
CS 343: Artificial Intelligence
Markov Decision Processes

Prof. Yuke Zhu, The University of Texas at Austin
[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ Homework 2: CSPs, Games, Utilities
▪ (Updated) Due 2/20 at 11:59 pm

▪ Project 2: Multi-Agent Pacman
▪ Due 2/22 at 11:59 pm

▪ Homework 3: MDPs, Reinforcement Learning
▪ Now released. Due 2/27 11:59pm

▪ Mid-term exam (more details will follow)
▪ 2-hour exam on Gradescope which can be completed in a 24-

hour window (9:30am, Mar 9-10)

Non-Deterministic Search

Example: Grid World
▪ A maze-like problem

▪ The agent lives in a grid
▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned
▪ 80% of the time, the action has the intended effect

(if there is no wall there)
▪ 20% of the time an adjacent action occurs instead. Ex: North

has 10% chance of East and 10% chance of West
▪ If there is a wall in the direction the agent would have been

taken, the agent stays put

▪ The agent receives rewards each time step
▪ Small “living” reward each step (can be negative)
▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s Î S
▪ A set of actions a Î A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ …but with modification to allow rewards along the way
▪ We’ll have a new, more efficient tool soon

What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future and
the past are independent

▪ For Markov decision processes, “Markov” means action outcomes depend
only on the current state

▪ This is just like search, where the successor function could only depend on
the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

▪ In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

▪ For MDPs, we want an optimal policy p*: S → A
▪ A policy p gives an action for each state
▪ An optimal policy is one that maximizes expected utility

if followed
▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies
▪ It computed the action for a single state only

Example: Racing
▪ A robot car wants to travel far, quickly
▪ Three states: Cool, Warm, Overheated
▪ Two actions: Slow, Fast
▪ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees
▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a q-
state

Utilities of Sequences

Utilities of Sequences

▪ What preferences should an agent have over reward sequences?

▪ More or less?

▪ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

▪ It’s reasonable to maximize the sum of rewards
▪ It’s also reasonable to prefer rewards now to rewards later
▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

▪ How to discount?
▪ Each time we descend a level, we

multiply in the discount once

▪ Why discount?
▪ Sooner rewards probably do have

higher utility than later rewards
▪ Also helps our algorithms converge

▪ Example: discount of 0.5
▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
▪ U([1,2,3]) < U([3,2,1])

Exercise: Discounting

▪ Given:

▪ Actions: Left, Right, and Exit (only available in exit states a, e)
▪ Transitions: deterministic

▪ Quiz 1: For g = 1, what is the optimal policy?

▪ Quiz 2: For g = 0.1, what is the optimal policy?

▪ Quiz 3: For which g are Left and Right equally good when in state d?

Infinite Utilities?!
▪ Problem: What if the game lasts forever? Do we get infinite rewards?

▪ Solutions:
▪ Finite horizon: (similar to depth-limited search)

▪ Terminate episodes after a fixed T steps (e.g. life)
▪ Gives nonstationary policies (p depends on time left)

▪ Discounting: use 0 < g < 1

▪ Smaller g means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

Recap: Defining MDPs

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0
▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount g)

▪ MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a q-
state

Values of States

▪ Fundamental operation: compute the (expectimax) value of a state
▪ Expected utility under optimal action
▪ Average sum of (discounted) rewards
▪ This is just what expectimax computed!

▪ Recursive definition of (optimal) value:

a

s

s, a

s,a,s’
s’

The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a
simple one-step lookahead relationship amongst optimal utility values

▪ These are the Bellman equations, and they characterize optimal
values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

Time-Limited Values

▪ Key idea: time-limited values

▪ Define Vk(s) to be the optimal value of s if the game ends in
k more time steps
▪ Equivalently, it’s what a depth-k expectimax would give from s

Computing Time-Limited Values

Value Iteration

Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one step of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value Iteration

▪ Bellman equations characterize the optimal values:

▪ Value iteration computes them:

▪ Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Evaluation

Fixed Policies

▪ Expectimax trees max over all actions to compute the optimal values

▪ If we fixed some policy p(s), then the tree would be simpler – only one action per state
▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s, p(s),s’
s’

Do the optimal action Do what p says to do

Utilities for a Fixed Policy

▪ Another basic operation: compute the utility of a state s under a
fixed (generally non-optimal) policy

▪ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

▪ Recursive relation (one-step look-ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),s’
s’

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

▪ How do we calculate the V’s for a fixed policy p?

▪ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),s’
s’

Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?
▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?
▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!
▪ In fact, you don’t even need a model!

Policy Iteration

Problems with Value Iteration

▪ Value iteration repeats the Bellman updates:

▪ Problem 1: It’s slow – O(S2A) per iteration

▪ Problem 2: The “max” at each state rarely changes

▪ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

Policy Iteration

▪ Alternative approach for optimal values:
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
▪ Repeat steps until policy converges

▪ This is policy iteration
▪ It’s still optimal!
▪ Can converge (much) faster under some conditions

Policy Iteration

▪ Evaluation: For fixed current policy p, find values with policy evaluation:
▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction
▪ One-step look-ahead:

Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values)

▪ In value iteration:
▪ Every iteration updates both the values and (implicitly) the policy
▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

▪ In policy iteration:
▪ We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
▪ The new policy will be better (or we’re done)

▪ Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

▪ So you want to….
▪ Compute optimal values: use value iteration or policy iteration
▪ Compute values for a particular policy: use policy evaluation
▪ Turn your values into a policy: use policy extraction (one-step lookahead)

▪ These all look the same!
▪ They basically are – they are all variations of Bellman updates
▪ They all use one-step lookahead expectimax fragments
▪ They differ only in whether we plug in a fixed policy or max over actions

Next Time: Reinforcement Learning

