CS 343: Artificial Intelligence

Bayes Nets: Representation

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Announcements

= HW3: MDPs, Reinforcement Learning
= Due Monday 3/6 at 11:59 pm

= P3:Reinforcement Learning
= Due Wednesday 3/8 at 11:59 pm

= HWA4: Probability, Bayes Nets
= Now released
= Due Monday 3/27 at 11:59 pm
= Start early as some of the topics are covered by the mid-term



Announcements: Mid-Term Exam

The midterm will be released at 8:00 am on Thursday 3/9.
The midterm is based on the content of weeks 2 - 7.
There is no class on March 9.

The expected time is 90 minutes + 15 minutes for uploading answers (so 105
minutes total from the time the exam begins).

The midterm must be completed by midnight on Friday (so started by 10:15 pm
on Friday).

The exam will be held on Gradescope.



Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications

= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Independence




Independence

= Two variables are independent if:

Ve,y : P(z,y) = P(x)P(y)

= This says that their joint distribution factors into a product two simpler
distributions

" Anotherform: Vg, y : P(:r;|y) —_— P(aj)

- Wewrite: X || Y

= |Independence is a simplifying modeling assumption

= Empirical joint distributions: at best “close” to independent

» What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

Pi(T,W)

T W P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

P>(T, W)

T W P
hot sun | 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain 04




Example: Independence

= N fair, independent coin flips:

P(X1) P(X5) P(Xp)
H |05 H |05 o H |05
T 0.5 T 0.5 T 0.5

N -




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch | -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

» Xis conditionally independent of Ygivenz X 1LY |Z
if and only if:
Vz,y,z 1 P(z,y|z) = P(z|z)P(y|z)

or, equivalently, if and only if

Va,y, 2 P(z|z,y) = P(x|2)



Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence and the Chain Rule

= Chainrule: P(Xl, Xo, ... Xn) = P(Xl)P(X2|X1)P(X3|X1, XQ) ce

= Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

=  With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= Bayes nets / graphical models help us express conditional independence assumptions



Bayes Nets: Big Picture




Bayes Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:

= Unless there are only a few variables, the joint is WAY too big
to represent explicitly

= Hard to learn (estimate) anything empirically about more than
a few variables at a time

= Bayes nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these interactions
are specified




Example Bayes Net: Insurance




Example Bayes Net: Car

fanbelt
broken broke

starter
blockec broke



Graphical Model Notation

Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved)

Arcs: interactions
= Similar to CSP constraints @
= |ndicate “direct influence” between variables
Toothache @

= Formally: encode conditional independence
(more later)

For now: imagine that arrows mean
direct causation (in general, they don’t!)



Example: Coin Flips

= N independent coin flips

= No interactions between variables: absolute independence



Example: Traffic

= Variables:
= R:I[trains
= T:Thereis traffic

= Model 1: independence = Model 2: rain causes traffic

(®) (%)
O,
= Why is an agent using model 2 better?




Example: Traffic Il

= Let’s build a causal graphical model!

= Variables
= T: Traffic
= R:ltrains
= L: Low pressure
D: Roof drips
B: Ballgame
C: Cavity




Example: Alarm Network

= Variables

= B: Burglary N—g7

1y

= A: Alarm goes off

= M: Mary calls
= J:Johncalls
= E: Earthquake!




Bayes Net Semantics




Bayes Net Semantics

= A set of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(Xl|aq...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

= Bayes nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

n
P(z1,x,...xzn) = || P(=zi|parents(X;))

1=1
Toothache @

P(+cavity, 4catch, -toothache)




Probabilities in BNs

= Why are we guaranteed that setting

n
P(z1,x2,...xzn) = || P(wz;|parents(X;))
1=1
results in a proper joint distribution?

n
= Chain rule (valid for all distributions): P(x1,x0,...2n) = H P(x;lx1...c;—1)
1=1
= Assume conditional independences: P(xi|z1,...2;_1) = P(x;|parents(X;))

n
> Consequence:  P(zq,zp,...2n) = [[ P(z;|parents(X;))
1=1

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies



Example: Coin Flips

P(X1) P(X>2) P(Xn)
h |05 h |05 o h |05
t |05 t |05 t |05

P(h,h,t,h) = 05*05%05%05

Only distributions whose variables are absolutely independent can be
represented by a Bayes’ net with no arcs.



P(R)

Example: Traffic

+r

1/4

3/4

P(T|R)

+t

3/4

1/4

+t

1/2

1/2

P(4r,—t) = 14*1/4




Example: Alarm Network

B | P(B) E | P(E)
’-ﬁ
” (,{0.00? ) Burglary @ +e< 0.002 )
N, A N =

b | 0.999 -e | 0.998

B | E| A | PA|BE)
+b | +e | +a 0.95

+b | +e | -a ﬁ)Oh
o

P(+b, +e, -a, +j,-m) =7

A | ) P(J|A) A | M | P(M|A) +b | -e | -a 0.06
+a | 4 0.9 +a | +m 0.7 -b | +e | +a 0.29
+a | - 0.1 +a | -m 0.3 b | +e | -a 0.71
-a | 4 0.05 -a | +m 0.01 -b | -e | +a 0.001
a | 4 | oes” a | -m ¥0.99 b | -e|-a| 0999




= Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




Example: Reverse Traffic

. A=
= Reverse causality? . \
Q | | | ] / o~
‘) = g > JU
P(T) AN\
@ st | 9/16 i
t | 7/16 P(T,R)
l +r -t 1/16
+t +r 1/3 o/16
-r +t
- 2/3
@ r / r t | 6/16
-t +r 1/7
-r 6/7




Causality?

= When Bayes nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain (especially
if variables are missing)

= E.g. consider the variables Traffic and Roof Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(zi|xy,...z;-1) = P(z;|parents(X;))



Exercise: Bayes Net

Draw the Bayes net associated with the @

following joint distribution:

P(A) - P(B) - P(C|A, B) - P(D|C) - P(E|B, C) @

Use the right plot as a template. @ @

Write down the joint probability distribution G
associated with the right Bayes Net.

Express the answer as a product of terms H

representing individual conditional
probabilities tables.



Bayes Nets

= So far: how a Bayes net encodes a joint
distribution

= Next: how to answer queries about that
distribution

= Today:

= First assembled BNs using an intuitive notion of conditional
independence as causality

= Then saw that key property is conditional independence

= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)




