CS 343: Artificial Intelligence

CSPs Il + Local Search

Prof. Yuke Zhu

The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro td Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

Homework 1: Search
= Reminder: Due Monday 1/30 at 11:59 pm

Project 1: Search
= Reminder: Due Wednesday 2/1 at 11:59 pm

Readings: Adversarial Search, Utilities
= Textbook Chapters 5 (Sections 5.1-5.5) and 16 (Sections 16.1-16.3)
= Due Monday 1/30, at 5:00 pm.

Homework 2: CSPs, Games, Utilities
= Has been released! Due Monday 2/13, at 11:59 pm.

Today

= Efficient Solution of CSPs

= |ocal Search

Last time: CSPs

= CSPs:
= Variables @
= Domains
= Constraints

= Implicit (provide code to compute)

= Explicit (provide a list of the legal tuples)
= Unary / Binary / N-ary

i
H

£

= Goals:

= Here: find any solution
= Also: find all, find best, etc.

Last time: Backtracking

o

—]

¢ & ¢

i =
o,

Last time: Arc Consistency of an Entire CSP

A simple form of propagation makes sure all arcs are consistent:

NT WA NT Q NSW vV SA

, Q
A \LW I | 1 [m [_"n] O

\Y

Important: If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

What’s the downside of enforcing arc consistency?

S~— —

Remember: Delete
from the tail!

Last time: Limitations of Arc Consistency

= After enforcing arc O
consistency: ‘
= Can have one solution left ¢ 0

= Can have multiple solutions left

= Can have no solutions left (and @
not know it) |
= Arc consistency still runs inside @ ¢’
a backtracking search! What went

wrong here?

Last time: Improving Backtracking

General-purpose ideas give huge gains in speed
= ... butit’s all still NP-hard

Filtering: Can we detect inevitable failure early?

Ordering:
= Which variable should be assigned next? (MRV)
= |n what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?

Problem Structure

Extreme case: independent subproblems @

= Example: Tasmania and mainland do not interact m "@

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into 0
subproblems of only c variables:
= Worst-case solution cost is O((n/c)(d®)), linear in n @
= E.g.,n=80,d=2,c=20
= 280 =4 billion years at 10 million nodes/sec
= (4)(2%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

= Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

= This property also applies to probabilistic reasoning (later): an example of the relation between
syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

j>
®®®®

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X;)
= Assign forward: For i =1 : n, assign X; consistently with Parent(X;)

= Runtime: O(n d?) (why?)

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have been
reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets

Nearly Tree-Structured CSPs

@‘@'@ oG
-» £

@ O,

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

= Cutset size c gives runtime O((d¢) (n-c) d?), very fast for small c

[Choose a cutset J
[Instantiate the cutset J

(all possible ways)

Compute residual CSP for
each assighnment

Solve the residual CSPs
(tree structured), removing any

inconsistent domain values w.r.t.

cutset assighment

J

Cutset Conditioning

":

®‘@‘@

e
<33 <8
l l
D— - D—
© ©

O O

—

‘!9

]

(n-c)d?

Exercise: Cutset Exercise

Tree-structured CSP

Now we want to color all nodes in the graph with
color Red, Green, Blue and Yellow. Any pair of
connected nodes cannot have the same color.

(1) How many minimal cutsets are there? What
are they? (Note: a minimal cutset is a cutset
with the smallest number of nodes)

(2) How many residual tree-structured CSPs do
we have after cutset conditioning?

Iterative Algorithms for CSPs

Local search methods typically work with “complete” states, i.e., all variables assigned

To apply to CSPs:
= Take an assignment with unsatisfied constraints
= QOperators reassign variable values
= No fringe! Live on the edge.

9o 69

Algorithm: While not solved,
= Variable selection: randomly select any conflicted variable

= Value selection: min-conflicts heuristic:
= Choose a value that violates the fewest constraints
= i.e., hill climb with h(n) = total number of violated constraints

Can get stuck in local minima (we’ll come back to this idea in a few slides)

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks

Video of Demo lterative Improvement — n Queens

11:57 AM

cHaBO®

Performance of Min-Conflicts

= Runtime of min-conflicts is on n-queens is roughly independent of problem size!
= Why?? Solutions are densely distributed in state space

= Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability
(e.g., n=10,000,000) in ~50 steps!

= The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

. number of constraints
number of variables

CPU
time

L

|
critical
ratio

Summary: CSPs

= CSPs are a special kind of search problem:
= States are partial assignments
= Goal test defined by constraints

= Basic solution: backtracking search

= Speed-ups:
= Filtering
= Ordering
= Structure

= |terative min-conflicts is often effective in practice

Local Search

i

Local Search

Tree search keeps unexplored alternatives on the fringe (ensures completeness)
Local search: improve a single option until you can’t make it better (no fringe!)

New successor function: local changes

| o

999

Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
= |f no neighbors better than current, quit

= What’s bad about this approach?
= Complete?
= Optimal?

= What’s good about it? -~

Hill Climbing Diagram

objective function nlobal maximum

shoulder

\ local maximum

"flat” local maximum

state space
curren

state

Exercise: Hill Climbing

M3
M1 M2 M4

A

=S

A B C D E

Simulated Annealing

Idea: Escape local maxima by allowing downhill moves

= But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
1, a "temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do
T'— schedule]t]
if 7'= 0 then return current
next < a randomly selected successor of current
AE+— VALUE[nezt] — VALUE[current]
if AE > 0 then current < next

A E/T

else current <« next only with probability e

Shake!

Shake!

Genetic Algorithms

24748552 ﬁ
32752411 23
\
24415124 20
\
32543213 11
Fithess

= Genetic algorithms use a natural selection metaphor
= Keep best N hypotheses at each step (selection) based on a fitness function
= Also have pairwise crossover operators, with optional mutation to give variety

= Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

Ny does crossover make sense here?
nen wouldn’t it make sense?

nat would mutation be?

hat would a good fitness function be?

Gradient Methods

Continuous state spaces
= Problem! Cannot select optimal successor

of df Of Of of 8f>

v = 9 9) Y 9
d <3$1 Oy1 Oxo Oyp Ox3 0y3

Discretization or random sampling T — x + an(ag)
= Choose from a finite number of choices

Continuous optimization: Gradient ascent

= Take a step along the gradient (vector of partial "-,
derivatives) | v
= Estimate gradient from samples!

What if you can’t compute gradient? 7 3
= “Stochastic gradient descent” I

= i.e. maybe you can only sample the function
= We will return to this in neural networks / deep learning 15P2

.) . 2 *
. SP4

(4
SP1 sp3¥

Next Time: Adversarial Search!

