CS 343: Artificial Intelligence

Constraint Satisfaction Problems

Prof. Yuke Zhu

The University of Texas at Austin

[These slides are based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Announcements

= Homework 2: CSPs, , Games, Utilities
= Has been released! Due Monday 2/13, at 11:59 pm.

= Homework 1: Search
= Reminder: Due Monday 1/30 at 11:59 pm

* Project 1: Search
= Reminder: Due Wednesday 2/1 at 11:59 pm

What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state,

discrete state space — , 2,
o0t r)é“
P
L .m,_w/

Planning: sequences of actions
= The path to the goal is the important thing
= Paths have various costs, depths
= Heuristics give problem-specific guidance

Identification: assignments to variables

= The goal itself is important, not the path
= All paths at the same depth (for some formulations)
= (CSPs are specialized for identification problems

Constraint Satisfaction Problems

Standard search problems:
= Stateis a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

Tasmv"fa

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA #= NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all constraints,
e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Example: N-Queens

= Formulation 1:

= Variables: X,
* Domains: {0,1}

» Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi,j.k (Xij, Xp;) € {(0,0),(0,1),(1,0)} X, =
Vi, j, k (Xij, Xitk j+k) € 1(0,0),(0,1),(1,0)} .
Vi, j, k (X, Xiqk i—k) € 1(0,0),(0,1),(1,0)}

Example: N-Queens

= Formulation 2:

Q1

= Variables: Qg Q2
| Q3

* Domains: {1,2,3,...N} Qa

» Constraints:

Implicit: Vi,j non-threatening(Q;, @;)

it (Q1,Q2) € {(1,3),(1,4),...}

Constraint Graphs

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables Q
@] -

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Example: Cryptarithmetic

= Variables:
FTUW RO X1 Xo X3 +
= Domains: F
{0,1,2,3,4,5,6,7,8,9}

= Constraints:
alldiff(F,T,U, W, R,O) @@//u w) (R) 1O

O+0=R+10- X4

Example: Sudoku

Variables:
Each (open) square
Domains:
o] [8| - {1,2,..,9}
814 1161 7 = Constraints:

9-way alldiff for each column

9-way alldiff for each row

Nh|lHh|lO]-
W

9-way alldiff for each region

&)
NN |0 W

/ (or can have a bunch of
7 pairwise inequality
2 3 constraints)

Varieties of CSPs

= Discrete Variables
= Finite domains
= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

= |Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations
= Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to reducing
domains), e.g.:

SA #* green

= Binary constraints involve pairs of variables, e.g.:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (We'll ignore these until we get to Bayes’ nets)

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots more! Ay

Many real-world problems involve real-valued variables...

Standard Search Formulation

Standard search formulation of CSPs

States defined by the values assigned
so far (partial assignments)

= |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

We'll start with the straightforward,
naive approach, then improve it

= What would BFS do?

= What would DFS do?

Search Methods

Search Methods

= What would BFS do?

= What would DFS do?

* What problems does naive search have? @

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

ldea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
= |.e., [WA =red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

ldea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation

Exercise: Backtracking

Simple Sudoko
3 4 X, | X, The board is a 4-by-4 square, and each box can
have a number from 1 through 4. In each row
« 3 and column, a number can only appear once.

21 Furthermore, in each group of 2-by-2 boxes
outlined with a solid border, each of the 4
numbers may only appear once as well. Every
cell is represented by a variable. We denote the
square at i'" row and j" column as X;» and we
index the row and column from 1.

(1) Write down constraints of this simple Sudoko problem.

(2) Consider the backtracking search that will assign X3, X4, X541 in order during
the search procedure. Draw all the branches in search tree for X3, X4, Xy4.

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?
= |n what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
SA (sw

WA NT Q NSW \' SA

Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but doesn't
provide early detection for all failures:

WA NT Q NSW Vv SA
\iL* T Ir B IT I I
"SA o) BN ST EErEEIE[ESE] im
b Eam]| E[o s EErE] =

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

= Anarc X = Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

NT T'g WA NT Q NSW v SA
‘ S | fEErfEErfEErE[ET .
v W

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

A simple form of propagation makes sure all arcs are consistent:

NT WA NT Q NSW vV SA

_ Q
A \m—- I | 1 [m [_"n] O

\Y

Important: If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

What’s the downside of enforcing arc consistency?

S~— —

Remember: Delete
from the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X} in NEIGHBORS[X;] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X;]; removed — true
return removed

= Runtime: O(n?d3), can be reduced to O(n%d?)
= ... but detecting all possible future problems is NP-hard — why?

Limitations of Arc Consistency

= After enforcing arc O
consistency: ‘
= Can have one solution left ¢ 0

= Can have multiple solutions left
= Can have no solutions left (and ®
not know it)

= Arc consistency still runs inside @
a backtracking search! What went

wrong here?

Ordering

Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV):
= Choose the variable with the fewest legal left values in its domain

=S

Why min rather than max?
Also called “most constrained variable”
“Fail-fast” ordering

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value

= Given a choice of variable, choose the least constraining ‘
value

= |.e., the one that rules out the fewest values in the ‘
remaining variables

= Note that it may take some computation to determine ‘_L%

this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

Exercise: Arc Consistency + Ordering

Filtering & Ordering

without coloring two adjacent nodes with the same
color. Now we have assigned Red to node A and Blue to

node B.

Now we want to color the graph with Red, Blue, Green ‘

(1) If we assign Red to node C, what will be the
remaining legal values in D, E, F after running (a)
forwarding checking (b) arc consistency?

(2) (MRV) Based on the MRV rule, which variable
should be chosen next?

(3) (LCV) Based on the LCV principle, which value
should we choose if we want to assign color to
Node D first? (Assume we use forward checking for
the filtering step)

