CS 343 **Review and Conclusion**

The University of Texas at Austin

Prof. Yuke Zhu

- Please fill out the course survey Feedback to both instructor and TAs Positive and negative points are useful ulletPost on Piazza your completion screenshot (in a private post) as a form •
- - of participation!

• Capture the Flag contest results!

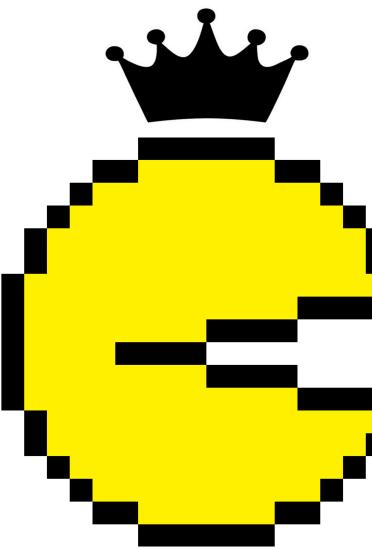
CTF Contest

15 teams participated, 10 qualified

Rankings

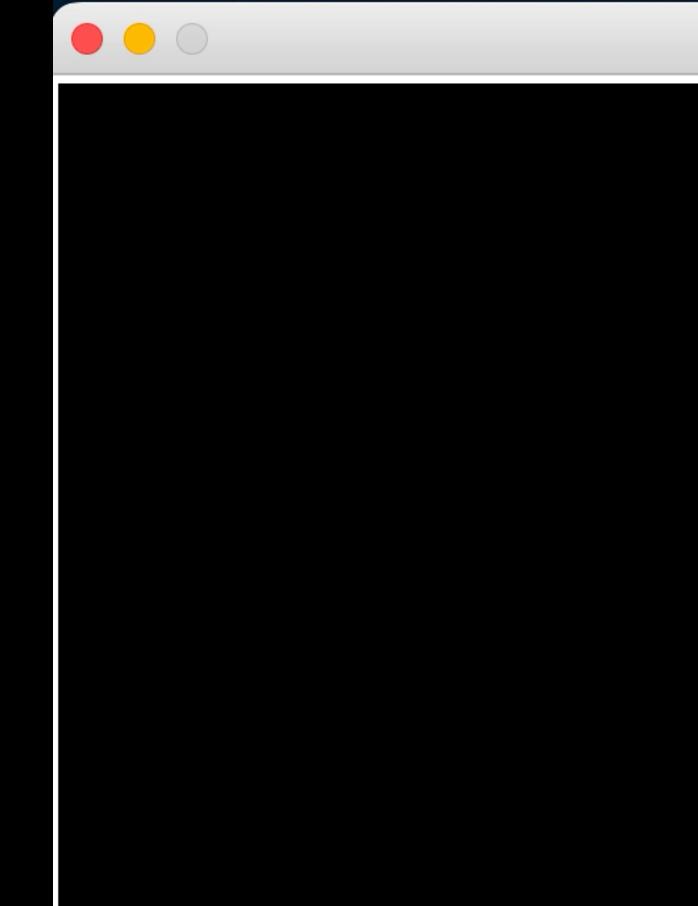
1st place: Joseph Stanley, Ritvik Renikunta 2nd place: Adit Pareek, Eylam Tagor 3rd place: Arik Rundquist (tie), John Li (tie)

- Congratulations!



1st place

Joseph Stanley, Ritvik Renikunta



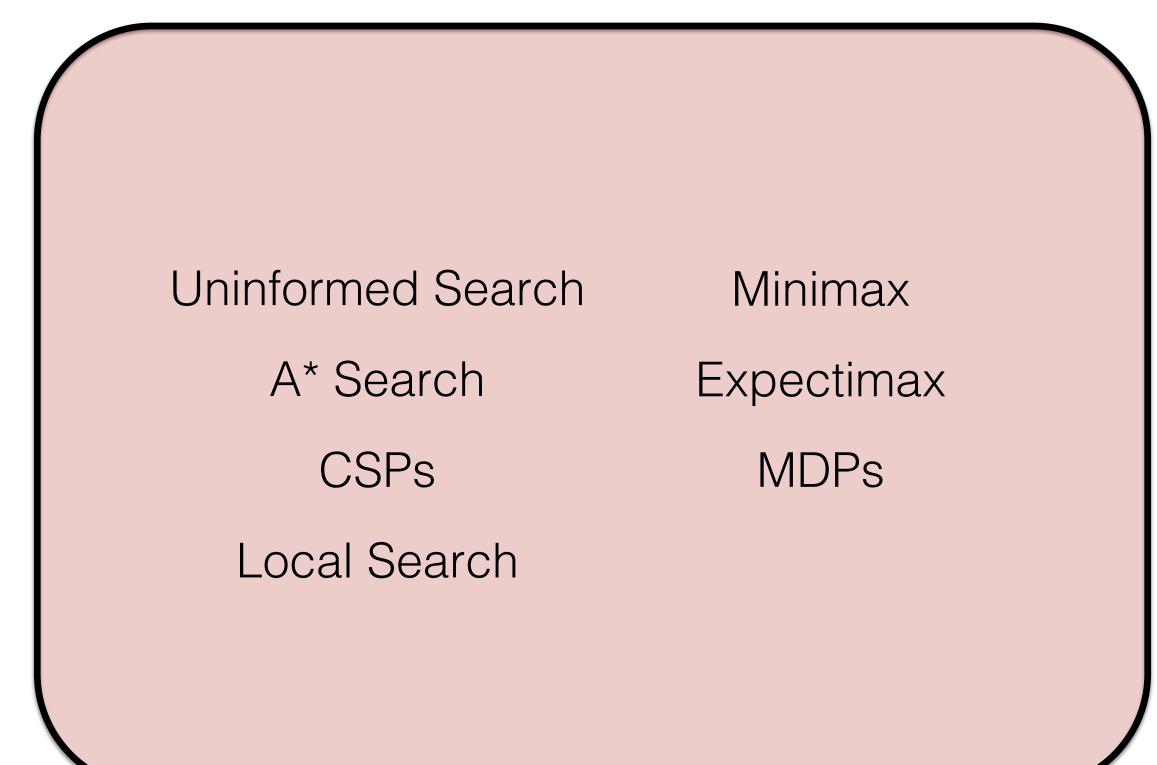
CS188 Pacman

2nd place

Adit Pareek, Eylam Tagor

Overview of AI Topics

Search / Planning



Machine Learning

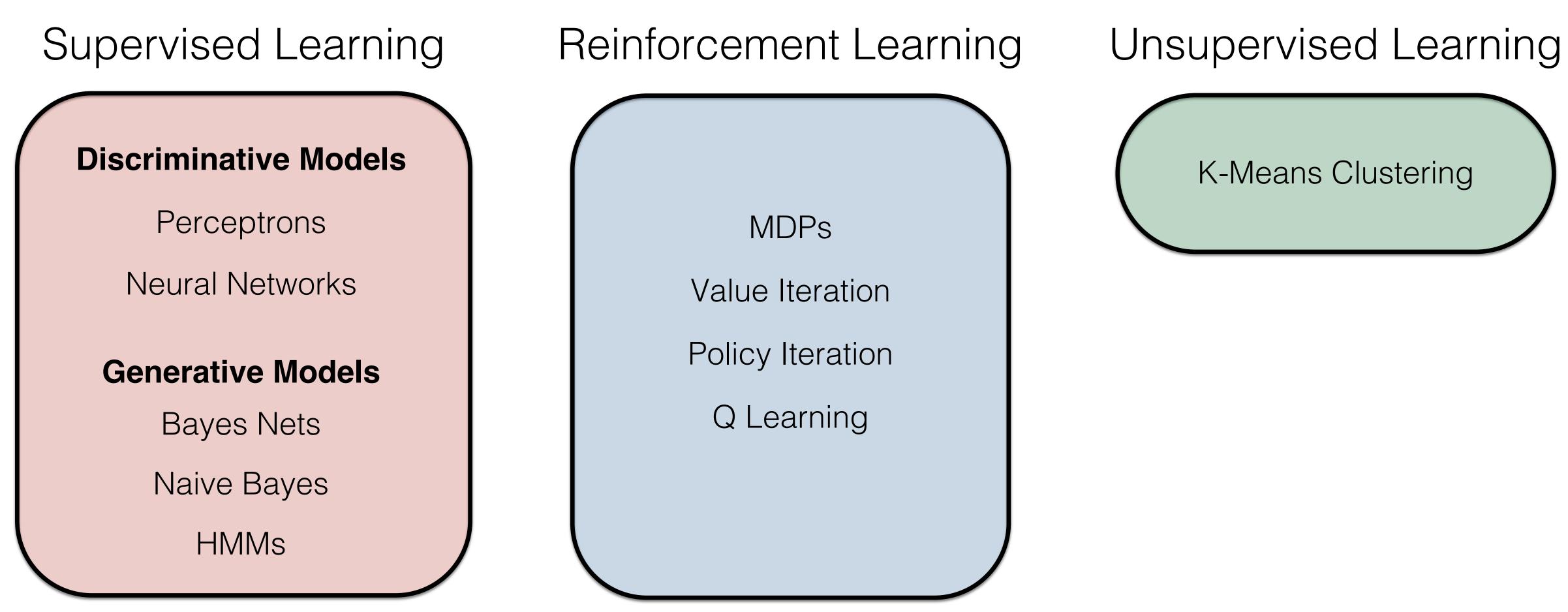
Reinforcement Learning Probability Theory Bayes Nets HMMs Particle Filters Decision Diagrams

Naive Bayes Perceptrons Neural Networks Kernels

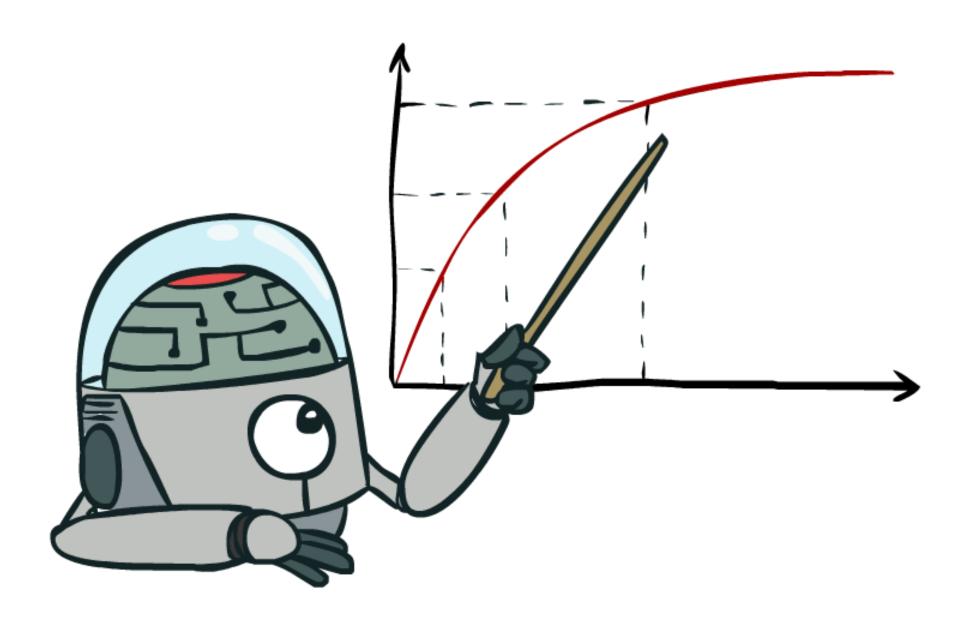
Clustering

VPI

Overview of Machine Learning



Maximize Your Expected Utility



Constraint satisfaction: searching intelligently for legal solutions

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

How Do Al Systems Maximize Utility?

Example: Sudoku

Utility: Does the solution satisfy the rules / constraints?

Assumptions: We can write down the rules / constraints of the problem



Planning: reasoning with models

Example: Robot navigation

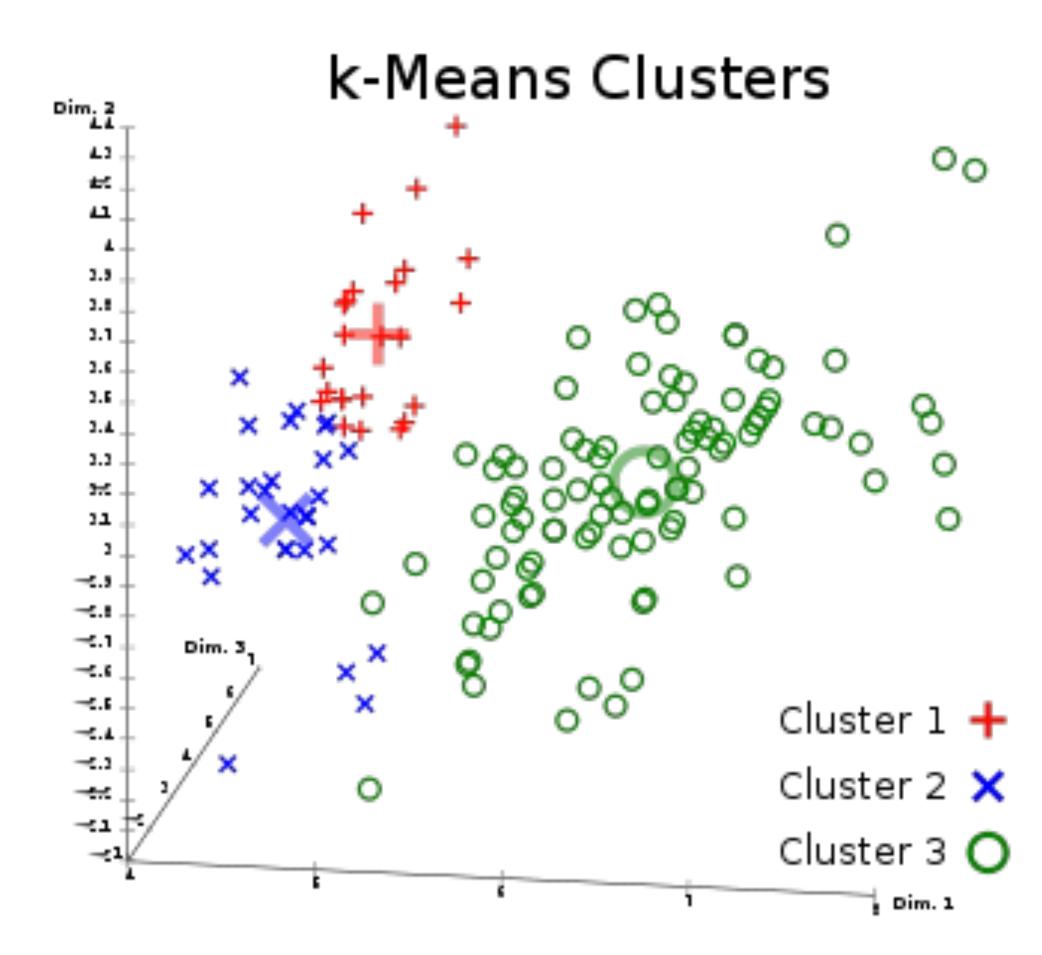
Utility: Path length, collisions, surfaces, energy, social factors

Assumptions: We have a model of the world and the effects of the agent's actions

Supervised Learning: learning from labeled examples

Example: Image classification **Utility:** Classification accuracy on images not seen during training

Assumptions: We have access to a (usually large) labeled data set



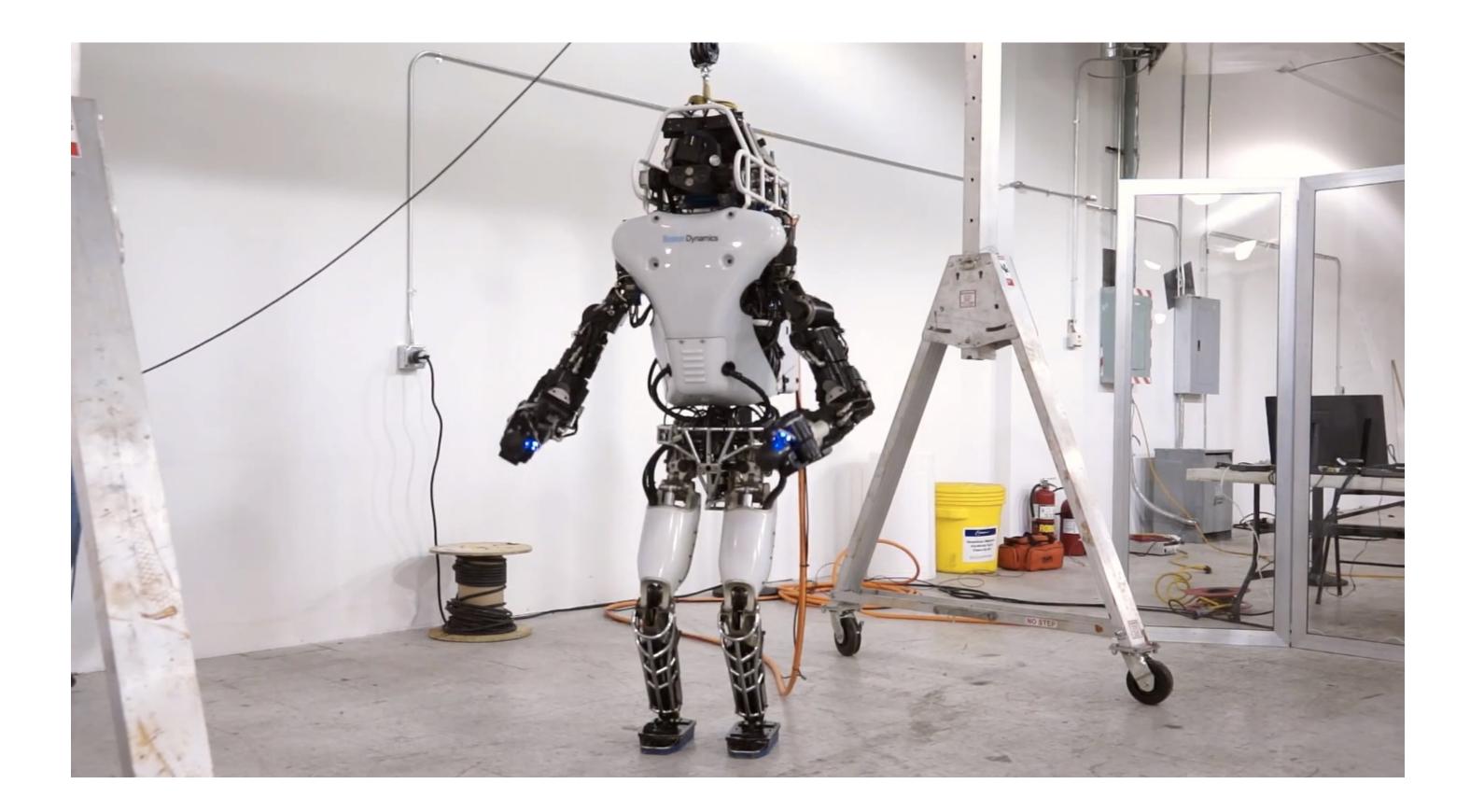
Unsupervised Learning: discovering patterns in unlabeled data

Example: Clustering species

Utility: "Best" explanation of data

Assumptions: Data points that should be clustered together are "close" together

Reinforcement Learning: learning from experience



Example: Robot walking

Utility: Time until fall, speed, energy efficiency

Assumptions: We can "reward" and "punish" good and bad performance, but don't know what the correct action at each step should be

Properties of task environment

- Single-agent vs. multi-agent
- Deterministic vs. stochastic
- Fully observable vs. partially observable
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Known vs. unknown

Single agent vs. multi-agent

- Not multi-agent if other agents can be considered part of the environment
- Only considered to be multi-agent if the agents are maximizing a performance metric that depends on other agents' behavior
- Single agent example: Pacman with randomly moving ghosts
- Multi-agent example: Pacman with ghosts that use a planner to follow him

Single

Uninformed Search A* Search Local Search CSPs

Single / Multi Agent

Multi

Minimax

Expectimax

MDPs

Reinforcement Learning

Deterministic vs. stochastic

- Deterministic: next state of environment is completely determined by the current state and the action executed by the agent
- Stochastic: actions have probabilistic outcomes
- Strongly related to partial observability most apparent stochasticity results from partial observation of a deterministic system
- Example: Coin flip

Deterministic

Uninformed Search A* Search Local Search CSPs

Minimax

Determinism

Stochastic

Expectimax

MDPs

Reinforcement Learning

Decision Diagrams

- Fully observable: agent's sensors give it access to complete state of the environment at all times
- Can be partially observable due to noisy and inaccurate sensors, or because parts of the state are simply missing from the sensor data
- Example: Perfect GPS vs noisy pose estimation
- Example: IKEA assembly while blindfolded

Almost everything in the real world is partially observable

Fully Observable

Minimax Uninformed Search Expectimax A* Search Local Search MDPs CSPs Reinforcement Learning

Observability

Partially Observable

Bayes Nets

HMMs

Decision Diagrams

- Agent's state of knowledge about the "rules of the game" / "laws of physics"
- Known environment: the outcomes for all actions are given • Unknown: agent has to learn how it works to make good decisions
- Possible to be partially observable but known (solitaire) Possible to be fully observable but unknown (video game)

Model of the World

Known

Uninformed SearchMinimaxA* SearchExpectimaxLocal SearchMDPsCSPsValue IterationClassic PlanningDecision Diagrams

Unknown

Q Learning

Learning parameters of Bayes Net

Step 1

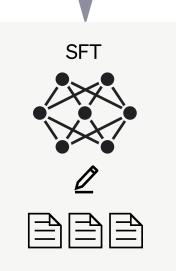
Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

5 Explain reinforcement learning to a 6 year old.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.



Step 2

train a reward model.

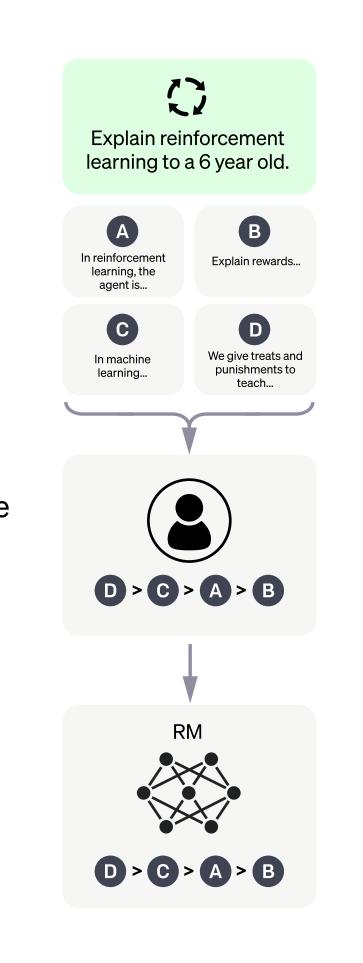
A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

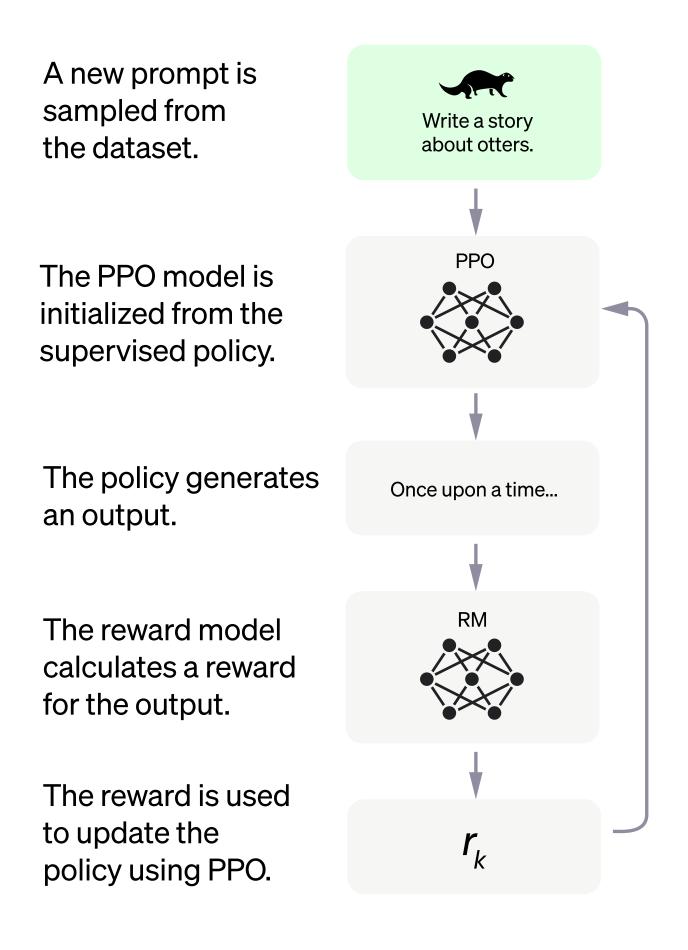
How ChatGPT is Built

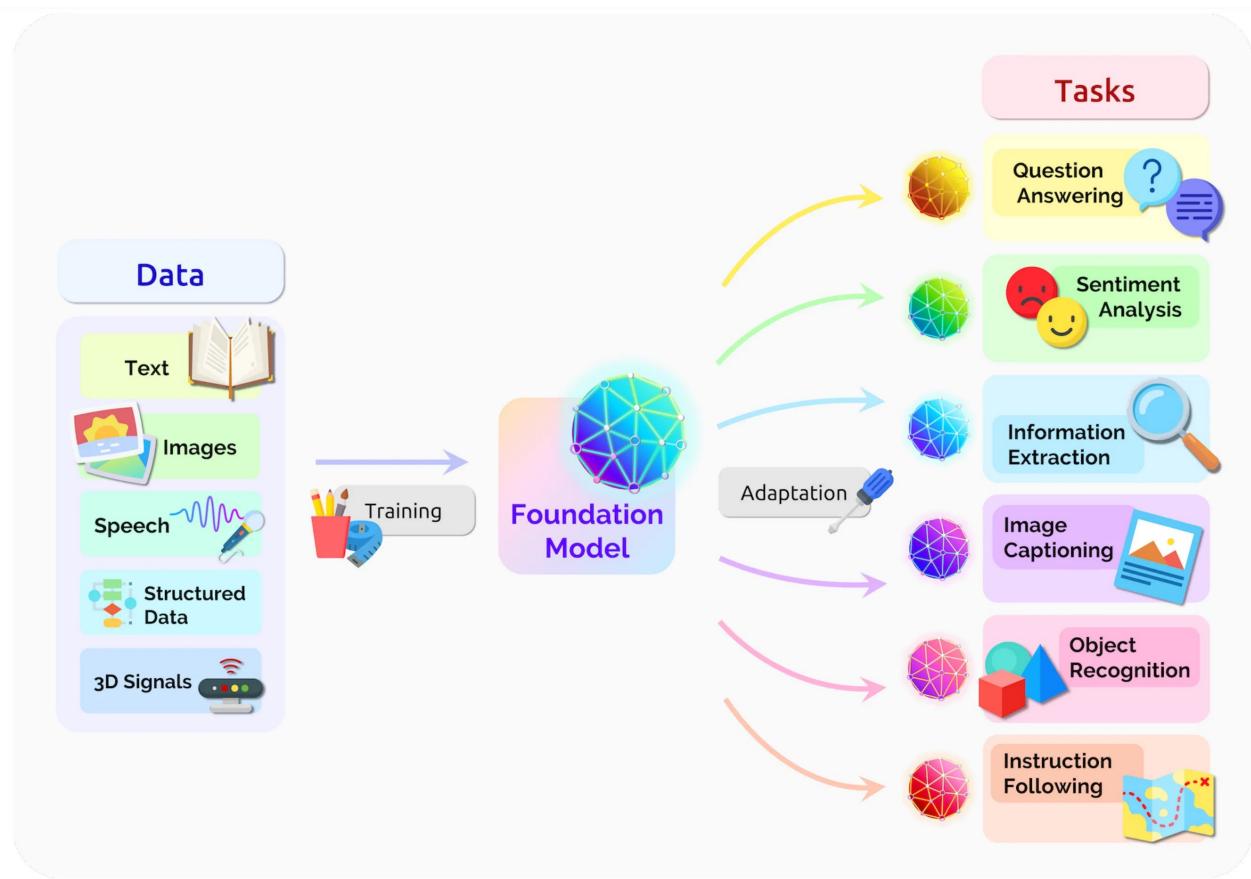
Collect comparison data and



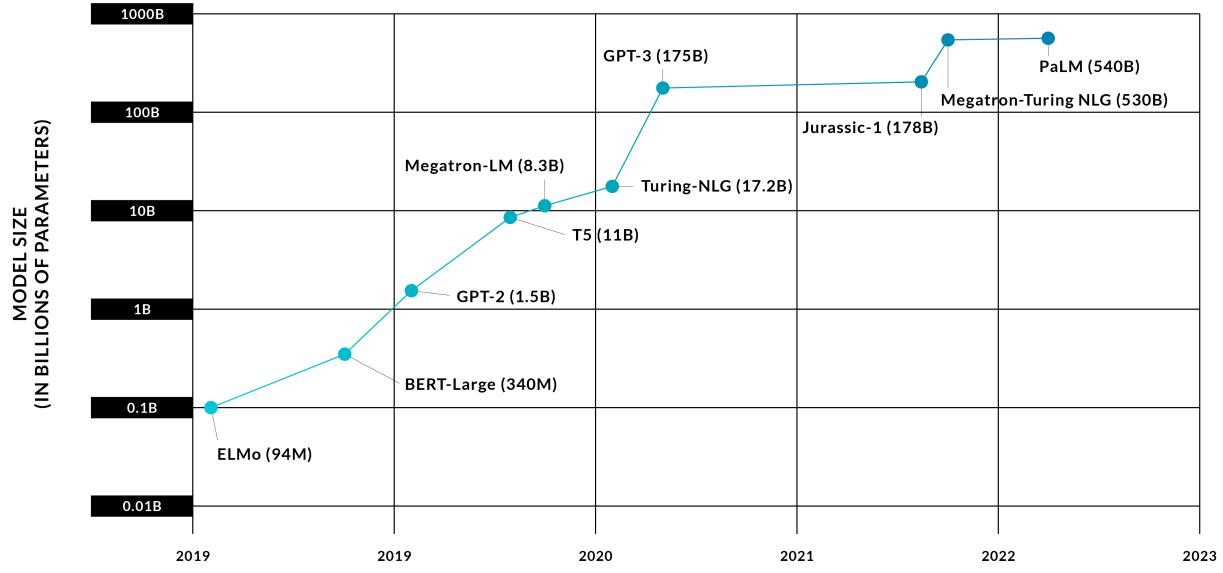
Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.





Era of Big Models



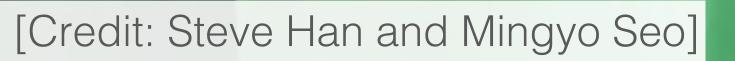
Ria N

["VIOLA", Zhu et al. CoRL 2022]

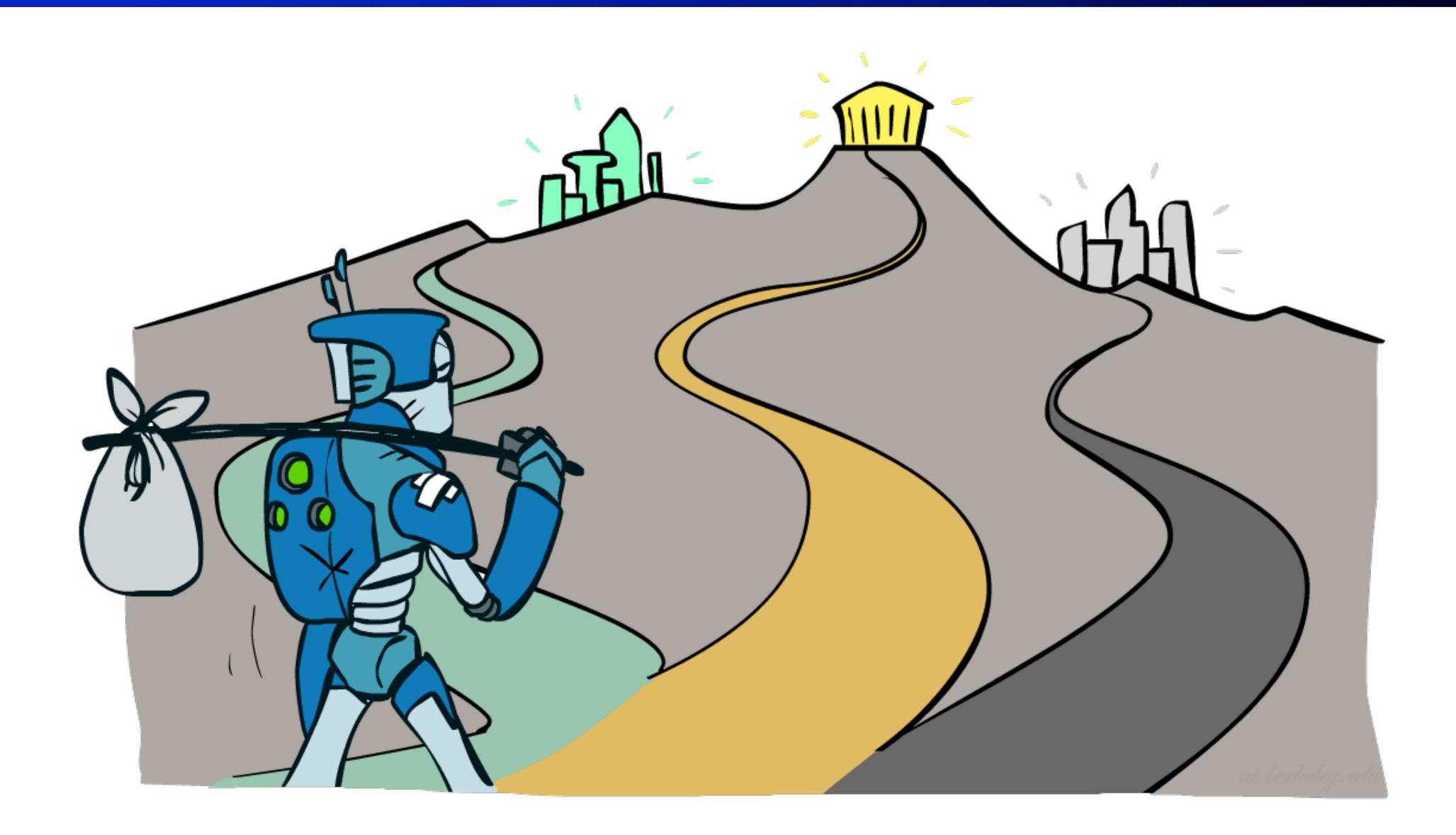
A

1111111111111111

Workspace Image

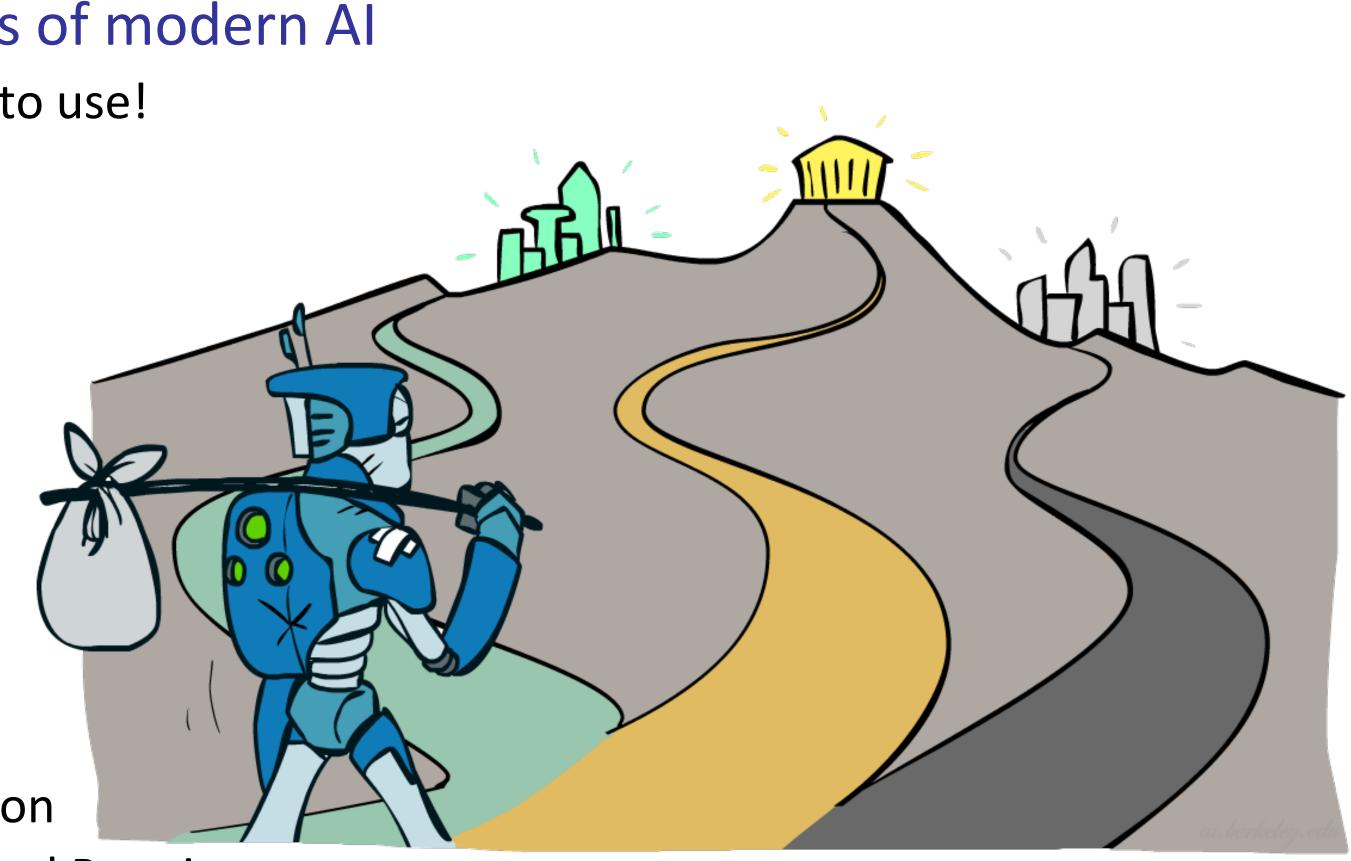


Where to Go Next?



Where to Go Next?

- Congratulations, you've seen the basics of modern Al
 - In and done some amazing work putting it to use!
- How to continue:
 - CS 395T Visual Recognition
 - CS 391R Robot Learning
 - ECE 382V Human Robot Interaction
 - CS 388 Natural Language Processing
 - CS 391L Machine Learning
 - CS 393R Autonomous Robots
 - CS 342 Neural Networks
 - EE 381V Advanced Topics in Computer Vision
 - CS 394R Reinforcement Learning: Theory and Practice
 - In and more; ask if you're interested



- We have come a long way! Thank you!
- We are very proud that you have made it to the end of this demanding course!
- We are impressed by your ingenuity and critical thinking in the in-class discussions, Piazza posts, projects, and assignments!
- Thanks to Zhenyu and Pranav for handling the course logistics.
- If this course helps you kickstart your future endeavors in AI, please email us and let us know!

Friday 4/28 8 – 10am GEA 105

I page (front and back) of notes

Closed book

I had a great time teaching this course and I hope you all enjoyed it as well

Have a great summer!