CS 343: Artificial Intelligence

Probability

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Today

= Probability

= Random Variables

= Joint and Marginal Distributions

= Conditional Distributions

= Product Rule, Chain Rule, Bayes’ Rule

= |nference

* |ndependence

= You’ll need all this stuff A LOT for the next
few weeks, so make sure you go over it
now!




Inference in Ghostbusters

= Aghostisin the grid
somewhere
= Noisy sensor readings tell how
close a square is to the ghost.
Most likely observations:
= On the ghost: red
= 1 or 2 away: orange
= 3 or4away: yellow
= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Ghostbusters, no probabilities
-

p
74 ghostbusters

GHOSTS REMAINING:
BUSTS REMAINING:
SCORE:

MESSAGES:

1
Here are the instructions about how to run it: Click the grid to guess and try t
o bust the ghost




Uncertainty

= General situation:

.
0.11 0.11

0.11
= Observed variables (evidence): Agent knows certain 011
things about the state of the world (e.g., sensor readings

orsymptoms) 011 || o011 || 011

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for ‘
using beliefs and knowledge to perform inference




Random Variables

= A random variable is some aspect of the world about which we
(may) have uncertainty

= R=lsitraining?

= T=lIsithotorcold?

= D =How long will it take to drive to work?
= L=Whereisthe ghost?

= We denote random variables with capital letters

= Like variables in a CSP, random variables have domains

= Rin {true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, x)

= Lin possible locations, maybe {(0,0), (0,1), ...}




= Associate a probability with each value

= Temperature:

Probability Distributions

P(T)
T P
hot 0.5
cold | 0.5

= Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




P(T)
T p
hot 0.5
cold | 0.5

Probability Distributions

= Unobserved random variables have distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

P(W = rain) = 0.1

= Must have: VYV P(XZ:E)ZO and ZP(X::];):]_
T

= A discrete distribution is a table of probabilities of values

= A probability (lower case value) is a single number

OK if all domain entries are unique




Joint Distributions

A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome):

P(X1=xz1,Xo=xo,... Xy, = xn)

P(xq1,z5,...27n)
= Must obey:

P(x1,2o,...2n) >0

- P(x1,z0,...2n) = 1
(z1,22,...2n)
Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

X1, Xo,..

. Xn
P(T,W)
T W P
hot sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3




Probabilistic Models

A probabilistic model is a joint distribution Distribution over T,W

over a set of random variables

T W P
Probabilistic models: hot sun 0.4
= (Random) variables with domains hot rain 0.1
= Assignments are called outcomes
= Joint distributions: say whether assignments cold sun 0.2
(outcomes) are likely cold rain 0.3
= Normalized: sum to 1.0

= |deally: only certain variables directly interact
y Y Y Constraint over T,W

Constraint satisfaction problems: T W P
= Variables with domains hot sun T
= Constraints: state whether assignments are ,

possible hot rain F
= |deally: only certain variables directly interact cold sun F
cold rain T




Events

= An eventis a set E of outcomes

P(E)y= )  P(z1...zn)
(r1...xn)EE

= From a joint distribution, we can calculate
the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about are
partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




= P(+x, +y) ?

= P(+x)?

= P(-y OR +x) ?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables
Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(Ta W) T P
hot sun 0.4 P(t) = Z P(t,s) cold 0.5
hot rain 0.1 S P(W)
cold sun 0.2 W >
cold rain 0.3 ——— o .
P(S) N 2t: P(t’ S) rain 0.4

P(X1=uz1) =) P(X1=uz1,Xp=u1)p)




Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.1
+X -y 0.5
-X +y 0.2
-X -y 0.2

—

P(y) = > P(z,y)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= In fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = 20

P(T,W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a

]
— 5. T = 2
PW=sT=c)= L W=8T=c) 02

P(T = c¢) 0.5

_——

=P(W=s8,T=c)+P(W=r,T =c)
=0.240.3 =0.5

= 0.4



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y) ?

" P(x|+y)?

= P(-y | +x) ?



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)

W P T W p
;\ rs:i: gi hot sun 0.4
g hot rain 0.1
5 P(W|T = cold) cold | sun 0.2

W P cold rain 0.3

sun 0.4

rain 0.6




Normalization Trick

P(W =s,T = c¢)

P(W =s|T =¢) =

P(T = c¢)
. P(W =s,T = c¢)
P(T,W) - PW=sT=c¢c)+PW=rT=c)
0.2
T W P =o2+03_ °° P(W|T = ¢)
hot sun 0.4
hot rain 0.1
sun 0.4
cold sun 0.2 : 0.6
. P(W =nrT =c) rain :
P prm— T = =

cold rain 0.3 (W =r| c) BT =0

. P(W =r,T = c)

- P(W=sT=c)+PW=r,T=2c)
03
02403

0.6




Normalization Trick

P(W =s,T =c)

P(T =c¢)
. P(W =s,T =c)
CPW=sT=c)+P(W=rT=c)

P(W =s|T=c¢) =

P(T, W) SELECT the joint NORMALIZE the
T [ w [ e hnathe P W) (makensumioong  POVIT=0)
hot sun 0.4 evidence T W P W p
hot rain 0.1 — cold | sun | 0.2 _— sun | 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

P(W=nr,T =c)

P(T =c¢)
. P(W=nr,T =c)
C PW=sT=c)+PW=rT=c)
03
02403

P(W=rT=c)=

=0.6




Normalization Trick

P(T, W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(c,W) (make it sum to one) P(W|T = ¢)
hot sun 0.4 evidence T W P W, p
hot rain 0.1 — cold | sun | 0.2 sun | 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3
*Why does this work?

P _ P(z1,72) _ P(x1,72)
(1|w2) = =
P(x2) >aq P(T1,22)



= P(X| Y=-y) ?
P(X,Y)
X Y P
+X +y 0.3
+X -y 0.1
-X +y 0.5
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

ﬂ



To Normalize

= (Dictionary) To bring or restore to a normal condition

N

All entries sum to ONE

= Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1 = Example 2
W P Normalize W P T W P | T w
sun 0.2 — sun 0.4 hot sun 20 Normalize hot sun
: _ . hot rain 5 P hot rain
rain 0.3 Z =05 rain 0.6 7 = 50
cold sun 10 a cold sun
cold rain 15 cold rain




Probabilistic Inference

Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

Probabilities change with new evidence:
= P(ontime | no accidents, 5a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= QObserving new evidence causes beliefs to be updated

[ S —




Inference by Enumeration

* Works fine with

= General case: =  We want: multiple query
= Evidencevariables: E1...Ep=e1...€ ariables, too
= Query* variable: Q ' 1 * X1, X,Q’ - Xn P(Q|€1 o €Vk1>
= Hidden variables: Hy...H, All variables
= Step 1: Select the = Step 2: Sum out H to get joint of = Step 3: Normalize
entries consistent with Query and evidence

the evidence

1

Peo
0.05
> X _Z
0.07
02 |
oL | LE AN
— Z =Y P(Qer e
P(Q,eq...e,) = Y, P(Q,h1...hryeq...ep) 4

hi..hr ~— — o) = L
X1,X2,...Xn P(Qler---ex) = ZP(Q7€1 ek)



Inference by Enumeration

= P(W)? S T W P
p(W=sun) = 0.3+0.1+0.1+0.15 = 0.65 summer | hot sun 0.30
p(W=rain) = 0.05+0.05+0.05+0.2 = 0.35

summer | hot rain 0.05

= P(W | winter)? summer | cold sun | 0.10

p(W=sun , winter) = 0.1+0.15 = 0.25 summer | cold | rain | 0.05

p(W=rain , winter) = 0.05+0.2 = 0.25 winter hot sun 0.10

(
p(W=sun | winter) = 0.25/(0.25+0.25) = 0.5 . .
p(W=rain | winter) = 0.25/(0.25+ 0.25) = 0.5 winter hot rain | 0.05

winter | cold sun 0.15

= P(W | winter, hot)?
p(W=sun , winter, hot) = 0.1

winter | cold rain 0.20

p(W=rain , winter, hot) = 0.05
p(W=sun | winter, hot) = 0.1/(0.1+0.05) = 2/3
p(W=rain | winter, hot) = 0.05/(0.1 +0.05) = 1/3



Inference by Enumeration

= Obvious problems:

= Worst-case time complexity O(d")
= Space complexity O(d") to store the joint distribution

= What about continuous distributions?



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(x,y) < ran="77

£ N



The Product Rule

P(y)P(zly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W | P D W
A

R p wet sun 0 wet sun

sun 0.8 dry >dn 09 <:> dry >dn

rain 02 wet rain 0.7 wet rain

dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(z1,x2,...xzn) = || P(ailzy ... 2-1)
7

= Why is this always true?



Bayes Rule




Bayes’ Rule

Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

Dividi . likelihood
ividing, we get: o
P(y|x)
P(z|ly) = P(x)
P(y)
Why is this at all helpful? normalization

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later

In the running for most important Al equation!

That’s my rule! }




Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(cause|effect) = P(effect)

= Example:
= M: meningitis, S: stiff neck

P(—|—m) = (0.0001 xample

X
P(—|—5| + m) =08 r givens
P(+s| —m) =0.01_

P(m| +s) = P(+s|+m)P(4+m) P(+s| +m)P(+m) B 0.8 x 0.0001
B P(+s) ~ P(4s|+m)P(+m) + P(+s| —m)P(=m) 0.8 x 0.0001 + 0.01 x 0.999
= Note: posterior probability of meningitis still very small =0.0008

= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes’ Rule

_ P(D|W)
= Given:
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
cain 02 wet rain 0.7
dry rain 0.3

= What is P(W | dry) ?
p(sun | dry) = p(dry | sun) p(sun)/p(dry) = 0.9*0.8/Z = .72/ Z
p(rain | dry) = p(dry | rain) p(rain) / p(dry) = 0.3*0.2/Z = 0.06/Z
Z = .72+.06 = .78



Ghostbusters, Revisited

Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R=yellow | G=(1,1)) =0.1

We can calculate the posterior distribution
P(G|r) over ghost locations given a reading
using Bayes’ rule:

P(g|r) o< P(r|g)P(g)

M
M




Ghostbusters with Probability

Ghaosthusters Revisited =

' 74 ghostbusters

GHOSTS REMAINING:
BUSTS REMAINING:
SCORE:

MESSAGES:
sensor at (3, 4) [GREEN]




Next Time: Bayes Nets



