S JeE=t

CS 343: Artificial Intelligence

| Deep Learning

W
,-1’/\
== 43‘{
P

\Akv’bf

S v %7, g
ISP RE
)))) =)
) \

‘w
3\7\""&0
)

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =) w; - fi(z) =w- f(x)

If the activation is:
= Positive, output +1
= Negative, output -1

2.

Non-Linear Separators

= Data that is linearly separable works out great for linear decision rules:

= But what are we going to do if the dataset is just too hard?

@ ® o—0— *0—0—0—0—0—
0 X

= How about... mapping data to a higher-dimensional space:

This and next slide adapted from Ray Mooney, UT

Non-Linear Separators

= General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

.
o o o
o ® | o
3 e
!
!
3
k . .
*, .
. K K

. e,

: y

y '

. ‘.
*, .
'
*, . i
' 4
», o *e
. .
. .
,,,,,,,,
e o

Perceptron

x| ||x
EIE
M
VvV
o
~J

Two-Layer Perceptron Network

N-Layer Perceptron Network

Perceptron

W

= Objective: Classification Accuracy

m

[*C(w) = % Z (Sign(wa(x(i))) —— y(i))

1—=1
= |ssue: many plateaus 2 how to measure incremental progress toward a correct
label?

How to get probabilistic decisions?

= Activation: 2z =w - f(x)
" If 2z=w-f(z) verypositive 2> want probability goingto 1
" If z2=w-f(x) verynegative 2 want probability goingto 0

= Sigmoid function b ‘1 R
@)= 1=
gb() 1l +e % J

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

. . 1
| () — 1)y

1

P(y" = =1z w) = 1 | & o—w @)

= Logistic Regression

Multiclass Logistic Regression

» Multi-class linear classification wy - J biggest
w1
= A weight vector for each class: UJy
= Score (activation) of a class y: Zy — Wy - f(a;‘) w3
w?
= Prediction w/highest score wins: ¢y = arg max Wy - f(:zz) . f w3z - f
(J w2 biggest
biggest
" How to make the scores into probabilities?
z z z
e~! e~ e~

Z1,22,23 7 y y

€%l + €72 + €73 efl - e*2 ye*s el +e*2 + €73

\ J \)
| |

original activations softmax activations

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

oWy (1) f(z)

e (4) 1-(9) . o)) —
with: P(y‘\"|x\"; w) Zyewy‘f(x(i))

= Multi-Class Logistic Regression

Two-Layer Neural Network

Wso W3
Yy =
o=
) W3
Wi3
S e
W33
%
Z —>

N-Layer Neural Network

Best w?

= Optimization

= j.e., how do we solve:

max [l(w) = max ZlogP(y(i)\w(i);w)

w

Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
" Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What’s particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

1-D Optimization

" Could evaluate g(wg 4+ h) and g(wy — h)

" Then step in best direction

dg(wo)

, , , wo + h) — glwg — h
= Or, evaluate derivative: D Z}ng}) 9o)% (wo —)

= Tells which direction to step into

Gradient Ascent

= |dea:
= Start somewhere

= Repeat: Take a step in the gradient direction

Figure source: Mathworks

Gradient in n dimensions

Deep Neural Network: Also Learn the Features!

" Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i)M(i);w)

just w tends to be a much, much larger vector ©

—>just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

How about computing all the derivatives?

= Derivatives tables:

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

4 =0
ax
d
—(x)=1
dx

d . du
—(au)=a—

dx dx

d du dv
—(ut+tv-w)=—+——-—
dx dx dx

d _ dv du
—(uv)=u—=+v—

dx dx dx

i(z_{)_ ldu u dv

vdx v odx

dx\ v

i(u")= nu"™! au
dx dx
d 1 du
—(Vu)=—F7—
dx 2-Ju dx

d '1)_ | du
(/7(;‘ TP dx

d(1)Y_ n du
d.r(u”) ™ dx

de g dp.
E[f(u)] = du[_f(u_)]

ﬂ
dx

dw

dx

d d | du
—[Inu]=—[log,u]=—=—
dx dx u dx
dr, _ | du
['05., u] =log e
dx ' T dx
4 gudt
dx dx
d . du
—a"=a"lna—
dx dx
d ;. 1 du dv
—(u")=vu"" —+Inu v —
dx dx dx
d . du
—SiNU = CoSu—
dx dx
d . du
—COSU = —SIinu—
dx dx
¢ > du
—tanu = sec” u—
dx dx
) 2 du
cotu =-—cscu
dx dx
d du
secu = secutany—
dx dx
d _ ~ du
CSCH =—Cscucotu
dx dx

How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

f f(x) = g(h(z))
Then f'(z) = ¢ (h(z))h' (z)

—> Derivatives can be computed by following well-defined procedures

Back Propagation: g(w) = wiw, + 3w,

» Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]
" Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.
" g=b+c W, 2 ()
a 99 _ 4 99 _
ob L dc 1

Back Propagation: g(w) = wiw, + 3w,

» Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W12 ()
] a_g—]_ag—

b~ L1gc = 1
u =
b = axXw, W, 3
. dg _0dgob
da b ada 3
2

Back Propagation: g(w) = wiw, + 3wy _

Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]

Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

g=b+c W12 ()
] a_g—]_ag—

b~ g L
b = axXw, W, 3
« 29_99% _99979

da 0boda 3

Back Propagation: g(w) = wiw, + 3w,

» Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W12 ()
] a_g—]_ag—

b~ Lge =1

" b =axXw, W, 3
. dg 0gob _ a_b_ a0
ava_abaa_1aa_1 3=3 3

Back Propagation: g(w) = wiw, + 3wy _

» Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W12 ()
] a_g—]_ag—

op~ a1
" b =axXw, W, 3
dg dg ob db
u = = — = . =
da 0boda 16(1 1-3=3 3
= a=w;} ,

Back Propagation: g(w) = wiw, + 3w,

» Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c b 2
136
ob " dc
= ph = aAXW- W, 3
dg dg ob db
u = = —_— = . =
da 0bda 16(1 1-3 3 3
= a=w;} ,
- 29 99098 _ 3. 3,236 "
owq "~ da owq o 1=
Interpretation: A tiny increase in wy dg

will result in an approximately 36w,
increase in g due to this cube function.

Back Propagation: g(w) = wiw, + 3wy _

» Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

" g=b+c W12
- 99 _199_4

ab ~ "’ ac

" h=axXw, 3

Back Propagation: g(w) = wiw, + 3w,

» Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]

= Think of the function as a composition of many functions, use chain rule.
= Can use derivative chain rule to compute dg/dw; and dg/dw,.

[| — 2
g=b+c W,
ob " dc
" b =axXw, W, 38
, 99 _0gob _ _db __ . .,
ava_abaa_1aa_1 3=3 3
. 09 _0gob _ 0b _ . o
6W2_6b6W2_16W2_1 6=9 Wy 2
= a=wi3
» 29 9992 _ 3. 3y2 =36

Back Propagation: g(w) = wiw, + 3w,

Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]

Think of the function as a composition of many functions, use chain rule.

g=b+c
. %9 _ 499 _ 2
b~ g1 "1 36
b = aXWZ
_ 09 _9gdb _ _db _ . ., _ 3
da baa toa LS T W 3
. 99 _9gob _ . 0b _ . o _
awz_abawz_1awz_1 6=38 3
a = Wf Wq Z
3
« 29 9992 _ 3. 3y2-36
owq da 0wq
. . How do we reconcile this seeming contradiction? g
c = 3wy Top partial derivative means cube function
. 99 _0g 0c _ 1.3 = / contributes 36w; and bottom p.d. means product

ow; dc ow, ' contributes 3w, so add them.

Back Propagation: g(w) = wiw, + 3w,

» Suppose we have g(w) = W13W2 + 3w; and want the gradient at w = |2, 3]
" Think of the function as a composition of many functions, use chain rule.
" g=b+c

dg _ . 99 _ 2
" b =1 "1 T36
u b = aXWZ
dg dg ob db 3
] = = —_— = . =
50 boa taa L 373 e
dg dg 0b db
] = = _— = . =
aWZ ob aWZ aWZ 1 8 8 3
"a= Wf Wq 2
3
dg dg da 2
u = = =
owq da 0wq 3 3W1 36
" ¢ =3wq
d dg 0
u 9 = 9 ¢ = 1 . 3 = 3

Gradient Ascent

= Punchline: If we can somehow compute our gradient, we can use gradient ascent.
= How do we compute the gradient?

= Purely analytically.
= Gives exact symbolic answer. Infeasible for functions of lots of parameters or input values.

» Finite difference approximation.

= Gives approximation, very easy to implement.

= Runtime for Il: O(NM), where N is the number of parameters, and M is number of data points.
= Back propagation.

= Gives exact answer, difficult to implement.

= Runtime forll: O(NM)

(w) = logp(y =y |f(z?); w)
1=1

Exercises: Gradient Ascent

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

Exercises: Gradient Ascent

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

H A [! O ¢ O o O e O rF

A is a gradient ascent path since the gradient lines are orthogonal to the contours and the point towards the
maximum. B is also a gradient ascent path with a high learning rate. C is not because the path is going towards
the minimum instead of the maximum. D is not a gradient ascent path since the gradient is not orthogonal to
the contour lines. E is not a gradient ascent path since it starts going towards the minimum. F is not since it
goes towards the minimum and the gradients are not orthogonal to the contour lines.

Summary of Key ldeas

= Optimize probability of label given input max ll(w) = max Zlogp(y(“\w“);w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets

= Last layer = still logistic regression

= Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 343)

Optimization Procedure: Gradient Ascent

" Init

= for 1iter =1, 2, ..

w — w~+ a*x Vg(w)

" «v:learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes w about0.1-1%

Batch Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y“Hx“%w)

\ J

g(w)

" init W

= for 1iter =1, 2, ..

W — W+ Q * ZVlogP(y(i)]az(i);w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y“Hx“%w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

" Inlit w
= for 1ter =1, 2,

" pick random J

w < w + o« Viog P(yY)]z\9); w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [[(w) = max ZlogP(y“Hx“%w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" Init w
= for 1ter =1, 2,
" pick random subset of trailning examples J

W — w + ok ZVlogP(y(j)]a:(j);w)
jedJ

Computer Vision

Manual Feature Design

Features and Generalization

Performance

ImageNet Error Rate 2010-2014

Traditional CV

79%

60%
o
(<}
(v

S 40%
W

20%

7%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV

79%

60%
e
2]
o«

S 40%
uj

20%

7%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

79%
60%
2
[++]
(4
S 40%
uj
20%
AlexNet
7%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

79%
60%
2
[++]
(4
S 40%
uj
=}
20% &
i !
AlexNet . i
7% "
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

79%
60%
2
[++]
(4
S 40%
uj
=}
20% &
i !
AlexNet - i
7% =
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

