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Deep Learning

Prof. Yuke Zhu — The University of Texas at Austin
[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1 S
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Non-Linear Separators

▪ Data that is linearly separable works out great for linear decision rules:

▪ But what are we going to do if the dataset is just too hard? 

▪ How about… mapping data to a higher-dimensional space:
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Non-Linear Separators

▪ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ:  x→ φ(x)



Perceptron

S
x1
x2
x3

w1

w2

w3
>0?



Two-Layer Perceptron Network
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N-Layer Perceptron Network

S

x1

x2

x3

>0?

S >0?

S >0?

S

S >0?

S >0?

S >0?

S >0?

S >0?

S >0?…

…

…

>0?



Perceptron
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▪ Objective: Classification Accuracy 

▪ Issue: many plateaus à how to measure incremental progress toward a correct 
label?



How to get probabilistic decisions?

§ Activation:
§ If very positive à want probability going to 1
§ If  very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression



Multiclass Logistic Regression
§ Multi-class linear classification

§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction w/highest score wins:

§ How to make the scores into probabilities? 

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations
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Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



Two-Layer Neural Network
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N-Layer Neural Network

S

x1

x2

x3

>0?

S >0?

S >0?

S

S >0?

S >0?

S >0?

S >0?

S >0?

S >0?…

…

…



Best w?

§ Optimization

§ i.e., how do we solve:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



Hill Climbing

§ Recall from CSPs lecture: simple, general idea
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?



1-D Optimization

§ Could evaluate and
§ Then step in best direction

§ Or, evaluate derivative:

§ Tells which direction to step into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)

@g(w0)

@w
= lim

h!0

g(w0 + h)� g(w0 � h)

2h



§ Idea: 
§ Start somewhere
§ Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



Gradient in n dimensions
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Deep Neural Network: Also Learn the Features!

§ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector J

àjust run gradient ascent 
+ stop when log likelihood of hold-out data starts to decrease

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



§ Derivatives tables:

How about computing all the derivatives?

[source:  http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

n But neural net f is never one of those?
n No problem: CHAIN RULE:

If 

Then

à Derivatives can be computed by following well-defined procedures

f(x) = g(h(x))

f 0(x) = g0(h(x))h0(x)



Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".
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Interpretation: A tiny increase in 𝑤"
will result in an approximately 36𝑤"
increase in g due to this cube function.
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Hint: 𝑏 = 𝑎×3 may be useful.
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How do we reconcile this seeming contradiction?
Top partial derivative means cube function 
contributes 36𝑤" and bottom p.d. means product 
contributes 3𝑤" so add them.
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= [39, 8]



Gradient Ascent
§ Punchline: If we can somehow compute our gradient, we can use gradient ascent.
§ How do we compute the gradient?

§ Purely analytically.
§ Gives exact symbolic answer. Infeasible for functions of lots of parameters or input values.

§ Finite difference approximation.
§ Gives approximation, very easy to implement.
§ Runtime for ll: 𝑂 𝑁𝑀 , where N is the number of parameters, and M is number of data points.

§ Back propagation.
§ Gives exact answer, difficult to implement.
§ Runtime for ll: 𝑂(𝑁𝑀)

ll(w) =
mX

i=1

log p(y = y(i)|f(x(i));w)



Exercises: Gradient Ascent



Exercises: Gradient Ascent



Summary of Key Ideas

§ Optimize probability of label given input

§ Continuous optimization
§ Gradient ascent:

§ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
§ Take step in the gradient direction
§ Repeat (until held-out data accuracy starts to drop = “early stopping”)

§ Deep neural nets
§ Last layer = still logistic regression
§ Now also many more layers before this last layer

§ = computing the features
§ à the features are learned rather than hand-designed

§ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 343)

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



Optimization Procedure: Gradient Ascent

§ init

§ for iter = 1, 2, …
w

§ : learning rate --- tweaking parameter that needs to be 
chosen carefully

§ How? Try multiple choices
§ Crude rule of thumb: update changes       about 0.1 – 1 %

↵

w

w  w + ↵ ⇤ rg(w)



Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init

§ for iter = 1, 2, …

w

w  w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)



Stochastic Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random j

w

w  w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one

w  w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)



Computer Vision



Manual Feature Design



Features and Generalization

Image HoG
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