CS 343: Artificial Intelligence

Reinforcement Learning Il

Prof. Yuke Zhu, The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

= We still assume an MDP:
= Asetofstatess e S
= A set of actions (per state) A
= A model T(s,a,s’)

= Areward function R(s,a,s’)

= Still looking for a policy 7t(s)
= New twist: don’t know T or R, so must try out actions

= Bigidea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal

Evaluate a fixed policy

Compute V*, Q*, n*

_

Technique
Policy evaluation

Value / policy iteration

J

Unknown MDP: Model-Based
a)

Goal Technique

Evaluate a fixed policy PE on approx. MDP

Compute V*, Q*, n* VI/PI on approx. MDP

Unknown MDP: Model-Free

Goal Technique
Evaluate a fixed policy Value Learning

Compute V*, Q*, n* Q-learning

~

_/

Model-Free Learning

= Model-free (temporal difference) learning

= Experience world through episodes
(s,a,r,s,a" ,r', s" a" r" s"...)

= Update estimates each transition (3, a, T, S')

= Over time, updates will mimic Bellman updates

Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qt1(5,0) ¢ Y T(s,0,8) | R(s0.8) + 7 max Qu(s',)
a

/
S
= But can’t compute this update without knowing T, R

= |nstead, compute average as we go
Receive a sample transition (s,a,r,s’)

This sample suggests

Q(s,a) Nfr—l—’ymaXQ(s a’)
Q(s,a) — (1 — a)Q(S a)+ () |r —|—7maxQ(s a')

But we want to average over results from (s,a) since tran5|t|ons are stochastic

So keep a running average

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough
= ... but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

Video of Demo Q-Learning Auto Cliff Grid

(%

>

ol
| q o

DPPPPE

o]
EEED

URRE ALUE

2cmm BT RERIE

Exploration vs. Exploitation

b7 7

AN
Srennc!

L £T0
G2

How to Explore?

How to Explore?

= Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

Video of Demo Q-learning — Epsilon-Greedy — Crawler

] Applet T

“R'ur‘] ‘ Skip 1000000 step Stop | Skip 30000 steps \ Reset speed counter ResetlQ

average speed . -1.0671648197531216

eps— || eps++ gam- gam++ alpha-- alpha++

El Console 3 - x 05| & Vi @ v % B

BotQLearning [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:31:20 AM)

G -ame®

9/27/2012

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u, n) = u -+ k:/n

Regular Q-Update: Q(s,a) <+ R(s,a,s") +~ max Q(s', a")
Modified Q-Update: Q(s,a) +q R(s,a,s’) + 7 max f(Q(s',d), N(s,a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

Exploration Function — Crawler

Rur Skip 1000000 step Stop Skip 30000 steps Resel speed counter ResatQ
average speed . 3.3348581034694122
,
Ly

eps eps++

"~
o
- |
s
[

game+ alpha- || alpha++

[;] Console 23

BotQLeamningEXP [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:36:12 AM)

2Jcmm BB

(]}

5 | e® Pydev | 5" Team

2}

0o

11:36 AM

- Ll)
e 9/27/2012

Softmax Exploration

= Base exploration on estimated action goodness
= A “soft” version of e-greedy
= Choose better actions exponentially more often
= Temperature parameter controls preference strength
= Can decrease temperature over time for greedier selection

= Good initialization / outcome ordering still affects
efficiency, but can’t permanently ruin exploration

Q(s,0) /7

p(a‘s) — Z?zo eQ(s,a:)/T

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!

Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

Minimizing regret goes beyond learning to
be optimal — it requires optimally learning
to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret (usually)

Approximate Q-Learning

Generalizing Across States

= Basic Q-Learning keeps a table of all g-values

= |n realistic situations, we cannot possibly learn about
every single state!
= Too many states to visit them all in training
= Too many states to hold the g-tables in memory
= States may even be continuous, not discrete

= |nstead, we want to generalize:
= Learn about some small number of training states from

experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll see
it over and over again

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

No generalization

= Pydev - Eclipse
File Edit Nawigate

Search Project Run Window Help

- ,';,vhdvu‘.v v v

[| @ Pydev | &Y Team

=0

T

74 CS188 Pacman

L

oD

1 Console 32

11:53 AM
< il o
L iR

2000 episodes later...

- Pydev - Eclipse
File Edit Nawvigate Search Project Run Window Help

v v Q- Q- v v - v v - e Pydev

Y Team

& &

] Console &2 - x LB [&E[&E] =2 v -

11:53 AM
9/27/2012

A.ullﬂ‘.\‘

Harder maze, no generalization

— 11:54 AM
s LI P

Feature-Based Representations

Solution: describe a state using a vector of features
(properties)
= Features are functions from states to real numbers (often
0/1) that capture important properties of the state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) = wif1(s) +wafa(s) + ...+ wnfn(s)
Q(Sa CL) — w1f1(87 (Z)—I—QUQfQ(S, a)_l_ . °+wnfn(87 CL)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QUs,0) = wifi(s @) bwafals,)+ Aunfals,a)

= Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + 7 max Qs a’)] — Q(s,a)
Q(s,a) — Q(s,a) + «[difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were activated:
lower the value of all states with that state’s features

= Formal justification: online least squares

Example: Q-Pacman

Q(S,CL) — 4.0fDOT(S,CL) —]..OfGST(S,CL)

2 -
fpor(s,NORTH) = 0.5
a = NORTH S,
r = —500
fasT(s,NORTH) = 1.0
/ _
Q(S,NORTH) = +1 Q(S,,-) —0

r+ymaxQ(s’,a’) = —-50040
CL/
4. —501[0.5
difference = —501 :> wpor < 4.0+ a[-501]
wagstT < —1.0 +a[-501]1.0

Q(Sa a’) — 3°OfDOT(57 CL) — 3°OfGST(Sa CL)

Approximate Q-Learning

5 | @ Pydev | S° Team

>.= Pydev - Eclipse
3 :
v v Q~Q - - v v v v v
v2 Y
= | H
1l &

e

4 CS188 Pacman

\,
e = = || = =
] Console 2 = - o & i & :
N
DirectionalGhost Wy
of Training

12:08 PM
G .,
il S

Q-Learning and Least Squares

40

Linear Approximation: Regression™

20

f1(x)

Prediction: Prediction:

Yy = wo + wi f1(x) y;i = wo + w1 f1(x) + wafo(x)

Optimization: Least Squares*

1

2
total error =Y (y; — §:)° =3 (yz- - th(w))
- k

. Error or “residual”
Observation Yy

Prediction jj

0 f1(x) :

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = <y - zwkfm))
k
Wi, k

Wi, <= Wm T (y - Z’quk@)) fm(x)
k
Approximate q update explained:

Wm < Wm + & [7“ + max Q(S/a CL,) — Q(s, a)} fm(s,a)

“target” “prediction”

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize utilities)

aren’t the ones that approximate V / Q best
= E.g. your evaluation functions from project 2 were probably horrible estimates of future rewards, but
they still produced good decisions
= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering or “shape” of Q-values right (prediction)
= WEe’ll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution then fine-tune by hill climbing on feature weights

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function
= Nudge each feature weight up and down and see if your policy is better than before

= Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change multiple
parameters...

Policy Search

[Andrew Ng]

Conclusion

We're done with Part I: Search and Planning!

We’'ve seen how Al methods can solve
problems in:

= Search

= Constraint Satisfaction Problems

= Games

= Markov Decision Problems

= Reinforcement Learning

Next up: Part II: Uncertainty and Learning!

