Q5. |6 pts] Kernels and Feature Transforms

A kernel function K (z,z) is a function that conceptually denotes the similarity between two instances = and z in a
transformed space. More specifically, for a feature transform = — ¢(x), the kernel function is K(z, z) = ¢(z) - ¢(2).
The beauty of algorithms using kernel functions is that we never actually need to explicitly specify this feature
transform ¢(x) but only the values K (z,z) for pairs (z,z). In this problem, we will explore some kernel functions
and their feature transforms. For this problem the input vectors are assumed to be 2 dimensional (i.e. z = (21, 2)).
Remember that x - 2 = 121 + 2229.

(a)

(b)

(c)

For each of the kernel functions below, mark the corresponding feature transform: (mark a single option only
for each question)

(i) Apt] K(z,2) =1+xz-2
O Qb(x) ($1,$2) O d)(x) = (m%,x%)
O ¢(x) = (1,21, 22) O olx) = (21,23, V2122)
O Qs(x) = (1,$%,IE%) O ¢($) = (1,:E%,CL’%, ﬂxlx?)
(i) [1 pt] K(z,2) = (z - 2)?
Q d)(.ﬁ) = (Z‘%,JJ%) Q ¢($) = (l‘%,l‘%, \/51'1.132)
O ¢(w) = (17 %,l‘%) O ¢($) = (1,.%1,%‘2,1‘%,1‘%, \/5%‘1.%‘2)
O ¢(z) = (1,23, 23, V2x132) O o(x) = (x1, T2, 23, 23, V221 12)
(iii) [1 pt] K(z,2) = (1 + - 2)?
O (.’E) (1733%’1'2) O d)(x) = (LCL’%,Ig,ﬁxl,\/ixg,\@xlzg)
O ($) (171‘%):52’\[1'1:52) O d)(l’) = (1,I1,1‘2,\/§$1x2)
O olx) = (1,23, 23, 21, 79, V22129) O ¢(x) = (1, 2129, x]23)

Multiple kernels can be combined to produce new kernel functions. For example K (z, z) = K;(z, 2) + Ka(z, 2)
is a valid kernel function. For the questions below, kernel K7 has the associated feature transform ¢, and
similarly K5 has the feature transform ¢,. Mark the feature transform associated with K for the expressions
given below.

Note: The operator [, *] denotes concatenation of the two arguments. For example, [z, z] = (1, z2, 21, 22).

(i) [1 pt] K(x,2) = aK;(z, z), for some scalar a > 0

O ¢(z) = ¢1(a) O ¢(x) = Vasi(x)
O ¢(x) = [a, é1(2)] O ¢@)=di1(z)+a
O ¢(x) = a1 () O ¢(z) = a’¢1(x)

(ii) [1 pt] K(z,2) = aK1(x, z) + bKs(x, 2), for scalars a,b > 0

O o(x) = ag1(z) + bga(2)
O ¢(x) = Vadi(z) + Vbga(x)
O d(x) = a¢i(x) + b°¢a(2)

00O
=

S
>3
=
s

[1 pt] Suppose you are given the choice between using the normal perceptron algorithm, which directly works
with ¢(x), and the dual (kernelized) perceptron algorithm, which does not explictly compute ¢(z) but instead
works with the kernel function K. Keeping space and time complexities in consideration, when would you
prefer using the kernelized perceptron algorithm over the normal perceptron algorithm.

Note: Here N denotes the total number of training samples and d is the dimensionality of ¢(z).
O d>>N O d<<N O Always (O Never

10

Q10. |8 pts] Clustering

EG3,3)
In this question, we will do k-means clustering to cluster)

the points 4, B ... F (indicated by x’s in the figure on the
right) into 2 clusters. The current cluster centers are P
and @ (indicated by the B in the diagram on the right). ik L2 FD
Recall that k-means requires a distance function. Given 2
points, A = (41, A2) and B = (Bj, B), we use the follow- of w30 A0.9)
ing distance function d(A, B) that you saw from class,

BELD a 22

d(A,B) = (A; — B1)? + (Ay — By)? bt 2

(a) [2 pts] Update assignment step: Select all points that get assigned to the cluster with center at P:

O A O B O C O D O F O F (O No point gets assigned to cluster P

(b) [2 pts] Update cluster center step: What does cluster center P get updated to?

Changing the distance function: While k-means used Euclidean distance in class, we can extend it to other
distance functions, where the assignment and update phases still iteratively minimize the total (non-Euclidian)
distance. Here, consider the Manhattan distance:

d (A, B) = |A, — By| + |As — By|

We again start from the original locations for P and @ as shown in the figure, and do the update assignment step
and the update cluster center step using Manhattan distance as the distance function:

(c) [2 pts] Update assignment step: Select all points that get assigned to the cluster with center at P, under
this new distance function d'(A, B).

O A O B O cC O D O F O F (O No point gets assigned to cluster P

(d) [2 pts] Update cluster center step: What does cluster center P get updated to, under this new distance
function d'(A, B)?

20

Q5. |6 pts] Kernels and Feature Transforms

A kernel function K (z,z) is a function that conceptually denotes the similarity between two instances = and z in a
transformed space. More specifically, for a feature transform = — ¢(x), the kernel function is K(z, z) = ¢(z) - ¢(2).
The beauty of algorithms using kernel functions is that we never actually need to explicitly specify this feature
transform ¢(x) but only the values K (z,z) for pairs (z,z). In this problem, we will explore some kernel functions
and their feature transforms. For this problem the input vectors are assumed to be 2 dimensional (i.e. z = (21, 2)).
Remember that x - 2 = 121 + 2229.

(a) For each of the kernel functions below, mark the corresponding feature transform: (mark a single option only
for each question)

(i) M pt] K(z,2)=14z-2
O o(x) = (z1,2) O ¢(x) = (22,22)
® () =(1,21,2) O ¢(x) = (22,23, V2x129)
O ¢(x) = (1,27,23) O o(x) = (1,22, 23,V 2x129)

(ii) [1 pt] K(z,2) = (v - 2)?
O o(x) = (27,23) Q@ o(2) = (22,22, V2r129)
O ¢(z) = (1,27,23) O ¢(x) = (1,21, 29, 23, 23, /221 22)
O ox) = (1,23, 23,V2x172) O ¢(@) = (x1, 32,23, 23, V221 32)
O o(x) = (1,27, 23 @ o(2)= (1,22, 232,v2x1, V212, V221 22)
O ¢(x) = (1,23, 23, V22 22) O ¢(x) = (1,21, 29, V221 22)
O ¢(x) = (1,23, 23, 1, 32, V22122) O é(x) = (1, 2122, 2323)

For all the above questions, write out K(I 2) dnd find a ¢(x) such that K(z,z) = ¢(x) - ¢(z). For example in (iii)
K(z,2) = (1 + 2121 + 1220)% = 14+ 2227 + 2222 + 22121 + 2020 + 21002120) = (1,22, 22, V221, V210, vV21125) -

(112%727%:[21-,\/227\/2122)

(b) Multiple kernels can be combined to produce new kernel functions. For example K (z, z) = K (z, z) + Ka(z, 2)
is a valid kernel function. For the questions below, kernel K7 has the associated feature transform ¢, and
similarly K5 has the feature transform ¢,. Mark the feature transform associated with K for the expressions
given below.

Note: The operator [, x| denotes concatenation of the two arguments. For example, [z, z] = (21, 22, 21, 22).

(i) [1 pt] K(x,z2) = aK;(z, z), for some scalar a > 0

O d@) = () ® ¢(z) = Vagi(v)
O ¢(z) = [a, ¢1 ()] O ¢x)=di1(z)+a
O ¢(z) = agi() O ¢(z) = a1 ()
(i) 1 pt] K(x,2) = aK1(z, z) + bKa(x, z), for scalars a,b > 0
O ¢(z) = a1 (w) + bz (w) O ¢(z) = a1 (w), bga(x)]
O ¢x) = Vag(x) + Vbga () @ (z) = [Vagi(x), Viga(x)]
O d(x) = a’i(x) + b°¢2(2) O ¢(x) = [a%¢1(x), b°da(x)]

For (i) we need a ¢ s.t. ¢(x)-¢(2) = apy(x) - p1(2) +bpa () - pa(2) = [Vapy(x), Vo (x)] - [ad1(2), Vb (z)]. Thus
we have ¢(z) = [vag:(x), Vbpa(z)]

(c) [1 pt] Suppose you are given the choice between using the normal perceptron algorithm, which directly works
with ¢(z), and the dual (kernelized) perceptron algorithm, which does not explictly compute ¢(z) but instead
works with the kernel function K. Keeping space and time complexities in consideration, when would you
prefer using the kernelized perceptron algorithm over the normal perceptron algorithm.

Note: Here N denotes the total number of training samples and d is the dimensionality of ¢(z).

14

® (>N O d<<N O Always (O Never

For this question, the rationale was when we use a Kernel function, we typically store a Kernel matrix K with
Ki; = é(x;) - #(x;) where z; and z; are the it" and j** training instances. This results in an N x N matrix. If we
were to use the transformed d-dimensional feature representation, we would have to store Nd values instead of N?
values in the Kernel matrix. Thus space-wise, we would prefer kernels when d >> N.

Looking at time complexity, (at test time), if we use kernels (e.g. the kernelized perceptron) we need to compute
Zfil a; K (2, ;) for a test sample 2’. Assuming the kernel function computation takes O(1) time, we need to do
N such computations. In case of using ¢(x), we have the precomputed weight vector as w = > oy ,¢(z;) which

is d-dimensional and the computation of w.¢(z’) takes d O(1) computations. So again we would prefer kernels if
d>> N.

15

Q10. |8 pts] Clustering

In this question, we will do k-means clustering to cluster
the points 4, B ... F (indicated by x’s in the figure on the
right) into 2 clusters. The current cluster centers are P

><E(3’ 3)

B(-12) a 22

and @ (indicated by the B in the diagram on the right). 1 L2, LELD

Recall that k-means requires a distance function. Given 2

points, A = (41, A2) and B = (Bj, B), we use the follow- of w30 A0.9)

ing distance function d(A, B) that you saw from class,

()

(b)

d(A,B) = (A; — B1)? + (Ay — By)? bt 2

[2 pts] Update assignment step: Select all points that get assigned to the cluster with center at P:

O A ® B ®C ® D O F O F (O No point gets assigned to cluster P

[2 pts] Update cluster center step: What does cluster center P get updated to?
The cluster center gets updated to the point, P’ which minimizes, d(P’, B) +d(P’,C) +d(P’, D), which in this
case turns out to be the centroid of the points, hence the new cluster center is

—1-2-12+4+1-2\ (-4 +1
3 ’ 3 373

Changing the distance function: While k-means used Euclidean distance in class, we can extend it to other
distance functions, where the assignment and update phases still iteratively minimize the total (non-Euclidian)
distance. Here, consider the Manhattan distance:

d' (A, B) =|A; — B1| + |Ay — Bs|

We again start from the original locations for P and @ as shown in the figure, and do the update assignment step
and the update cluster center step using Manhattan distance as the distance function:

(c)

(d)

[2 pts] Update assignment step: Select all points that get assigned to the cluster with center at P, under
this new distance function d’(A, B).

@ 4 O B ®C ® OF O F (O No point gets assigned to cluster P

[2 pts] Update cluster center step: What does cluster center P get updated to, under this new distance
function d'(A, B)?

The cluster center gets updated to the point, P which minimizes, d'(P’, A) + d'(P’,C) 4+ d'(P’, D), which in
this case turns out to be the point with X-coordinate as the median of the X-coordinate of the points in the
cluster and the Y-coordinate as the median of the Y-coordinate of the points in the cluster. Hence the new
cluster center is

(_150)

23

