
CS 343: Artificial Intelligence

Probability

Prof. Yuke Zhu — The University of Texas at Austin
[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Today

▪ Probability
▪ Random Variables
▪ Joint and Marginal Distributions
▪ Conditional Distributions
▪ Product Rule, Chain Rule, Bayes’ Rule
▪ Inference
▪ Independence

▪ You’ll need all this stuff A LOT for the next 
few weeks, so make sure you go over it 
now!



Inference in Ghostbusters

▪ A ghost is in the grid 
somewhere

▪ Noisy sensor readings tell how 
close a square is to the ghost.  
Most likely observations:
▪ On the ghost: red
▪ 1 or 2 away: orange
▪ 3 or 4 away: yellow
▪ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

▪ Sensors are noisy, but we know P(Color | Distance)



Ghostbusters, no probabilities



Uncertainty

▪ General situation:

▪ Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor readings 
or symptoms)

▪ Unobserved variables: Agent needs to reason about 
other aspects (e.g. where an object is or what disease is 
present)

▪ Model: Agent knows something about how the known 
variables relate to the unknown variables

▪ Probabilistic reasoning gives us a framework for 
using beliefs and knowledge to perform inference



Random Variables

▪ A random variable is some aspect of the world about which we 
(may) have uncertainty

▪ R = Is it raining?
▪ T = Is it hot or cold?
▪ D = How long will it take to drive to work?
▪ L = Where is the ghost?

▪ We denote random variables with capital letters

▪ Like variables in a CSP, random variables have domains

▪ R in {true, false}   (often write as {+r, -r})
▪ T in {hot, cold}
▪ D in [0, ¥)
▪ L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions

▪ Associate a probability with each value

▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather: 



Shorthand notation:

OK if all domain entries are unique

Probability Distributions
▪ Unobserved random variables have distributions

▪ A discrete distribution is a table of probabilities of values

▪ A probability (lower case value) is a single number

▪ Must have:                                                          and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions
▪ A joint distribution over a set of random variables:

specifies a real number for each assignment (or outcome): 

▪ Must obey:

▪ Size of distribution if n variables with domain sizes d?
▪ For all but the smallest distributions, impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Probabilistic Models

▪ A probabilistic model is a joint distribution 
over a set of random variables

▪ Probabilistic models:
▪ (Random) variables with domains 
▪ Assignments are called outcomes
▪ Joint distributions: say whether assignments 

(outcomes) are likely
▪ Normalized: sum to 1.0
▪ Ideally: only certain variables directly interact

▪ Constraint satisfaction problems:
▪ Variables with domains
▪ Constraints: state whether assignments are 

possible
▪ Ideally: only certain variables directly interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun T
hot rain F
cold sun F
cold rain T

Distribution over T,W

Constraint over T,W



Events

▪ An event is a set E of outcomes

▪ From a joint distribution, we can calculate 
the probability of any event
▪ Probability that it’s hot AND sunny?

▪ Probability that it’s hot?

▪ Probability that it’s hot OR sunny?

▪ Typically, the events we care about are 
partial assignments, like P(T=hot)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Quiz: Events

▪ P(+x, +y) ?

▪ P(+x) ?

▪ P(-y OR +x) ?

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1



Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate variables 
▪ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Quiz: Marginal Distributions

X Y P
+x +y 0.1
+x -y 0.5
-x +y 0.2
-x -y 0.2

X P
+x
-x

Y P
+y
-y



Conditional Probabilities

▪ A simple relation between joint and conditional probabilities
▪ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a
)

P(a,b)



Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

▪ P(+x | +y) ?

▪ P(-x | +y) ?

▪ P(-y | +x) ?



Conditional Distributions

▪ Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution



Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6



SELECT the joint 
probabilities 
matching the 

evidence

Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)



Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

▪Why does this work?



▪ P(X | Y=-y) ?

Quiz: Normalization Trick

X Y P
+x +y 0.3
+x -y 0.1
-x +y 0.5
-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)



▪ (Dictionary) To bring or restore to a normal condition

▪ Procedure:
▪ Step 1: Compute Z = sum over all entries
▪ Step 2: Divide every entry by Z

▪ Example 1

To Normalize

All entries sum to ONE

W P
sun 0.2
rain 0.3 Z = 0.5

W P
sun 0.4
rain 0.6

▪ Example 2
T W P

hot sun 20

hot rain 5

cold sun 10

cold rain 15

Normalize

Z = 50

Normalize
T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Inference

▪ Probabilistic inference: compute a desired 
probability from other known probabilities (e.g. 
conditional from joint)

▪ We generally compute conditional probabilities 
▪ P(on time | no reported accidents) = 0.90
▪ These represent the agent’s beliefs given the evidence

▪ Probabilities change with new evidence:
▪ P(on time | no accidents, 5 a.m.) = 0.95
▪ P(on time | no accidents, 5 a.m., raining) = 0.80
▪ Observing new evidence causes beliefs to be updated



Inference by Enumeration
▪ General case:

▪ Evidence variables: 
▪ Query* variable:
▪ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent with 
the evidence

▪ Step 2: Sum out H to get joint of 
Query and evidence

▪ Step 3: Normalize



Inference by Enumeration

▪ P(W)?
p(W=sun)   =   0.3 + 0.1 + 0.1 + 0.15   =   0.65
p(W=rain)   =   0.05 + 0.05 + 0.05 + 0.2   =   0.35

▪ P(W | winter)?
p(W=sun , winter)   =   0.1 + 0.15   =   0.25
p(W=rain , winter)   =   0.05 + 0.2   =   0.25
p(W=sun | winter)   =   0.25 / (0.25 + 0.25) =   0.5
p(W=rain | winter)   =   0.25 / (0.25 + 0.25) =   0.5

▪ P(W | winter, hot)?
p(W=sun , winter, hot)   =   0.1
p(W=rain , winter, hot)   =   0.05
p(W=sun | winter, hot)   =   0.1 / (0.1 + 0.05) =   2/3
p(W=rain | winter, hot)   =   0.05 / (0.1 + 0.05) =   1/3

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20



▪ Obvious problems:

▪ Worst-case time complexity O(dn) 

▪ Space complexity O(dn) to store the joint distribution

▪ What about continuous distributions?

Inference by Enumeration



The Product Rule

▪ Sometimes have conditional distributions but want the joint



The Product Rule

▪ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

▪ More generally, can always write any joint distribution as an 
incremental product of conditional distributions

▪ Why is this always true?



Bayes Rule



Bayes’ Rule

▪ Two ways to factor a joint distribution over two variables:

▪ Dividing, we get:

▪ Why is this at all helpful?

▪ Lets us build one conditional from its reverse
▪ Often one conditional is tricky but the other one is simple
▪ Foundation of many systems we’ll see later

▪ In the running for most important AI equation!

That’s my rule!

likelihood
prior

normalization



Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability:

▪ Example:
▪ M: meningitis, S: stiff neck

▪ Note: posterior probability of meningitis still very small
▪ Note: you should still get stiff necks checked out!  Why?

Example
givens

=0.0008



Quiz: Bayes’ Rule

▪ Given:

▪ What is P(W | dry) ? 
p(sun | dry)  =  p(dry | sun) p(sun) / p(dry)  =  0.9 * 0.8 / Z  =  .72 / Z
p(rain | dry)  =  p(dry | rain) p(rain) / p(dry)  =  0.3 * 0.2 / Z    =  0.06 / Z
Z  =  .72 + .06   =  .78

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3



Ghostbusters, Revisited

▪ Let’s say we have two distributions:
▪ Prior distribution over ghost location: P(G)

▪ Let’s say this is uniform
▪ Sensor reading model: P(R | G)

▪ Given: we know what our sensors do
▪ R = reading color measured at (1,1)
▪ E.g. P(R = yellow | G=(1,1)) = 0.1

▪ We can calculate the posterior distribution
P(G|r) over ghost locations given a reading 
using Bayes’ rule:



Ghostbusters with Probability



Next Time: Bayes Nets


