Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued

input feature with an associated class y* (0 or 1). There are two weight parameters w; and w,, and non-linearity functions g;
and g, (to be defined later, below). The network will output a value a, between 0 and 1, representing the probability of being in
class 1. We will be using a loss function Loss (to be defined later, below), to compare the prediction a, with the true class y*.

1. Perform the forward pass on this network, writing the output values for each node z;, a, z, and a, in terms of the node’s
input values:

2. Compute the loss Loss(a,, ¥*) in terms of the input x, weights w;, and activation functions g;:

dLoss
dw,
expression as a product of partial derivatives at each node: i.e. the partial derivative of the node’s output with respect to

its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive . Write your

4. Suppose the loss function is quadratic, Loss(ay, y*) = %(az —y*)?, and g and g, are both sigmoid functions g(z) = 1;7
(note: it’s typically better to use a different type of loss, cross-entropy, for classification problems, but we’ll use this to
make the math easier).

Using the chain rule from Part 3, and the fact that % = g(z)(1 — g(z)) for the sigmoid function, write % in terms of
2

the values from the forward pass, y*, a;, and a,:

5. Now use the chain rule to derive d;w‘”“'
1

as a product of partial derivatives at each node used in the chain rule:

dLos

6. Finally, write % in terms of x, y*, w;, a;, z;:
0w1 1] 1

7. What is the gradient descent update for w, with step-size a in terms of the values computed above?

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

[I\ |G e) O r O r

A is a gradient ascent path since the gradient lines are orthogonal to the contours and the point towards the
maximum. B is also a gradient ascent path with a high learning rate. C is not because the path is going towards
the minimum instead of the maximum. D is not a gradient ascent path since the gradient is not orthogonal to
the contour lines. E is not a gradient ascent path since it starts going towards the minimum. F is not since it
goes towards the minimum and the gradients are not orthogonal to the contour lines.

Q2. Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued
input feature with an associated class y* (0 or 1). There are two weight parameters w; and w,, and non-linearity functions g;
and g, (to be defined later, below). The network will output a value a, between 0 and 1, representing the probability of being in
class 1. We will be using a loss function Loss (to be defined later, below), to compare the prediction a, with the true class y*.

1. Perform the forward pass on this network, writing the output values for each node z;, a, z, and a, in terms of the node’s
input values:

Z] = X * Wy
a; = g(zy)
Zy =4y *k Wy

a, = g,(z,)

2. Compute the loss Loss(a,, y*) in terms of the input x, weights w;, and activation functions g;:

Recursively substituting the values computed above, we have:

Loss(ay, y*) = Loss(gy(w, * g;(w * x)),y™)

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive %. Write your
2

expression as a product of partial derivatives at each node: i.e. the partial derivative of the node’s output with respect to
its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

dLoss _ OLoss%aﬁ

aLUZ 0(12 ()Zz alez

4. Suppose the loss function is quadratic, Loss(ay, y*) = %(az —y*)?, and g1 and g, are both sigmoid functions g(z) = H—%

(note: it’s typically better to use a different type of loss, cross-entropy, for classification problems, but we’ll use this to

make the math easier).

Using the chain rule from Part 3, and the fact that % = g(z2)(1 — g(2)) for the sigmoid function, write % in terms of
2

the values from the forward pass, y*, a;, and a,:

First we’ll compute the partial derivatives at each node:

o0Loss _ *

aa2 = (az o)

da 0g,(2,)

6_2 = 2222 = 0 (2)(1 — g5(29) = ap(1 — ay)

Zz 622

622

—= =g,

ow,

Now we can plug into the chain rule from part 3:

0Loss _ dLoss%&
OLU2 0(12 aZ2 aWQ

= (a, — y*) s ar)(1 —a,) * ay

5. Now use the chain rule to derive % as a product of partial derivatives at each node used in the chain rule:

wy

0Loss _ dLoss day 0z, da, ﬁ

ow, da, 0z, 0da, 0z, dw,

6. Finally, write % in terms of x, y*, w;, a;, z;: The partial derivatives at each node (in addition to the ones we computed
1

in Part 4) are:

aZZ

— = w

()al 2

aal agl(zl)

oz, - oz =gz —g1(z)) = a;(1 —ay)
aZl

— =X

0a1

Plugging into the chain rule from Part 5 gives:

dLoss _ dLoss 043 0z, 0a; 07y

0w1 0a2 622 (301 aZl 6w1

(@, — y*) % ay(1 — ay) * wy % a;(1 —ay) * x

7. What is the gradient descent update for w; with step-size a in terms of the values computed above?

wy < w; —alay, —y*) * ay(1 —ay) * wy * a;(1 —ay) * x

