

CS 343: Artificial Intelligence

Deep Learning

Prof. Yuke Zhu - The University of Texas at Austin

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$
\operatorname{activation}_{w}(x)=\sum_{i} w_{i} \cdot f_{i}(x)=w \cdot f(x)
$$

- If the activation is:
- Positive, output +1
- Negative, output -1

Non-Linear Separators

- Data that is linearly separable works out great for linear decision rules:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Non-Linear Separators

- General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:

Perceptron

Two-Layer Perceptron Network

N-Layer Perceptron Network

Perceptron

- Objective: Classification Accuracy

$$
l^{\operatorname{acc}}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(\operatorname{sign}\left(w^{\top} f\left(x^{(i)}\right)\right)==y^{(i)}\right)
$$

- Issue: many plateaus \rightarrow how to measure incremental progress toward a correct label?

How to get probabilistic decisions?

- Activation: $\quad z=w \cdot f(x)$
- If $\quad z=w \cdot f(x) \quad$ very positive \rightarrow want probability going to 1
- If $z=w \cdot f(x)$ very negative \rightarrow want probability going to 0
- Sigmoid function

$$
\phi(z)=\frac{1}{1+e^{-z}}
$$

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
\begin{aligned}
& P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}} \\
& P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
\end{aligned}
$$

= Logistic Regression

Multiclass Logistic Regression

- Multi-class linear classification
- A weight vector for each class: w_{y}
- Score (activation) of a class $\mathrm{y}: \quad z_{y}=w_{y} \cdot f(x)$
- Prediction w/highest score wins: $y=\arg \underset{y}{\max } w_{y} \cdot f(x)$

- How to make the scores into probabilities?

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
P\left(y^{(i)} \mid x^{(i)} ; w\right)=\frac{e^{w_{y^{(i)}} \cdot f\left(x^{(i)}\right)}}{\sum_{y} e^{w_{y} \cdot f\left(x^{(i)}\right)}}
$$

Two-Layer Neural Network

N-Layer Neural Network

Best w?

- Optimization

- i.e., how do we solve:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Hill Climbing

- Recall from CSPs lecture: simple, general idea
- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
- Optimization over a continuous space
- Infinitely many neighbors!
- How to do this efficiently?

1-D Optimization

- Could evaluate $g\left(w_{0}+h\right)$ and $g\left(w_{0}-h\right)$
- Then step in best direction
- Or, evaluate derivative: $\quad \frac{\partial g\left(w_{0}\right)}{\partial w}=\lim _{h \rightarrow 0} \frac{g\left(w_{0}+h\right)-g\left(w_{0}-h\right)}{2 h}$
- Tells which direction to step into

Gradient Ascent

- Idea:
- Start somewhere
- Repeat: Take a step in the gradient direction

Gradient in n dimensions

$$
\nabla g=\left[\begin{array}{c}
\frac{\partial g}{\partial w_{1}} \\
\frac{\partial g}{\partial w_{2}} \\
\cdots \\
\frac{\partial g}{\partial w_{n}}
\end{array}\right]
$$

Deep Neural Network: Also Learn the Features!

- Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector \odot
\rightarrow just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

How about computing all the derivatives?

- Derivatives tables:

$$
\begin{array}{ll}
\frac{d}{d x}(a)=0 & \frac{d}{d x}[\ln u]=\frac{d}{d x}\left[\log _{e} u\right]=\frac{1}{u} \frac{d u}{d x} \\
\frac{d}{d x}(x)=1 & \frac{d}{d x}\left[\log _{a} u\right]=\log _{a} e \frac{1}{u} \frac{d u}{d x} \\
\frac{d}{d x}(a u)=a \frac{d u}{d x} & \frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x} \\
\frac{d}{d x}(u+v-w)=\frac{d u}{d x}+\frac{d v}{d x}-\frac{d w}{d x} & \frac{d}{d x} a^{u}=a^{u} \ln a \frac{d u}{d x} \\
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} & \frac{d}{d x}\left(u^{v}\right)=v u^{v-1} \frac{d u}{d x}+\ln u u^{v} \frac{d v}{d x} \\
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{1}{v} \frac{d u}{d x}-\frac{u}{v^{2}} \frac{d v}{d x} & \frac{d}{d x} \sin u=\cos u \frac{d u}{d x} \\
\frac{d}{d x}\left(u^{n}\right)=n u^{n-1} \frac{d u}{d x} & \frac{d}{d x} \cos u=-\sin u \frac{d u}{d x} \\
\frac{d}{d x}(\sqrt{u})=\frac{1}{2 \sqrt{u}} \frac{d u}{d x} & \frac{d}{d x} \tan u=\sec ^{2} u \frac{d u}{d x} \\
\frac{d}{d x}\left(\frac{1}{u}\right)=-\frac{1}{u^{2}} \frac{d u}{d x} & \frac{d}{d x} \cot u=-\csc ^{2} u \frac{d u}{d x} \\
\frac{d}{d x}\left(\frac{1}{u^{n}}\right)=-\frac{n}{u^{n+1}} \frac{d u}{d x} & \frac{d}{d x} \sec u=\sec u \tan u \frac{d u}{d x} \\
\frac{d}{d x}[f(u)]=\frac{d}{d u}[f(u)] \frac{d u}{d x} & \frac{d}{d x} \csc u=-\csc u \cot u \frac{d u}{d x}
\end{array}
$$

How about computing all the derivatives?

- But neural net f is never one of those?
- No problem: CHAIN RULE:

If

$$
f(x)=g(h(x))
$$

Then

$$
f^{\prime}(x)=g^{\prime}(h(x)) h^{\prime}(x)
$$

\rightarrow Derivatives can be computed by following well-defined procedures

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- Can use derivative chain rule to compute $\partial g / \partial w_{1}$ and $\partial g / \partial w_{2}$.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- Can use derivative chain rule to compute $\partial g / \partial w_{1}$ and $\partial g / \partial w_{2}$.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$
- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}$

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- Can use derivative chain rule to compute $\partial g / \partial w_{1}$ and $\partial g / \partial w_{2}$.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$
- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}=? ? ? ? ?$

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- Can use derivative chain rule to compute $\partial g / \partial w_{1}$ and $\partial g / \partial w_{2}$.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$
- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}=1 \frac{\partial b}{\partial a}=1 \cdot 3=3$

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- Can use derivative chain rule to compute $\partial g / \partial w_{1}$ and $\partial g / \partial w_{2}$.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$
- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}=1 \frac{\partial b}{\partial a}=1 \cdot 3=3$
- $a=w_{1}^{3}$
- $\frac{\partial g}{\partial w_{1}}=? ? ? ? ?$

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- Can use derivative chain rule to compute $\partial g / \partial w_{1}$ and $\partial g / \partial w_{2}$.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$
- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}=1 \frac{\partial b}{\partial a}=1 \cdot 3=3$
- $a=w_{1}^{3}$
- $\frac{\partial g}{\partial w_{1}}=\frac{\partial g}{\partial a} \frac{\partial a}{\partial w_{1}}=3 \cdot 3 w_{1}^{2}=36$

$$
\frac{\partial g}{\partial g}=1
$$

Interpretation: A tiny increase in w_{1}
will result in an approximately $36 w_{1}$ increase in g due to this cube function.

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- Can use derivative chain rule to compute $\partial g / \partial w_{1}$ and $\partial g / \partial w_{2}$.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$
- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}=1 \frac{\partial b}{\partial a}=1 \cdot 3=3$
- $a=w_{1}^{3}$
- $\frac{\partial g}{\partial w_{1}}=\frac{\partial g}{\partial a} \frac{\partial a}{\partial w_{1}}=3 \cdot 3 w_{1}^{2}=36$
- $\frac{\partial g}{\partial w_{2}}=? ? ? \quad$ Hint: $b=a \times 3$ may be useful.

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- Can use derivative chain rule to compute $\partial g / \partial w_{1}$ and $\partial g / \partial w_{2}$.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$
- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}=1 \frac{\partial b}{\partial a}=1 \cdot 3=3$
- $\frac{\partial g}{\partial w_{2}}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial w_{2}}=1 \frac{\partial b}{\partial w_{2}}=1 \cdot 8=8$
- $a=w_{1}^{3}$
- $\frac{\partial g}{\partial w_{1}}=\frac{\partial g}{\partial a} \frac{\partial a}{\partial w_{1}}=3 \cdot 3 w_{1}^{2}=36$

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- $g=b+c$
- $\frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1$
- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}=1 \frac{\partial b}{\partial a}=1 \cdot 3=3$
- $\frac{\partial g}{\partial w_{2}}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial w_{2}}=1 \frac{\partial b}{\partial w_{2}}=1 \cdot 8=8$
- $a=w_{1}^{3}$
- $\frac{\partial g}{\partial w_{1}}=\frac{\partial g}{\partial a} \frac{\partial a}{\partial w_{1}}=3 \cdot 3 w_{1}^{2}=36$
- $c=3 w_{1}$
- $\frac{\partial g}{\partial w_{1}}=\frac{\partial g}{\partial c} \frac{\partial c}{\partial w_{1}}=1 \cdot 3=3$

How do we reconcile this seeming contradiction?
 Top partial derivative means cube function contributes $36 w_{1}$ and bottom p.d. means product contributes $3 w_{1}$ so add them.

Back Propagation: $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$

- Suppose we have $g(\boldsymbol{w})=w_{1}^{3} w_{2}+3 w_{1}$ and want the gradient at $\boldsymbol{w}=[2,3]$
- Think of the function as a composition of many functions, use chain rule.
- $g=b+c$

$$
\text { - } \frac{\partial g}{\partial b}=1, \frac{\partial g}{\partial c}=1
$$

- $b=a \times w_{2}$
- $\frac{\partial g}{\partial a}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial a}=1 \frac{\partial b}{\partial a}=1 \cdot 3=3$
- $\frac{\partial g}{\partial w_{2}}=\frac{\partial g}{\partial b} \frac{\partial b}{\partial w_{2}}=1 \frac{\partial b}{\partial w_{2}}=1 \cdot 8=8$
- $a=w_{1}^{3}$
- $\frac{\partial g}{\partial w_{1}}=\frac{\partial g}{\partial a} \frac{\partial a}{\partial w_{1}}=3 \cdot 3 w_{1}^{2}=36$
- $c=3 w_{1}$
- $\frac{\partial g}{\partial w_{1}}=\frac{\partial g}{\partial c} \frac{\partial c}{\partial w_{1}}=1 \cdot 3=3$

$$
\nabla g=\left[\frac{\partial g}{\partial w_{1}}, \frac{\partial g}{\partial w_{2}}\right]=[39,8]
$$

Gradient Ascent

- Punchline: If we can somehow compute our gradient, we can use gradient ascent.
- How do we compute the gradient?
- Purely analytically.
- Gives exact symbolic answer. Infeasible for functions of lots of parameters or input values.
- Finite difference approximation.
- Gives approximation, very easy to implement.
- Runtime for II: $O(N M)$, where N is the number of parameters, and M is number of data points.
- Back propagation.
- Gives exact answer, difficult to implement.
- Runtime for II: $O(N M)$

$$
l l(w)=\sum_{i=1}^{m} \log p\left(y=y^{(i)} \mid f\left(x^{(i)}\right) ; w\right)
$$

Exercises: Gradient Ascent

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

A

B

D

E
 F

Exercises: Gradient Ascent

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

D

E

■ A
$\square \mathrm{c}$
\square D
\square E
\square F

A is a gradient ascent path since the gradient lines are orthogonal to the contours and the point towards the maximum. B is also a gradient ascent path with a high learning rate. C is not because the path is going towards he minimum instead of the maximum. D is not a gradient ascent path since the gradient is not orthogonal to the contour lines. E is not a gradient ascent path since it starts going towards the minimum. F is not since it goes towards the minimum and the gradients are not orthogonal to the contour lines.

Summary of Key Ideas

- Optimize probability of label given input $\underset{w}{\max } l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)$
- Continuous optimization
- Gradient ascent:
- Compute steepest uphill direction = gradient (= just vector of partial derivatives)
- Take step in the gradient direction
- Repeat (until held-out data accuracy starts to drop = "early stopping")
- Deep neural nets
- Last layer = still logistic regression
- Now also many more layers before this last layer
- = computing the features
- \rightarrow the features are learned rather than hand-designed
- Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 343)

Optimization Procedure: Gradient Ascent

```
- init w
- for iter = 1, 2, ...
    w\leftarroww+\alpha*\nablag(w)
```

- α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
- Crude rule of thumb: update changes w about 0.1-1 \%

Batch Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \underbrace{\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)}_{g(w)}
$$

$$
\begin{aligned}
& \text { - init } w \\
& \quad \text { for iter }=1,2, \ldots \\
& \quad w \leftarrow w+\alpha * \sum_{i} \nabla \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
\end{aligned}
$$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

```
- init w
- for iter = 1, 2,
    - pick random j
        w\leftarroww+\alpha*\nabla\operatorname{log}P(\mp@subsup{y}{}{(j)}|\mp@subsup{x}{}{(j)};w)
```


Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

```
- init w
- for iter = 1, 2,
    - pick random subset of training examples J
        w\leftarroww+\alpha* 涼J}\nabla|\operatorname{log}P(\mp@subsup{y}{}{(j)}|\mp@subsup{x}{}{(j)};w
```


Computer Vision

Manual Feature Design

Features and Generalization

Image

HoG

Performance

ImageNet Error Rate 2010-2014

