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Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1
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Non-Linear Separators

▪ Data that is linearly separable works out great for linear decision rules:

▪ But what are we going to do if the dataset is just too hard? 

▪ How about… mapping data to a higher-dimensional space:
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This and next slide adapted from Ray Mooney, UT



Non-Linear Separators

▪ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ:  x → φ(x)



Perceptron
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Two-Layer Perceptron Network
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N-Layer Perceptron Network
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Perceptron
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▪ Objective: Classification Accuracy 





How to get probabilistic decisions?

▪ Activation:

▪ If very positive → probability to approach 1

▪ If  very negative → probability to approach 0

▪ Sigmoid function



Find the best w in logistic regression? 

▪ Maximum likelihood estimation:

with:

= That’Logistic Regression



Multiclass Logistic Regression

▪ Multi-class linear classification

▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction w/highest score wins:

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



Two-Layer Neural Network
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N-Layer Neural Network
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Best w?

▪ Optimization

▪ i.e., how do we solve:



Hill Climbing

▪ Recall from CSPs lecture: simple, general idea
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?



1-D Optimization

▪ Could evaluate and

▪ Then step in best direction

▪ Or, evaluate derivative:

▪ Tells which direction to step into



▪ Idea: 

▪ Start somewhere

▪ Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



Gradient in n dimensions



Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector ☺

→just run gradient ascent 

+ stop when log likelihood of hold-out data starts to decrease



▪ Derivatives tables:

How about computing all the derivatives?

[source:  http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

◼ But neural net f is never one of those?

◼ No problem: CHAIN RULE:

If 

Then

→ Derivatives can be computed by following well-defined procedures



Back Propagation: 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1

▪ Suppose we have 𝑔 𝒘 = 𝑤1
3𝑤2 + 3𝑤1 and want the gradient at 𝒘 = [2, 3]

▪ Think of the function as a composition of many functions, use chain rule.
▪ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤1 and 𝜕𝑔/𝜕𝑤2.
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Interpretation: A tiny increase in 𝑤1
will result in an approximately 36𝑤1
increase in g due to this cube function.
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Hint: 𝑏 = 𝑎 × 3 may be useful.
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How do we reconcile this seeming contradiction?

Top partial derivative means cube function 

contributes 36𝑤1 and bottom p.d. means product 

contributes 3𝑤1 so add them.
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𝛻𝑔 =
𝜕𝑔

𝜕𝑤1
,
𝜕𝑔

𝜕𝑤2
= [39, 8]



Exercises: Gradient Ascent



Exercises: Gradient Ascent



Summary of Key Ideas

▪ Optimize probability of label given input

▪ Continuous optimization
▪ Gradient ascent:

▪ Compute steepest uphill direction = gradient (= just vector of partial derivatives)

▪ Take step in the gradient direction

▪ Repeat (until held-out data accuracy starts to drop = “early stopping”)

▪ Deep neural nets
▪ Last layer = still logistic regression

▪ Now also many more layers before this last layer
▪ = computing the features

▪ → the features are learned rather than hand-designed

▪ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 343)



Optimization Procedure: Gradient Ascent

▪ init

▪ for iter = 1, 2, …

▪ : learning rate --- tweaking parameter that needs to be 
chosen carefully

▪ How? Try multiple choices

▪ Crude rule of thumb: update changes       about 0.1 – 1 %



Batch Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …



Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …

▪ pick random j

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …

▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one



Computer Vision



Manual Feature Design



Features and Generalization

Image HoG
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Performance

graph credit Matt 
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AlexNet



Machine Translation
Google Neural Machine Translation (in production)
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