

CS 343: Artificial Intelligence

Deep Learning

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Non-Linear Separators

• Data that is linearly separable works out great for linear decision rules:

But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

This and next slide adapted from Ray Mooney, UT

Non-Linear Separators

 General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:

Perceptron

Two-Layer Perceptron Network

N-Layer Perceptron Network

Perceptron

Objective: Classification Accuracy

$$l^{\text{acc}}(w) = \frac{1}{m} \sum_{i=1}^{m} \left(\text{sign}(w^{\top} f(x^{(i)})) = = y^{(i)} \right)$$

Issue: many plateaus → how to measure incremental progress toward a correct label?

How to get probabilistic decisions?

- Activation: $z = w \cdot f(x)$
- If z = w ⋅ f(x) very positive → want probability going to 1
 If z = w ⋅ f(x) very negative → want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

with:
$$\begin{split} P(y^{(i)} &= +1 | x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}} \\ P(y^{(i)} &= -1 | x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}} \end{split}$$

= Logistic Regression

Multiclass Logistic Regression

- Multi-class linear classification
 - A weight vector for each class:
 - Score (activation) of a class y: $z_y = w_y \cdot f(x)$
 - Prediction w/highest score wins: $y = \arg \max w_y \cdot f(x)$

 w_{y}

How to make the scores into probabilities?

$$z_{1}, z_{2}, z_{3} \rightarrow \underbrace{\frac{e^{z_{1}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{2}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}}$$
original activations
softmax activations

Best w?

Maximum likelihood estimation:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

with:
$$P(y^{(i)} | x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Two-Layer Neural Network

N-Layer Neural Network

Best w?

- Optimization
 - i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

Hill Climbing

- Recall from CSPs lecture: simple, general idea
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

1-D Optimization

• Could evaluate $g(w_0 + h)$ and $g(w_0 - h)$

- Then step in best direction
- Or, evaluate derivative:

$$\frac{\partial g(w_0)}{\partial w} = \lim_{h \to 0} \frac{g(w_0 + h) - g(w_0 - h)}{2h}$$

Tells which direction to step into

Gradient Ascent

- Idea:
 - Start somewhere
 - Repeat: Take a step in the gradient direction

Figure source: Mathworks

Gradient in n dimensions

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \cdots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

Deep Neural Network: Also Learn the Features!

Training the deep neural network is just like logistic regression:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

just w tends to be a much, much larger vector \bigcirc

- \rightarrow just run gradient ascent
- + stop when log likelihood of hold-out data starts to decrease

How about computing all the derivatives?

Derivatives tables:

 $\frac{d}{dx}(a) = 0$ $\frac{d}{dx}[\ln u] = \frac{d}{dx}[\log_e u] = \frac{1}{u}\frac{du}{dx}$ $\frac{d}{dx}(x) = 1$ $\frac{d}{dx} \left[\log_a u \right] = \log_a e \frac{1}{u} \frac{du}{dx}$ $\frac{d}{dx}(au) = a\frac{du}{dx} \qquad \qquad \frac{d}{dx}e^u = e^u\frac{du}{dx}$ $\frac{d}{dx}(u+v-w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx} \qquad \qquad \frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$ $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} \qquad \qquad \frac{d}{dx}\left(u^{v}\right) = vu^{v-1}\frac{du}{dx} + \ln u \ u^{v}\frac{dv}{dx}$ $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx} \qquad \qquad \frac{d}{dx}\sin u = \cos u\frac{du}{dx}$ $\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\cos u = -\sin u\frac{du}{dx}$ $\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\tan u = \sec^2 u\frac{du}{dx}$ $\frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{1}{u^2}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\cot u = -\csc^2 u\frac{du}{dx}$ $\frac{d}{dx}\left(\frac{1}{u^n}\right) = -\frac{n}{u^{n+1}}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\sec u = \sec u \tan u\frac{du}{dx}$ $\frac{d}{dx}[f(u)] = \frac{d}{du}[f(u)]\frac{du}{dx} \qquad \qquad \frac{d}{dx}\csc u = -\csc u \cot u \frac{du}{dx}$

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:

If
$$f(x) = g(h(x))$$

Then
$$f'(x) = g'(h(x))h'(x)$$

→ Derivatives can be computed by following well-defined procedures

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
 - Can use derivative chain rule to compute $\partial g/\partial w_1$ and $\partial g/\partial w_2$.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
 - Can use derivative chain rule to compute $\partial g/\partial w_1$ and $\partial g/\partial w_2$.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$

•
$$\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a}$$

Back Propagation: $g(\mathbf{w}) = w_1^3 w_2 + 3w_1$

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
 - Can use derivative chain rule to compute $\partial g/\partial w_1$ and $\partial g/\partial w_2$.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$
 - $\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = ?????$

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
 - Can use derivative chain rule to compute $\partial g/\partial w_1$ and $\partial g/\partial w_2$.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$

•
$$\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = 1 \frac{\partial b}{\partial a} = 1 \cdot 3 = 3$$

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
 - Can use derivative chain rule to compute $\partial g/\partial w_1$ and $\partial g/\partial w_2$.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$
- $\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = 1 \frac{\partial b}{\partial a} = 1 \cdot 3 = 3$ • $a = w_1^3$

•
$$\frac{\partial g}{\partial w_1} = ?????$$

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
 - Can use derivative chain rule to compute $\partial g/\partial w_1$ and $\partial g/\partial w_2$.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$

•
$$\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = 1 \frac{\partial b}{\partial a} = 1 \cdot 3 = 3$$

•
$$a = w_1^3$$

•
$$\frac{\partial g}{\partial w_1} = \frac{\partial g}{\partial a} \frac{\partial a}{\partial w_1} = \mathbf{3} \cdot 3w_1^2 = \mathbf{36}$$

Х дg W_{2} 30 3 c = 6 $\frac{\partial g}{\partial t} = 1$ $\frac{\partial g}{\partial g}$ Interpretation: A tiny increase in w_1

will result in an approximately $36w_1$ increase in g due to this cube function.

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
 - Can use derivative chain rule to compute $\partial g/\partial w_1$ and $\partial g/\partial w_2$.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$

•
$$\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = 1 \frac{\partial b}{\partial a} = 1 \cdot 3 = 3$$

•
$$a = w_1^3$$

•
$$\frac{\partial g}{\partial w_1} = \frac{\partial g}{\partial a} \frac{\partial a}{\partial w_1} = \mathbf{3} \cdot 3w_1^2 = \mathbf{36}$$

• $\frac{\partial g}{\partial w_2} = ???$ Hint: $b = a \times 3$ may be useful.

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
 - Can use derivative chain rule to compute $\partial g/\partial w_1$ and $\partial g/\partial w_2$.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$

•
$$\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = 1 \frac{\partial b}{\partial a} = 1 \cdot 3 = 3$$

• $\frac{\partial g}{\partial w_2} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial w_2} = 1 \frac{\partial b}{\partial w_2} = 1 \cdot 8 = 8$
 $a = w_1^3$

•
$$\frac{\partial g}{\partial w_1} = \frac{\partial g}{\partial a} \frac{\partial a}{\partial w_1} = \mathbf{3} \cdot 3w_1^2 = \mathbf{36}$$

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
- g = b + c
 - $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$ • $\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = 1 \frac{\partial b}{\partial a} = 1 \cdot 3 = 3$ • $\frac{\partial g}{\partial w_2} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial w_2} = 1 \frac{\partial b}{\partial w_2} = 1 \cdot 8 = 8$ • $a = w_1^3$

•
$$\frac{\partial g}{\partial w_1} = \frac{\partial g}{\partial a} \frac{\partial a}{\partial w_1} = \mathbf{3} \cdot 3w_1^2 = \mathbf{36}$$

- $c = 3w_1$
 - $\frac{\partial g}{\partial w_1} = \frac{\partial g}{\partial c} \frac{\partial c}{\partial w_1} = \mathbf{1} \cdot \mathbf{3} = \mathbf{3}$

How do we reconcile this seeming contradiction? Top partial derivative means cube function contributes $36w_1$ and bottom p.d. means product contributes $3w_1$ so add them.

- Suppose we have $g(w) = w_1^3 w_2 + 3w_1$ and want the gradient at w = [2, 3]
- Think of the function as a composition of many functions, use chain rule.
- g = b + c $\frac{\partial g}{\partial g} \frac{\partial g}{\partial g}$
- $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$ • $b = a \times w_2$ • $\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = 1 \frac{\partial b}{\partial a} = 1 \cdot 3 = 3$ • $\frac{\partial g}{\partial w_2} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial w_2} = 1 \frac{\partial b}{\partial w_2} = 1 \cdot 8 = 8$ • $a = w_1^3$

•
$$\frac{\partial g}{\partial w_1} = \frac{\partial g}{\partial a} \frac{\partial a}{\partial w_1} = \mathbf{3} \cdot 3w_1^2 = \mathbf{36}$$

• $c = 3w_1$ • $\frac{\partial g}{\partial w_1} = \frac{\partial g}{\partial c} \frac{\partial c}{\partial w_2} = 1 \cdot 3 = 3$

Gradient Ascent

- Punchline: If we can somehow compute our gradient, we can use gradient ascent.
- How do we compute the gradient?
 - Purely analytically.
 - Gives exact symbolic answer. Infeasible for functions of lots of parameters or input values.
 - Finite difference approximation.
 - Gives approximation, very easy to implement.
 - Runtime for II: O(NM), where N is the number of parameters, and M is number of data points.
 - Back propagation.
 - Gives exact answer, difficult to implement.
 - Runtime for II: O(NM)

$$ll(w) = \sum_{i=1}^{m} \log p(y = y^{(i)} | f(x^{(i)}); w)$$

Exercises: Gradient Ascent

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

Exercises: Gradient Ascent

0.500 0.500 В А 000 000 .500 500 0:500 6:500 0.000 0.000 500 7.000 0.500 0.500 С D 000 000 .500 6:500 1500 0.000 0.000 7.000 .00 D.500 0.500 Е F 000 .50 6:500 0.000 0.000 500 Y.000 1.000-

Which of the following paths is a feasible trajectory for the gradient ascent algorithm?

A is a gradient ascent path since the gradient lines are orthogonal to the contours and the point towards the maximum. B is also a gradient ascent path with a high learning rate. C is not because the path is going towards the minimum instead of the maximum. D is not a gradient ascent path since the gradient is not orthogonal to the contour lines. E is not a gradient ascent path since it starts going towards the minimum. F is not since it goes towards the minimum and the gradients are not orthogonal to the contour lines.

Summary of Key Ideas

- Optimize probability of label given input $\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$
- Continuous optimization
 - Gradient ascent:
 - Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 - Take step in the gradient direction
 - Repeat (until held-out data accuracy starts to drop = "early stopping")

Deep neural nets

- Last layer = still logistic regression
- Now also many more layers before this last layer
 - = computing the features
 - \rightarrow the features are learned rather than hand-designed
- Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 343)

Optimization Procedure: Gradient Ascent

• init
$$w$$

$$w \leftarrow w + \alpha * \nabla g(w)$$

- \alpha: learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes w about 0.1 1 %

Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

$$g(w)$$

• init
$$w$$

• for iter = 1, 2, ...
 $w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)} | x^{(i)}; w)$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

• init w• for iter = 1, 2, ... • pick random j $w \leftarrow w + \alpha * \nabla \log P(y^{(j)} | x^{(j)}; w)$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

• init
$$w$$

• for iter = 1, 2, ...
• pick random subset of training examples J
 $w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$

Computer Vision

Manual Feature Design

Features and Generalization

Image

ImageNet Error Rate 2010-2014

ImageNet Error Rate 2010-2014

ImageNet Error Rate 2010-2014

ImageNet Error Rate 2010-2014

ImageNet Error Rate 2010-2014

