CS 343: Artificial Intelligence
Bayes Nets: Sampling

o< ~
S \/‘
> O y

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Bayes Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values

P(X|ay...an)

= Bayes nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(:Cl, o, ... :Bn) = H P(xz-|parents(XZ-))
=1




Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = Idea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration
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General Variable Elimination

Query:  P(Q|E1 =eq,... Er = eg) , =T

Start with initial factors: 0z
= Local CPTs (but instantiated by evidence) oo |

While there are still hidden variables (not Q . , |
or evidence): f‘. -.\‘

= Pick a hidden variable H g — l /’
= Join all factors mentioning H i ‘»! g -
Q _"'l\\ 4

= Eliminate (sum out) H

Join all remaining factors and normalize 1
-l X



Variable Elimination Efficiency

Interleave joining and marginalizing, instead
of fully joining all at once (i.e. enumeration)

n
K )

dk entries computed for a factor over k
variables with domain sizes d

Ordering of elimination of hidden variables
can affect size of factors generated

Worst case: running time exponential in the
size of the Bayes net (NP-hard)



Approximate Inference: Sampling
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Sampling

= Basicidea » Why sample?

* Draw N samples from a sampling distribution S = Learning: get samples from a distribution
you don’t know

= Compute an approximate posterior probability
= [nference: getting samples can be faster

than computing the right answer (e.g.

= Show this converges to the true probability P
with variable elimination)




Sampling

= Sampling from given distribution = Example
= Step 1: Get sample u from uniform
distribution over [0, 1) C P(C)
. - < . -
E.g. random() in python red 0.6 0<u<0.6,— & red
0.6 <u<0.7, - C = green
: : green 0.1
= Step 2: Convert this sample u into an 0.7<u<1,— C = blue
outcome for the given distribution by blue 0.3 -

having each outcome associated with a
sub-interval of [0,1) with sub-interval
size equal to probability of the
outcome

= |f random() returns u = 0.83,
then our sample is C = blue

o 5 o

= E.g, after sampling 8 times:



Sampling in Bayes Nets

= Prior Sampling
= Rejection Sampling

= Likelihood Weighting

Gibbs Sampling



Prior Sampling




Prior Sampling

PC)
+C 0.5
-C 0.5

P(S|C)
+s | 0.1
+c | -s | 0.9
+s | 0.5
-c | -s |05
P(W|S, R)
+w | 0.99
+s +r -w | 0.01
+w | 0.90
-r -W 0.10
+w | 0.90
- +r -w | 0.10
+w | 0.01
-r -w | 0.99

P(R|C)

+C

+r

0.8

0.2

+r

0.2

0.8

Samples:

+C, -S, +r, +W

-C, +S, -, +W




Prior Sampling

= For i=1, 2; ceey N
= Sample x; from P(X, | Parents(X:))
= Return (Xll X9y e Xn)




Prior Sampling

= This process generates samples with probability:

T
Sps(zy...xn) = || P(x;|Parents(X;)) = P(z1...zn)
1=1
...I.e. the BN’s joint probability

= Let the number of samples of a particular event be Npg(x1...xn)
and the total number of samples of all events be N.

= Then lim P(zq,...,zn) = lim Npg(x1,...,2n)/N
N—o0 N—o0
— SPS($17°"7$H)
= P(xq1...20)

= |.e., the sampling procedure is consistent



Example

= We'll get a bunch of samples from the BN:
+C, -S, +r, +W
+C, +s, +r, +W
-C, +S, +r, -W
-C, -S, +r, +W

+C, -S, -r, +W
= |f we want to know P(W)
= We have counts <+w:4, -w:1>
= Normalize to get P(W) = <+w:0.8, -w:0.2>
= This will get closer to the true distribution with more samples
= (Can estimate anything else, too
= What about P(C | +w)? P(C | +r, +w)? P(C | -r, -w)?
= Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling




Rejection Sampling

= Let’s say we want P(C)

= No point keeping all samples around
= Just tally counts of C as we go

= Let’s say we want P(C | +s)

= Same thing: tally C outcomes, but ignore
(reject) samples which don’t have S=+s

= This is called rejection sampling

—+C—~=5;, 1 +W—
= |tis also consistent for conditional +C, +S, +r, +W
probabilities (i.e., correct in the limit) "G, ¥s, 41, W

|C,‘5, III FUV

’ 4 )



Rejection Sampling

= [N: evidence instantiation
= Fori=1, 2, ..., n
= Sample x, from P(X. | Parents(X.))

= If x, not consistent with evidence

= Reject: Return, and no sample is generated in this
cycle

= Return (xy, X, ..., X;,)




Likelihood Weighting




Likelihood Weighting

= Problem with rejection sampling: = |dea: fix evidence variables and sample the
= |f evidence is unlikely, rejects lots of samples rest
= Evidence not exploited as you sample = Problem: sample distribution not consistent!

= Consider P(Shape | blue)

= Solution: weight by probability of evidence given
parents

pyramid—green pyramid, blue
pyramid—red pyramid, blue

sphere, Dblue @ sphere, blue
etbe,—red

cube, blue
sphere, blue




Likelihood Weighting

P(C
+C 0.5
-C 0.5

P(S|C)
+s | 0.1
+c | -s | 0.9
+s | 0.5
-c | -s |05
P(W|S, R)
+w | 0.99
+s +r -w | 0.01
+w | 0.90
-r -W 0.10
+w | 0.90
- +r -w | 0.10
+w | 0.01
-r -w | 0.99

P(R|C)

+r

0.8

+C | -r

0.2

+r

0.2

0.8

Samples:

w = 1.0x0.1x0.99

+C, +S, +r, +W




Likelihood Weighting

= |N: evidence instantiation
= w=1.0
= fori=1,2,..n
= if X;is an evidence variable

= X, = observation x; for X;
= Setw=w * P(x; | Parents(X;))
= else
= Sample x; from P(X; | Parents(X;))

= return (x4, Xy, ..., X,), W




Likelihood Weighting

Sampling distribution if z sampled and e fixed evidence

l
Sws(z,e) = || P(z]|Parents(Z;)) <

=1
Now, samples have weights o
m

w(z,e) = || P(e;|Parents(E;))
i=1

Together, weighted sampling distribution is consistent

[ m
Sws(z,€) - w(z,e) = | | P(zi|Parents(z;)) | [ P(e;|Parents(e;))

1=1 1=1

= P(z,e)



Likelihood Weighting

= Likelihood weighting is good = Likelihood weighting doesn’t solve all our
= We have taken evidence into account as we problems
generate the sample = Evidence influences the choice of downstream
= Our samples will reflect the state of the world variables, but not upstream ones (not more likely
suggested by the evidence to get a value matching the evidence)
= No need for rejection! = Can cause many very small weights —> inefficient!

= We would like to consider evidence when we
sample every variable

- Gibbs sampling




Gibbs Sampling




Gibbs Sampling Example: P( S | +r)

= Step 2: Initialize other variables
= Randomly

= Step 1: Fix evidence

= R=+r

= Step 3: Repeat the following:

= Choose a non-evidence variable X
= Resample X from P( X | all other variables)

@ @ G @ @ @
& ® - o'e» o%@ ol

Sample from P(S|+ ¢,—w,+r)  Sample from P(C|+ s, —w,+r) Sample from P(W|+ s, +c, +7)




Gibbs Sampling

= How is this better than sampling from the full joint?

= |[n a Bayes Net, sampling a variable given all the other variables
(e.g. P(R|S,C,W)) is usually much easier than sampling from the full
joint distribution

= Only requires one join on the variable to be sampled (in this case, a
join on R)



Further Reading on Gibbs Sampling*

Gibbs sampling produces sample from the query distribution P(Q | e)
in limit of re-sampling infinitely often

Gibbs sampling is a special case of more general methods called
Markov chain Monte Carlo (MCMC) methods

= Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs
sampling is a special case of Metropolis-Hastings)

You may read about Monte Carlo methods — they’re just sampling



Markov Chain Monte Carlo*

= /dea: instead of sampling from scratch, create samples that are each like
the last one.

= Procedure: resample one variable at a time, conditioned on all the rest,
but keep evidence fixed. E.g., for P(b|c):

@D DD @D

= Properties: Now samples are not independent (in fact they’re nearly
identical), but sample averages are still consistent estimators!

= What’s the point: both upstream and downstream variables condition
on evidence.



Bayes Net Sampling Summary

= Prior Sampling P( Q) = Rejection Sampling P(Q | e)




Exercise: Bayes Nets Sampling

2 Sampling and Dynamic Bayes Nets

We would like to analyze people’s ice cream eating habits on sunny and rainy days Suppose we consider the
weather, along with a person’s ice-cream eating, over the span of two days. We’ll have four random variables:
W1 and W5 stand for the weather on days 1 and 2, which can either be rainy R or sunny S, and the variables I3
and I represent whether or not the person ate ice cream on days 1 and 2, and take values T (for truly eating
ice cream) or F. We can model this as the following Bayes Net with these probablhtles

@ @ Wi | Wa | P(Wa[Wh) W [ I ] PIW)
Wy | P(Wy) S| S 0.7 S|TT| 09
S | 06 S | R 0.3 S|F| o1
R | 04 R | S 0.5 R|T| 02
0 Q R | R 0.5 R|F| 08

Suppose we produce the following samples of (W1, I;, Ws, I2) from the ice-cream model:
R,F,R,F RF,RF SFST ST,8ST STRF

1. What is ﬁ(Wz = R), the probability that sampling assigns to the event W5 = R?

2. Cross off samples above which are rejected by rejection sampling if we’re computing P(Ws|I; =T, I =F).



Exercise: Bayes Nets Sampling

2 Sampling and Dynamic Bayes Nets

We would like to analyze people’s ice cream eating habits on sunny and rainy days Suppose we consider the
weather, along with a person’s ice-cream eating, over the span of two days. We’ll have four random variables:
W1 and W5 stand for the weather on days 1 and 2, which can either be rainy R or sunny S, and the variables I3
and I represent whether or not the person ate ice cream on days 1 and 2, and take values T (for truly eating
ice cream) or F. We can model this as the following Bayes Net with these probablhtles

@ @ Wi | Wa | P(Wa[Wh) W [ I ] PIW)
Wy | P(Wy) S| S 0.7 S|TT| 09
S | 06 S | R 0.3 S|F| o1
R | 04 R | S 0.5 R|T| 02
0 Q R | R 0.5 R|F| 08

Rejection sampling seems to be wasting a lot of effort, so we decide to switch to likelihood weighting.
Assume we generate the following six samples given the evidence I; =T and I, = F:

(Wi, 1, Wa, Ip) = { (5, T, &, F), (R, T,R,F), (S, T,R,F), 5, T, S, F), (5,7, 5, F), (R, T, 5, F) }

3. What is the weight of the first sample (S, T, R, F) above?



