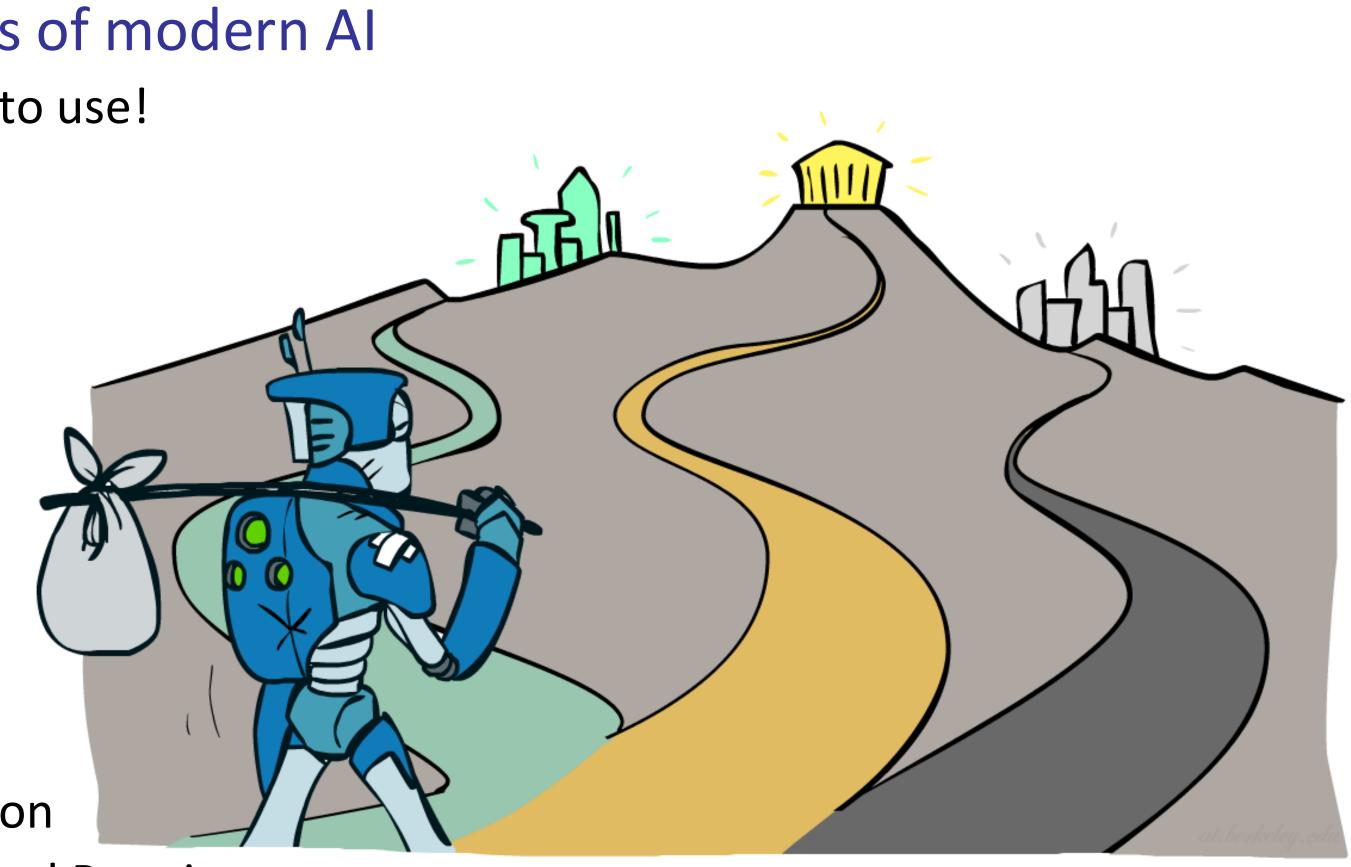
Real-world visuomotor policy rollouts (10X)

Where to Go Next?



Where to Go Next?

- Congratulations, you've seen the basics of modern Al
 - In and done some amazing work putting it to use!
- How to continue:
 - CS 395T Visual Recognition
 - CS 391R Robot Learning
 - ECE 382V Human Robot Interaction
 - CS 388 Natural Language Processing
 - CS 391L Machine Learning
 - CS 393R Autonomous Robots
 - CS 342 Neural Networks
 - EE 381V Advanced Topics in Computer Vision
 - CS 394R Reinforcement Learning: Theory and Practice
 - In and more; ask if you're interested



- We have come a long way! Thank you!
- We are very proud that you have made it to the end of this demanding course!
- We are impressed by your ingenuity and critical thinking in the in-class discussions, Ed posts, projects, and assignments!
- Thanks to Huihan and Shuijing for handling the course logistics.
- If this course helps you kickstart your future endeavors in AI, please email us and let us know!

Saturday 12/14 1 – 3pm ECJ 1.202 1 page (front and back) of notes

Closed book

I had a great time teaching this course and I hope you all enjoyed it as well

Have a great winter break!