F—
—

CS 343H: Artificial Intelligence

! (L (L Deep Learning

o
A
P

Vi
=l
=

i

e

[@==X}

<5
'$

LI -
M

oé? .‘

2

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Linear Classifiers

= |Inputs are feature values
= Each feature has a weight
= Sum is the activation

activation,(x) = Zwi - filxe) =w- f(x)

= |f the activation is: & Wy
1
= Positive, output +1 0 Wo | Y —>07—
= Negative, output -1 1&’

Non-Linear Separators

= Data that is linearly separable works out great for linear decision rules:

= But what are we going to do if the dataset is just too hard?

@ @ o—0— *0—0—0—0—0—>

0 X

= How about... mapping data to a higher-dimensional space:

This and next slide adapted from Ray Mooney, UT

Non-Linear Separators

= General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

o l"
K
9 l"
o
o
.
D
D
" "
" .,
" R "
v,
" " *.,
" o
" g

.
.
e,
......

Perceptron

Two-Layer Perceptron Network

N-Layer Perceptron Network

Perceptron

= Objective: Classification Accuracy
I (o i i
lacc(w) - — Z (Slgn(wa(x())) ——))

™m

1=1

Perceptrons give deterministic decisions

Perceptron scoring: 2 = w - f(x)
If z=w - f(x) positive = classifier says: 1.0 probability this is class +1
If z=w- f(x) negative = classifier says: 0.0 probability this is class +1

. H
Step function 2)

14
1 z>0
H(Z){o 2 <0

0
z = output of perceptron

H(z) = probability the class is +1, according to the classifier

How to get probabilistic decisions?

= Activation: 2 =W - f(ﬂi)
" If z=w-f(x) verypositive 2 probability to approach 1
" If z=w-f(x) verynegative > probability to approach 0

- Singid function L0
@)= 7.

e

Sz Y

Find the best w in logistic regression?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

. . 1
| () — 117) —
with: P(y _|_1|aj 7w) 1 _I_e_w.f(q;(z‘))

1

Pyl = =1z w) = 1 | T e—w i)

= That’Logistic Regression

Multiclass Logistic Regression

" Multi-class linear classification w1 - f biggest
w1
= A weight vector for each class: wy
= Score (activation) of a class y: Ry — Wy - f(.il?) w3
w2
= Prediction w/highest score wins: Yy = arg max wy - f(:c) wo - f w3z - f
Y r2 biggest
biggest
" How to make the scores into probabilities?
6211 62:2 €Z3
\
“15 22,23 —7 z z z3) 5z z z3) 5z z z
el +e°2 +e*3 e*l - e*2 - e*3 e*l +e*2 +e~3
| J |)
| Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

oWy () ()

. (D) [1-() . 5y} —
with: P(y‘" |z w) Zyewy'f(x(i))

= Multi-Class Logistic Regression

Two-Layer Neural Network

Wiq

Wor s Y = -

W3 Wy
— ; \

W3, W,

S g B[S ‘

> w,

Wi3

A —»,Ia/

" z

N-Layer Neural Network

Best w?

= Optimization

= j.e., how do we solve:

max [l[(w) = max ZlogP(y(i)\x(i);w)

w

Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
" Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What's particularly tricky when hill-climbing for multiclass
logistic regression?

* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

1-D Optimization

= Could evaluate g(wg+h) and g(wo — h)

" Then step in best direction

dg(wo)

. . . g(wo—l—h) —g(wo _h)
= Or, evaluate derivative: Y lim 2h

= Tells which direction to step into

Gradient Ascent

" |dea:
= Start somewhere
» Repeat: Take a step in the gradient direction

! ! 8 1 1 I 1
-6 -4 -2 0] 2 4 6

Figure source: Mathworks

Gradient in n dimensions

Deep Neural Network: Also Learn the Features!

" Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i)\az(i);w)

just w tends to be a much, much larger vector ©

—>just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

How about computing all the derivatives?

= Derivatives tables:

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

¢ (a)y=10
dx
iL[_Jr} =1
du
d,x (0= dx
d du dv
—(u+v-w)=—+—-
dx dx dx
—!{m»} = ui +Vv du
dx dx dx
i(ﬂ) _ldu_udv
e\ v vde v dx
d ., n— i
—[u y=nu —
x ey
1 du
— (+u)=
{ 2« I a:i;.

d{1y 1 du
)i
d{1Y_ n du
dx:(u”] T dx

[f{u}]——[fu }] du

ﬂ'i
dx

d d | ﬂ’u
—|Inu|=—7/log =——
¢ [Inu] !x[]

d [I:Jg u] log e | d'u

dx . a7y dy

d _ udu

dt dx

d du
—a"=a"lna—

dx dx

i(u") =y au +Inu u" ﬂ
dx dx dx

d du
—sinu =cosu—
dx dx

. u
—COSH = —Sinu—
dx dx

d > du
—tanu = sec” u—

dx dx

-
colu =—cCcsc™ i

du
—secuy = secutanu—
dx dx

d
dx

adu
CSCH ==—Cscucolu

dx

How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

Then f'(x) = g'(h(z))W ()

—> Derivatives can be computed by following well-defined procedures

Back Propagation: g(w) = wiw, + 3w,

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]
= Think of the function as a composition of many functions, use chain rule.

= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W 2 ()
6_g_16g_

" Lo 1
Wy 3
3
61 z a9
—=1
dc dg

Back Propagation: g(w) = wiw, + 3w,

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]
= Think of the function as a composition of many functions, use chain rule.

= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W 2 ()
6_g_16g_

" b1
" hb=aXw, W, 3
. agzagab
da 0bJda 3
Wy 2 %_1
dc dg

Back Propagation: g(w) = wiw, + 3w,

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]

= Think of the function as a composition of many functions, use chain rule.

= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W 2 ()
99 _ 1 09 _

" a1
u b=aXW2 w, 3
a 99 _090b 5599,
da 0bda 7 3
61 z 0g_1
dc dg

Back Propagation: g(w) = wiw, + 3w,

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]
= Think of the function as a composition of many functions, use chain rule.

= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W 2 ()
6_g_16g_

" b1
" b=aXW2 w, 3
g 99 _0gob _ 0b _ . ., _
aa_abaa_laa_l 3 = 3
61 z 0g_1
dc dg

Back Propagation: g(w) = wiw, + 3w,

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W 2 ()
99 _ 1 09 _

"o Lo 1
u b=aXW2 w, 3
. dg _0gob _ @_ o
aa_abaa_laa_l 3 = 3
= qa=w; ,
61 a9
» 29 99977 —==1
awl aC ag

3

Back Propagation: g(w) = wiw, + 3wy

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c
ag ag
. — = —_— =
ob 1’60 1
" hb=aXw,
, 99 _0gob _ . db
da dbda da

= qa=w;

2 a=28
W1
36
Wy 3
3
2
W1 ag
dc dg)
Interpretation: A tiny increase in wy dg B

will result in an approximately 36w,
increase in g due to this cube function.

Back Propagation: g(w) = wiw, + 3w,

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]

= Think of the function as a composition of many functions, use chain rule.

= Can use derivative chain rule to compute dg/dw; and dg/dw,.

lg:b-|—c 2 a=8

"1 736
« 291,994

ob ~ ' ac
" hb=aXw, 3

.6g=6g6b= ab_ .

da 0bJda da 3
= qa=w;

W1 0
99 _ 9992 _3.3w? =36 = =

dw; da dw,

0
= =9 =997 Hint: b = a x 3 may be useful.
aWZ

Back Propagation: g(w) = wiw, + 3w,

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

u = 2
g=b+c Wy =
ob " dc
u b=aXW2 w, 3
. 29 _090b _ 0b _ 4 o _ 8
da dbda da o 3
. 99 _0g0b _ 9 _ . o _
awz_abawz_1awz_1 86=3 Wy 2 2
. a:W13 ac dg
. 09 0902 _ 3. 3,234 0g

3

Back Propagation: g(w) = wiw, + 3wy

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]

Think of the function as a composition of many functions, use chain rule.

g=b+c

a 99 _ 199 _
b~ 13

b=aXw,

dg _0gob _
da dbda
dg _ dg db

_ 2

ow, db dw,

a=w;

dg _ 0dg Oda

=3-3wf =36

dw; da dw,
C = 3W1

dg _ 0g Oc

ow; dc dw,

2
%%
136
3
w
? 8
3
2
%%
e 99 _
dc dg
How do we reconcile this seeming contradiction? dg

Top partial derivative means cube function
contributes 36w; and bottom p.d. means product
contributes 3w, so add them.

Back Propagation: g(w) = wiw, + 3w,

= Suppose we have g(w) = w;w, + 3w; and want the gradient at w = [2, 3]
" Think of the function as a composition of many functions, use chain rule.
" g=b+c

. 99 _ 4 99 _ 2

ab_l’ac_1 36

" hb=aXw,

ag dg ob db 3
- - _— = . - w

da _ b da Ga = 1°3=3 2 3
dg _0dg b ﬂ_ qQ

awz_abawz_1awz_1 86=3 3

- (Jl=W13 W1 2
dg _ 0dg Oda

=3-3w? =36 ac 99

dw; da dw, — =

u C:3W1

dg _ 0g Oc

=1-3=3

ow; dc dw,

Exercises: Gradient Ascent

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

Exercises: Gradient Ascent

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

H A H B O c O b O e O rF

A is a gradient ascent path since the gradient lines are orthogonal to the contours and the point towards the
maximum. B is also a gradient ascent path with a high learning rate. C is not because the path is going towards
the minimum instead of the maximum. D is not a gradient ascent path since the gradient is not orthogonal to
the contour lines. E is not a gradient ascent path since it starts going towards the minimum. F is not since it
goes towards the minimum and the gradients are not orthogonal to the contour lines.

Summary of Key Ideas

= Optimize probability of label given input max ll(w) = max Zlog Py |z w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
= Last layer = still logistic regression

= Now also many more layers before this last layer
= = computing the features
= - the features are learned rather than hand-designed

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 343)

Optimization Procedure: Gradient Ascent

"= Init

= for 1ter =1, 2, ..

w — w + a*x Vg(w)

= (v:learning rate --- tweaking parameter that needs to be
chosen carefully

" How? Try multiple choices
" Crude rule of thumb: update changes W about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)bt(i);w)

\ J

g(w)

= nit W

= for 1ter = 1, 2, ..

W 4— w + o * ZVIogP(y(i)]x(i);w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)bt(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

" init W
= for i1ter = 1, 2,

" pick random 7

w < w + o * Viog P(y)|z\9); w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)bt(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

"= Inlit W
= for 1ter = 1, 2,
" pick random subset of training examples J

W — w + ok ZVIogP(y(j)|:B(j);w)
jeJ

Computer Vision

Manual Feature Design

Features and Generalization

-
~
%
$ 3
¥
'z
»
!
e

Image HoG

Performance

ImageNet Error Rate 2010-2014

Traditional CV

T9%

60%
2
]
e

S 40%
L

20%

%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV

T9%

60%
2
]
e

S 40%
L

20%

%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

7T9%
60%
o
[35}
e
S 40%
I
20%
AlexNet
%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

T79%
B60%
=
[25]
v
S 40%
I
20% E
AlexNet i B
7% H
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

T79%
B60%
=
[25]
v
S 40%
I
20% E
AlexNet i B
7% -
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Machine Translation

Google Neural Machine Translation (in production)

Encoder €o S— 1 —s e ——— es ——— €4 o es —ex

Decoder do d; ' » o

	Slide 1: CS 343H: Artificial Intelligence
	Slide 5: Linear Classifiers
	Slide 7: Non-Linear Separators
	Slide 8: Non-Linear Separators
	Slide 11: Perceptron
	Slide 12: Two-Layer Perceptron Network
	Slide 13: N-Layer Perceptron Network
	Slide 14: Perceptron
	Slide 15
	Slide 16: How to get probabilistic decisions?
	Slide 17: Find the best w in logistic regression?
	Slide 18: Multiclass Logistic Regression
	Slide 19: Best w?
	Slide 20: Two-Layer Neural Network
	Slide 21: N-Layer Neural Network
	Slide 22: Best w?
	Slide 23: Hill Climbing
	Slide 24: 1-D Optimization
	Slide 27: Gradient Ascent
	Slide 29: Gradient in n dimensions
	Slide 30: Deep Neural Network: Also Learn the Features!
	Slide 31: How about computing all the derivatives?
	Slide 32: How about computing all the derivatives?
	Slide 33: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 34: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 35: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 36: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 37: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 38: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 39: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 40: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 41: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 42: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 44: Exercises: Gradient Ascent
	Slide 45: Exercises: Gradient Ascent
	Slide 46: Summary of Key Ideas
	Slide 47: Optimization Procedure: Gradient Ascent
	Slide 48: Batch Gradient Ascent on the Log Likelihood Objective
	Slide 50: Stochastic Gradient Ascent on the Log Likelihood Objective
	Slide 51: Mini-Batch Gradient Ascent on the Log Likelihood Objective
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Performance
	Slide 57: Performance
	Slide 58: Performance
	Slide 59: Performance
	Slide 60: Performance
	Slide 62: Machine Translation

