
CS 343H: Artificial Intelligence

Deep Learning

Prof. Yuke Zhu — The University of Texas at Austin
[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1


f1

f2

f3

w1

w2

w3

>0?

Non-Linear Separators

▪ Data that is linearly separable works out great for linear decision rules:

▪ But what are we going to do if the dataset is just too hard?

▪ How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next slide adapted from Ray Mooney, UT

Non-Linear Separators

▪ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ: x → φ(x)

Perceptron


x1

x2

x3

w1

w2

w3

>0?

Two-Layer Perceptron Network



x1

x2

x3

w13

w23

w33

>0?



w12

w22

w32

>0?


w11

w21

w31

>0?



w1

w2

w3

>0?

N-Layer Perceptron Network



x1

x2

x3

>0?

 >0?

 >0?



 >0?

 >0?

 >0?

 >0?

 >0?

 >0?…

…

…

>0?

Perceptron


x1

x2

x3

w1

w2

w3

>0?

▪ Objective: Classification Accuracy

How to get probabilistic decisions?

▪ Activation:

▪ If very positive → probability to approach 1

▪ If very negative → probability to approach 0

▪ Sigmoid function

Find the best w in logistic regression?

▪ Maximum likelihood estimation:

with:

= That’Logistic Regression

Multiclass Logistic Regression

▪ Multi-class linear classification

▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction w/highest score wins:

▪ How to make the scores into probabilities?

original activations softmax activations

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Two-Layer Neural Network



x1

x2

x3

w13

w23

w33

>0?



w12

w22

w32

>0?


w11

w21

w31

>0?



w1

w2

w3

N-Layer Neural Network



x1

x2

x3

>0?

 >0?

 >0?



 >0?

 >0?

 >0?

 >0?

 >0?

 >0?…

…

…

Best w?

▪ Optimization

▪ i.e., how do we solve:

Hill Climbing

▪ Recall from CSPs lecture: simple, general idea
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ What’s particularly tricky when hill-climbing for multiclass
logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?

1-D Optimization

▪ Could evaluate and

▪ Then step in best direction

▪ Or, evaluate derivative:

▪ Tells which direction to step into

▪ Idea:

▪ Start somewhere

▪ Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Gradient in n dimensions

Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector ☺

→just run gradient ascent

+ stop when log likelihood of hold-out data starts to decrease

▪ Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

◼ But neural net f is never one of those?

◼ No problem: CHAIN RULE:

If

Then

→ Derivatives can be computed by following well-defined procedures

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎
=? ? ? ? ?

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 1

𝜕𝑏

𝜕𝑎
= 1 ⋅ 3 = 3

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

3

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 1

𝜕𝑏

𝜕𝑎
= 1 ⋅ 3 = 3

▪ 𝑎 = 𝑤1
3

▪
𝜕𝑔

𝜕𝑤1
=? ? ? ? ?

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

3

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 1

𝜕𝑏

𝜕𝑎
= 1 ⋅ 3 = 3

▪ 𝑎 = 𝑤1
3

▪
𝜕𝑔

𝜕𝑤1
=

𝜕𝑔

𝜕𝑎

𝜕𝑎

𝜕𝑤1
= 3 ⋅ 3𝑤1

2 = 36

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

336

Interpretation: A tiny increase in 𝑤1
will result in an approximately 36𝑤1
increase in g due to this cube function.

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 1

𝜕𝑏

𝜕𝑎
= 1 ⋅ 3 = 3

▪ 𝑎 = 𝑤1
3

▪
𝜕𝑔

𝜕𝑤1
=

𝜕𝑔

𝜕𝑎

𝜕𝑎

𝜕𝑤1
= 3 ⋅ 3𝑤1

2 = 36

▪
𝜕𝑔

𝜕𝑤2
=? ? ?

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

336

Hint: 𝑏 = 𝑎 × 3 may be useful.

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 1

𝜕𝑏

𝜕𝑎
= 1 ⋅ 3 = 3

▪
𝜕𝑔

𝜕𝑤2
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑤2
= 1

𝜕𝑏

𝜕𝑤2
= 1 ⋅ 8 = 8

▪ 𝑎 = 𝑤1
3

▪
𝜕𝑔

𝜕𝑤1
=

𝜕𝑔

𝜕𝑎

𝜕𝑎

𝜕𝑤1
= 3 ⋅ 3𝑤1

2 = 36

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

336

8

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 1

𝜕𝑏

𝜕𝑎
= 1 ⋅ 3 = 3

▪
𝜕𝑔

𝜕𝑤2
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑤2
= 1

𝜕𝑏

𝜕𝑤2
= 1 ⋅ 8 = 8

▪ 𝑎 = 𝑤1
3

▪
𝜕𝑔

𝜕𝑤1
=

𝜕𝑔

𝜕𝑎

𝜕𝑎

𝜕𝑤1
= 3 ⋅ 3𝑤1

2 = 36

▪ 𝑐 = 3𝑤1

▪
𝜕𝑔

𝜕𝑤1
=

𝜕𝑔

𝜕𝑐

𝜕𝑐

𝜕𝑤1
= 1 ⋅ 3 = 3

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

336

8

3

How do we reconcile this seeming contradiction?

Top partial derivative means cube function

contributes 36𝑤1 and bottom p.d. means product

contributes 3𝑤1 so add them.

Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.

▪ 𝑔 = 𝑏 + 𝑐

▪
𝜕𝑔

𝜕𝑏
= 1,

𝜕𝑔

𝜕𝑐
= 1

▪ 𝑏 = 𝑎 × 𝑤2

▪
𝜕𝑔

𝜕𝑎
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 1

𝜕𝑏

𝜕𝑎
= 1 ⋅ 3 = 3

▪
𝜕𝑔

𝜕𝑤2
=

𝜕𝑔

𝜕𝑏

𝜕𝑏

𝜕𝑤2
= 1

𝜕𝑏

𝜕𝑤2
= 1 ⋅ 8 = 8

▪ 𝑎 = 𝑤1
3

▪
𝜕𝑔

𝜕𝑤1
=

𝜕𝑔

𝜕𝑎

𝜕𝑎

𝜕𝑤1
= 3 ⋅ 3𝑤1

2 = 36

▪ 𝑐 = 3𝑤1

▪
𝜕𝑔

𝜕𝑤1
=

𝜕𝑔

𝜕𝑐

𝜕𝑐

𝜕𝑤1
= 1 ⋅ 3 = 3

∎3

×

×

+

𝑤1

𝑤2

𝑤1

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔

𝜕𝑔
= 1

2

3

2

1

𝜕𝑔

𝜕𝑏
= 1

𝜕𝑔

𝜕𝑐
= 1

336

8

3

𝛻𝑔 =
𝜕𝑔

𝜕𝑤1
,
𝜕𝑔

𝜕𝑤2
= [39, 8]

Exercises: Gradient Ascent

Exercises: Gradient Ascent

Summary of Key Ideas

▪ Optimize probability of label given input

▪ Continuous optimization
▪ Gradient ascent:

▪ Compute steepest uphill direction = gradient (= just vector of partial derivatives)

▪ Take step in the gradient direction

▪ Repeat (until held-out data accuracy starts to drop = “early stopping”)

▪ Deep neural nets
▪ Last layer = still logistic regression

▪ Now also many more layers before this last layer
▪ = computing the features

▪ → the features are learned rather than hand-designed

▪ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 343)

Optimization Procedure: Gradient Ascent

▪ init

▪ for iter = 1, 2, …

▪ : learning rate --- tweaking parameter that needs to be
chosen carefully

▪ How? Try multiple choices

▪ Crude rule of thumb: update changes about 0.1 – 1 %

Batch Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …

▪ pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …

▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

Computer Vision

Manual Feature Design

Features and Generalization

Image HoG

Performance

graph credit Matt

Zeiler, Clarifai

Performance

graph credit Matt

Zeiler, Clarifai

Performance

graph credit Matt

Zeiler, Clarifai

AlexNet

Performance

graph credit Matt

Zeiler, Clarifai

AlexNet

Performance

graph credit Matt

Zeiler, Clarifai

AlexNet

Machine Translation
Google Neural Machine Translation (in production)

	Slide 1: CS 343H: Artificial Intelligence
	Slide 5: Linear Classifiers
	Slide 7: Non-Linear Separators
	Slide 8: Non-Linear Separators
	Slide 11: Perceptron
	Slide 12: Two-Layer Perceptron Network
	Slide 13: N-Layer Perceptron Network
	Slide 14: Perceptron
	Slide 15
	Slide 16: How to get probabilistic decisions?
	Slide 17: Find the best w in logistic regression?
	Slide 18: Multiclass Logistic Regression
	Slide 19: Best w?
	Slide 20: Two-Layer Neural Network
	Slide 21: N-Layer Neural Network
	Slide 22: Best w?
	Slide 23: Hill Climbing
	Slide 24: 1-D Optimization
	Slide 27: Gradient Ascent
	Slide 29: Gradient in n dimensions
	Slide 30: Deep Neural Network: Also Learn the Features!
	Slide 31: How about computing all the derivatives?
	Slide 32: How about computing all the derivatives?
	Slide 33: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 34: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 35: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 36: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 37: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 38: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 39: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 40: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 41: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 42: Back Propagation: g w , w 1 w 2 3 w 1
	Slide 44: Exercises: Gradient Ascent
	Slide 45: Exercises: Gradient Ascent
	Slide 46: Summary of Key Ideas
	Slide 47: Optimization Procedure: Gradient Ascent
	Slide 48: Batch Gradient Ascent on the Log Likelihood Objective
	Slide 50: Stochastic Gradient Ascent on the Log Likelihood Objective
	Slide 51: Mini-Batch Gradient Ascent on the Log Likelihood Objective
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Performance
	Slide 57: Performance
	Slide 58: Performance
	Slide 59: Performance
	Slide 60: Performance
	Slide 62: Machine Translation

