
CS 343: Artificial Intelligence
Deep Learning

Prof. Yuke Zhu — The University of Texas at Austin
[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1 S

f1
f2
f3

w1

w2

w3
>0?

Non-Linear Separators

▪ Data that is linearly separable works out great for linear decision rules:

▪ But what are we going to do if the dataset is just too hard?

▪ How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next slide adapted from Ray Mooney, UT

Non-Linear Separators

▪ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ: x→ φ(x)

Perceptron

S
x1
x2
x3

w1

w2

w3
>0?

Two-Layer Perceptron Network

S

x1

x2

x3
w13

w23

w33

>0?

S
w12

w22

w32

>0?

S
w11

w21

w31

>0?

S

w1

w2

w3

>0?

N-Layer Perceptron Network

S

x1

x2

x3

>0?

S >0?

S >0?

S

S >0?

S >0?

S >0?

S >0?

S >0?

S >0?…

…

…

>0?

Perceptron

S
x1
x2
x3

w1

w2

w3
>0?

▪ Objective: Classification Accuracy

▪ Issue: many plateaus à how to measure incremental progress toward a correct
label?

How to get probabilistic decisions?

§ Activation:
§ If very positive à want probability going to 1
§ If very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

Best w?

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression

Multiclass Logistic Regression
§ Multi-class linear classification

§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction w/highest score wins:

§ How to make the scores into probabilities?

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations

<latexit sha1_base64="HxY4saxdmMlpxYWHF1dNgK6ThiA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgv2ANpTNdtMu3d2E3Y0QQ/+CFw+KePUPefPfuGlz0NYHA4/3ZpiZF8ScaeO6305pZXVtfaO8Wdna3tndq+4ftHWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJre533mkSrNIPpg0pr7AI8lCRrDJpadBej2o1ty6OwNaJl5BalCgOah+9YcRSQSVhnCsdc9zY+NnWBlGOJ1W+ommMSYTPKI9SyUWVPvZ7NYpOrHKEIWRsiUNmqm/JzIstE5FYDsFNmO96OXif14vMeGVnzEZJ4ZKMl8UJhyZCOWPoyFTlBieWoKJYvZWRMZYYWJsPBUbgrf48jJpn9W9i/r5/XmtcVPEUYYjOIZT8OASGnAHTWgBgTE8wyu8OcJ5cd6dj3lrySlmDuEPnM8fAYeOOg==</latexit>zy =

Best w?

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression

Two-Layer Neural Network

S

x1

x2

x3
w13

w23

w33

>0?

S
w12

w22

w32
>0?

S
w11

w21

w31

>0?

S

w1

w2

w3

N-Layer Neural Network

S

x1

x2

x3

>0?

S >0?

S >0?

S

S >0?

S >0?

S >0?

S >0?

S >0?

S >0?…

…

…

Best w?

§ Optimization

§ i.e., how do we solve:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

Hill Climbing

§ Recall from CSPs lecture: simple, general idea
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ What’s particularly tricky when hill-climbing for multiclass
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?

1-D Optimization

§ Could evaluate and
§ Then step in best direction

§ Or, evaluate derivative:

§ Tells which direction to step into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)

@g(w0)

@w
= lim

h!0

g(w0 + h)� g(w0 � h)

2h

§ Idea:
§ Start somewhere
§ Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Gradient in n dimensions

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775

Deep Neural Network: Also Learn the Features!

§ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector J

àjust run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

n But neural net f is never one of those?
n No problem: CHAIN RULE:

If

Then

à Derivatives can be computed by following well-defined procedures

f(x) = g(h(x))

f 0(x) = g0(h(x))h0(x)

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".

§ 𝑔 = 𝑏 + 𝑐
§

#$
#%
= 1, #$

#&
= 1

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".

§ 𝑔 = 𝑏 + 𝑐
§

#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".

§ 𝑔 = 𝑏 + 𝑐
§

#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'
=? ? ? ? ?

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".

§ 𝑔 = 𝑏 + 𝑐
§

#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'
= 1 #%

#'
= 1 ⋅ 3 = 3

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

3

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".

§ 𝑔 = 𝑏 + 𝑐
§

#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'
= 1 #%

#'
= 1 ⋅ 3 = 3

§ 𝑎 = 𝑤!"

§
#$
#(!

=? ? ? ? ?

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

3

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".

§ 𝑔 = 𝑏 + 𝑐
§

#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'
= 1 #%

#'
= 1 ⋅ 3 = 3

§ 𝑎 = 𝑤!"

§
#$
#(!

= #$
#'

#'
#(!

= 3 ⋅ 3𝑤!" = 36

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

336

Interpretation: A tiny increase in 𝑤"
will result in an approximately 36𝑤"
increase in g due to this cube function.

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".

§ 𝑔 = 𝑏 + 𝑐
§

#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'
= 1 #%

#'
= 1 ⋅ 3 = 3

§ 𝑎 = 𝑤!"

§
#$
#(!

= #$
#'

#'
#(!

= 3 ⋅ 3𝑤!" = 36

§
56
57!

=? ? ?

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

336

Hint: 𝑏 = 𝑎×3 may be useful.

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.

§ Can use derivative chain rule to compute 𝜕𝑔/𝜕𝑤! and 𝜕𝑔/𝜕𝑤".

§ 𝑔 = 𝑏 + 𝑐
§

#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'
= 1 #%

#'
= 1 ⋅ 3 = 3

§
#$
#("

= #$
#%

#%
#("

= 1 #%
#("

= 1 ⋅ 8 = 8

§ 𝑎 = 𝑤!"

§
#$
#(!

= #$
#'

#'
#(!

= 3 ⋅ 3𝑤!" = 36

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

336

8

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.
§ 𝑔 = 𝑏 + 𝑐

§
#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'
= 1 #%

#'
= 1 ⋅ 3 = 3

§
#$
#("

= #$
#%

#%
#("

= 1 #%
#("

= 1 ⋅ 8 = 8

§ 𝑎 = 𝑤!"

§
#$
#(!

= #$
#'

#'
#(!

= 3 ⋅ 3𝑤!" = 36

§ 𝑐 = 3𝑤!
§

#$
#(!

= #$
#&

#&
#(!

= 1 ⋅ 3 = 3

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

336

8

3

How do we reconcile this seeming contradiction?
Top partial derivative means cube function
contributes 36𝑤" and bottom p.d. means product
contributes 3𝑤" so add them.

Back Propagation: 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤!
§ Suppose we have 𝑔 𝒘 = 𝑤!"𝑤# + 3𝑤! and want the gradient at 𝒘 = [2, 3]
§ Think of the function as a composition of many functions, use chain rule.
§ 𝑔 = 𝑏 + 𝑐

§
#$
#%
= 1, #$

#&
= 1

§ 𝑏 = 𝑎×𝑤#
§

#$
#'
= #$

#%
#%
#'
= 1 #%

#'
= 1 ⋅ 3 = 3

§
#$
#("

= #$
#%

#%
#("

= 1 #%
#("

= 1 ⋅ 8 = 8

§ 𝑎 = 𝑤!"

§
#$
#(!

= #$
#'

#'
#(!

= 3 ⋅ 3𝑤!" = 36

§ 𝑐 = 3𝑤!
§

#$
#(!

= #$
#&

#&
#(!

= 1 ⋅ 3 = 3

∎!

×

×

+

𝑤"

𝑤#

𝑤"

3

𝑎 = 8

𝑏 = 24

𝑐 = 6

𝑔 = 30

𝜕𝑔
𝜕𝑔

= 1

2

3

2

1

𝜕𝑔
𝜕𝑏 = 1

𝜕𝑔
𝜕𝑐 = 1

336

8

3

𝛻𝑔 =
𝜕𝑔
𝜕𝑤"

,
𝜕𝑔
𝜕𝑤#

= [39, 8]

Gradient Ascent
§ Punchline: If we can somehow compute our gradient, we can use gradient ascent.
§ How do we compute the gradient?

§ Purely analytically.
§ Gives exact symbolic answer. Infeasible for functions of lots of parameters or input values.

§ Finite difference approximation.
§ Gives approximation, very easy to implement.
§ Runtime for ll: 𝑂 𝑁𝑀 , where N is the number of parameters, and M is number of data points.

§ Back propagation.
§ Gives exact answer, difficult to implement.
§ Runtime for ll: 𝑂(𝑁𝑀)

ll(w) =
mX

i=1

log p(y = y(i)|f(x(i));w)

Exercises: Gradient Ascent

Exercises: Gradient Ascent

Summary of Key Ideas

§ Optimize probability of label given input

§ Continuous optimization
§ Gradient ascent:

§ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
§ Take step in the gradient direction
§ Repeat (until held-out data accuracy starts to drop = “early stopping”)

§ Deep neural nets
§ Last layer = still logistic regression
§ Now also many more layers before this last layer

§ = computing the features
§ à the features are learned rather than hand-designed

§ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 343)

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

Optimization Procedure: Gradient Ascent

§ init

§ for iter = 1, 2, …
w

§ : learning rate --- tweaking parameter that needs to be
chosen carefully

§ How? Try multiple choices
§ Crude rule of thumb: update changes about 0.1 – 1 %

↵

w

w w + ↵ ⇤ rg(w)

Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init

§ for iter = 1, 2, …

w

w w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)

Stochastic Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random j

w

w w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

w w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)

Computer Vision

Manual Feature Design

Features and Generalization

Image HoG

Performance

graph credit Matt
Zeiler, Clarifai

Performance

graph credit Matt
Zeiler, Clarifai

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

