CS 343: Artificial Intelligence

Bayes Nets: Inference

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Announcements

= No reading this or next week!

= Project 4: Bayes Nets

= Now released
= Dueon3/29, 11:59 pm

= Midterm this Thursday - Friday
= No lecture on Thursday
= Will be released on Gradescope
= See details on Piazza



Bayes Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values

= Bayes’ nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(a:l, o, .. :Bn) = H P(xi|parents(XZ-))
=1




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a - 0.1
-a +j 0.05
-a - 0.95

A M | P(M]A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)
+e | 0.002

-e | 0.998

B | E | A | PA|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b | -e -a 0.999




Example: Alarm Network

B | P(B) E | P(E)

+b | 0.001 +e | 0.002

b | 0.999 e | 0,998
Al J | PUIA) ° Al M |PM|A)
+a | 4 0.9 +a | +m 0.7 5 . A PIAIB/E)
+a - 0.1 +a | -m 0.3 tb | +e | +a 0.95
a | + | 005 a | +m | o0.01 th | +e | -a 0.05
a | 4 | 0095 a | -m | 099 th | e | +a 0.94

+b | -e | -a 0.06
+e | +a 0.29
+e | -a 0.71
0.001
-e | -a 0.999

P(Iba ealaa_ja_l_m):
P(+b)P(—e)P(+a|l + b, —e)P(—j| + a)P(+m|+a) =

1 1 1 1
O |0 |0 |CT
D
+
Q




Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
-b | 0.999 -e | 0.998
Al J | PUIA) ° Al M |PM|A)
+a | + 0.9 +a | +m 0.7 5 £l A PIAIB/E)
val | 01 va | -m | 03 tb | +e | ta | 095
-3 +] 0.05 a | +m 0.01 +b | +e | -a 0.05
a | 4 | 095 a | -m| 099 ol I O
+b | -e | -a 0.06
. -b | +e | +a 0.29
| | _ —
P( ! ba 67 |CL, ]7_|_m) — b | +te | -a 0.71
P(+b)P(~€)P(+a] + b, —e) P(~j| + ) P(+m]| + @) = [« [sa [ oo
b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



D-Separation

= Question: Are X and Y conditionally independent given Active Triples Inactive Triples
evidence variables {Z}?
= Yes, if Xand Y “d-separated” by Z O_.O_.O
= Consider all (undirected) paths from Xto Y
= No active paths = independence!

= A pathis active if each triple is active:

= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A <« B — C where B is unobserved
= Common effect (aka v-structure)

A — B < C where B or one of its descendants is observed

= All it takes to block a path is a single inactive segment

{9 §



Bayes Nets

vRepresentation
-JConditionaI Independences

= Probabilistic Inference

= Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case exponential complexity,
often better)

= Inference is NP-complete

= Sampling (approximate)

= Learning Bayes Nets from Data



Inference

= Inference: calculating some useful = Examples:
guantity from a joint probability
distribution * Posterior probability

P(Q|E1 =e1,... B, = eg)
= Most likely explanation:
argmax, P(Q =q|E1 =e7...)




Inference by Enumeration

* Works fine with

= General case: =  We want: multiple query
= Evidencevariables: E1...Ep=e1...€ ariables, too
= Query* variable: Q ' 1 * X1, X,Q’ - Xn P(Q|€1 o €Vk1>
= Hidden variables: Hy...H, All variables
= Step 1: Select the = Step 2: Sum out H to get joint of = Step 3: Normalize
entries consistent with Query and evidence

the evidence

1
><_
A

Z=ZP(Q,61---ek)

Peod
0.05

0.25

P(Q,eq...e) = > P(@ahl---hrael---ek)

_/

hy..hr 1
! Xl,X;:an P(Q|€1"'€k):EP(Qael"'ek)




Inference by Enumeration in Bayes Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B |+j,+m) o P(B,+j,+m) (4

Z (B,e,a,+7,+m)

Z P(a] B, ) P(+jla) P(+m]a)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| —a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)



Inference by Enumeration?

P(Antilock|observed variables) = 7



Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = Idea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration




Factor Zoo

/ \




Factor Zoo |

. P(T,W)
Joint distribution: P(X,Y)
= Entries P(x,y) for all x, y T w P
= Sumsto 1l hot sun 0.4
hot rain 0.1
cold sun 0.2
Selected joint: P(x,Y) cold | rain |03
= Aslice of the joint distribution
= Entries P(x,y) for fixed x, all y P(cold, W)
= Sums to P(x)
T W P
cold sun 0.2

Number of capitals determines :
the size of the table cold | rain | 0.3




Factor Zoo |l

= Single conditional: P(Y | x)

= Entries P(y | x) for fixed x, all y P(W|00ld)
= Sumstol . W 5
cold sun 0.4
cold rain | 0.6
P(W|T)
= Family of conditionals: T W p

P(Y | X) hot sun 0.8
= Multiple conditionals Hot i ool P(W |hot)
= Entries P(y | x) for all x, y " — -
= Sumsto |X| co sun 0.4 !
cold rain 0.6 P(W|COld)




Factor Zoo llI

= Specified family: P(y | X)

= Entries P(y | x) for fixed y, but

for all x

= Sums to ... who knows!

P(rain|T')

T W P
hot rain 0.2
cold rain 0.6

|

P(rain|hot)
P(rain|cold)




Factor Zoo Summary

= In general, when we write P(Y; ... Yy | X; ... Xy)

= [tisa “factor,” a multi-dimensional array

= Itsvalues are P(y; ... Yy | X1 ... Xp)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array




Example: Traffic Domain

= Random Variables ﬁ(l?l

= R: Raining @ + [ 09

= T: Traffic | P(T|R)
= |: Late for class! T +r | +t | 0.8
<> +r -t | 0.2

-r +t | 0.1

P(L) — 7 @ x| t | o9

P(L|T
B Z P(T7 t7 L) +t ( +I| )0.3
Tyt +t | 0.7
=>_ P(r)P(tlr)P(L]1) AR




Variable Elimination (VE)




Inference by Enumeration: Procedural Outline

= Track objects called factors
= |nitial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t -1 0.7
-r +t [ 0.1 -t + 0.1
-r -t | 09 -t -1 0.9

= Any known values are selected

= E.g.ifweknow [, = /¢ , then the initial factors are:
P(R) P(T|R)  P(44T)
+r 0.1 +r | +t | 0.8 +t +| 0.3
-r 0.9 +r -t | 0.2 -t +| 0.1
-r +t | 0.1
-r -t 1 0.9

= Procedure: Join all factors, then eliminate all hidden variables



Operation 1: Join Factors

First basic operation: joining factors
mbining factors: —
Combining factors % —
= Get all factors over the joining variable

= Build a new factor over the union of the variables involved

Example: Join on R
@ P(R) X P(T|R) =—> P(R,T)
+r 0.1 +r | +t | 0.8 +r | +t | 0.08
1 -r 0.9 +r | -t |0.2 +r | -t | 0.02
@ |+t |01 r | +t | 0.09
-r | -t 10.9 -r | -t | 0.81

= Computation for each entry: pointwise products V', ¢ . [)(r7 t) — P(’I“) : P(tl?“)




Example: Multiple Joins

(-
N




Example: Multiple Joins f.».

1 &

+r | 0.1 P(R.T

+r | +t | 0.08
P(T|R) ——> [ |t[002 —>
+r | +t 0.8 -r | +t | 0.09
ot o2 T t]o0s81 R, T P(R,T,L)
-r | +t |0.1 +r +t + 0.024
-r | -t 10.9 @ +r +t -1 0.056

+r -t -1 0.018

+t | +1 |0.3 +t | +1 0.3 r +t + | 0.027
+t | -l |0.7 +t | -l 0.7 -r +t | 0.063
-t | 41 |0.1 -t | +1 |0.1 -r -t + | 0.081
-t |-l 0.9 -t | -l 0.9 r -t -l 0.729




Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= A projection operation

= Example:

P(Ra T) sum R P(T)
+r | +t | 0.08 |:> +t | 0.17

+r | -t | 0.02 -t ] 0.83
-r | +t | 0.09
-r | -t | 0.81




P(R,T,L)

Multiple Elimination

1>

+r

+t

+l

0.024

+r

+t

0.056

+r

-t

+l

0.002

+r

-t

0.018

+t

+l

0.027

+t

0.063

+l

0.081

1 1 1 1
- - - -

0.729

Sum
out R

P(T, L)

0.051

0.119

0.083

0.747

Sum
out T

®

P(L)

+ | 0.134

-l 10.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Q

(



Marginalizing Early (= Variable Elimination)




Traffic Domain

(®)  P(L)=7

<T> = Inference by Enumeration = Variable Elimination
: =33 P PE) P =2 P(LI) ) PP

L t r \_”_’ J

O Joinonr Join c!n r
'l ' [ [ | ' | |

Joinont Eliminate r
7 ) | Y J

Eliminate r Joinont

Y ) \ J

|
Eliminate t Eliminate t



P(R)

+r | 0.1

-r | 0.9

P(T|R)

+r | +t |0.8

+r | -t |0.2

-r | +t |0.1

-r | -t 0.9

P(L|T)

+t | +1 |0.3

+t | -l 0.7

-t | +l [0.1

-t | -1 ]0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R,T)

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

R, T

0

P(L|T)

+t

+l

0.3

+t

0.7

+l

0.1

0.9

Sum out R

—>

P(T)

+t | 0.17

-t | 0.83

JoinT

—>

Sumout T

1>

P(T, L)

—>

+t

+l

0.051

+t

0.119

+l

0.083

0.747

®

P(L)

+]

0.134

0.866




Evidence

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)

+r 0.1 +r +t | 0.8 +t + 0.3

-r 0.9 +r -t | 0.2 +t -1 0.7
-r +t [ 0.1 -t + 0.1
-r -t 1 09 -t -1 0.9

= Computing P(L| + r), the initial factors become:

P(+r) P(T|+r)  P(LIT)

+t +| 0.3
+r -t | 0.2 +t | 0.7
-t + 0.1
-t | 0.9

= We eliminate all vars other than query + evidence



Evidence |l

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

P("‘Ta L) Normalize P(L ‘|‘T)
+r | 4+l | 0.026 +l | 0.26
- > -

+r 0.074 0.74

= To get our answer, just normalize this!

= That’s it!



General Variable Elimination

Query: P(Q|E’1 =e1,... L = ek) e —

Start with initial factors: 0z
= Local CPTs (but instantiated by evidence) _on |

While there are still hidden variables (not Q = , |
or evidence): f‘. -.\‘

= Pick a hidden variable H

» Join all fact tioning H i ! '
oin all factors mentioning Q»

= Eliminate (sum out) H

Join all remaining factors and normalize 1
-l X



Example

P(B|j,m) o« P(B,j,m)

P(B) P(E) P(A|B, E) P(lA)  P(m|A)
Choose A
P(A|B,FE)
P@j|A) X > P(j,m,AlB,E) |[¥X > P(j,m|B,E)
P(m|A)

P(B)

P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, E)
Choose E
PLE) :><> P(j,m, E|B) jz > P(j,m|B)
P(j,m|B, F) y
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m7B) Normalize > P(B’j, m)



Same Example in Equations

P(B|j,m) o« P(B,j,m)

P(B)

P(E) P(A|B, E) P(jlA)  P(m|A)

P(B|j,m)

P(B,j,m)
ZP(Bajamaeaa’)
€,a

> P(B)P(e)P(alB,e)P(jla)P(m]a)
> P(B)P(e)y_ P(alB,e)P(jla)P(m|a)
> P(B)P(e)f1(B,e,j,m)

P(B)»_ P(e)f1(B,e,j,m)
P(B)fQ(Baja m)

marginal can be obtained from joint by summing out
use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f;

use x*(y+z) =xy + xz

joining on e, and then summing out gives f,



Exercise: Variable Elimination

e P(BIA) P(C|A, B) P(D|C)
a0 | b=0 | 05 | @0 | b=0 | c=0 | 0.8 - -
a=0  b=0 c=1 02 c=0 | d=0 | 04
e e Q a= b=1 05 a=0 b=1 | c=0 0.6 c=0 d=1 0.6
a=0 | b=1 c=1 0.4
a=1 b=0 0.2 a=1 b=0 c=0 0.2 c=1 d=0 0.2
P(A) a=1  b=0 c=1 0.8 T oot | o
=1 b=1 08 = = = c= = .
a=0 @ 05 a a=1  b=1 | c=0 0.1
a=1 b=1 c=1 0.9
a=1 0.5

Answer the question based on the given Bayes Net. All variables have domains of {0, 1}

(1) Before eliminating any variables or including any evidence, how many entries does
the factor f(C,A,B) have?

(2) Now to answer the query P(B|d=1), you pick C as the first variable to be eliminated.
How many entries does the factor have if we eliminate C?

(3) Compute the result of joining P(B|A) and P(C|A, B)? And the result if we further
marginalize over B?



Variable Elimination Ordering

= For the query P(X, | Y4,...,¥,,) Work through the following two different orderings: Z, X,
.y X,.p @nd Xy, ..., X1, Z. What is the size of the maximum factor generated for each of
the orderings?

=  Answer: 2"1 versus 22 (assuming binary)

= |n general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

All we are doing is changing the ordering of the variables that are eliminated...

...but it can (sometimes) reduce storage and complexity to linear w.r.t. number of
variables!

The computational and space complexity of variable elimination is determined by the
largest factor

The elimination ordering can greatly affect the size of the largest factor.

= E.g., previous slide’s example 2" vs, 22

Does there always exist an ordering that only results in small factors?
= No!



Worst Case Complexity?

= (CSP:

(z1VaoVz3)A(x1VE3sVzg)A(xoVxoVEg) A(mx3VxgVzs)A(xeVesVar)AN(xaVasVeg) A(—xsVagVx7)AN(—xsV-xgVrr)
P(X;=0)=P(X;=1)=0.5
Yi=X7VXoV-Xy

Yo = =X: V Xg V X
YLQ =Y AYs

Yrs = Y A Vs

sardy

Z — Yl.‘-).:f-.‘l N Y:"),()'.T.B

If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

Hence inference in Bayes nets is NP-hard. No known efficient probabilistic inference in general.



Polytrees

= A polytree is a directed graph with no undirected cycles e a e

= For poly-trees you can always find an ordering that is efficient o 0 0

= Tryit!! e

= Very similar to tree-structured CSP algorithm

= Cut-set conditioning for Bayes net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!



Bayes Nets

V Representation
VConditionaI Independences

=  Probabilistic Inference

J Enumeration (exact, exponential complexity)

Variable elimination (exact, worst-case exponential
complexity, often better)

J Inference is NP-complete

* Sampling (approximate)

= Learning Bayes Nets from Data



