CS 343: Artificial Intelligence

Particle Filters and Applications of HMMs

Announcements

- Project 5: released today - deadline: due Wednesday 4/5, 11:59 pm
- Excited to announce our two guest speakers!

Prof. Bruce Porter (April 11 ${ }^{\text {th }}$)
UT-Austin, SparkCognition

Dr. Jim Fan (April 18 ${ }^{\text {th }}$) NVIDIA Research

Recap: Reasoning Over Time

- Markov models

$$
P\left(X_{1}\right) \quad P\left(X \mid X_{-1}\right)
$$

$P(E \mid X)$
X
xain
rain
no umbrella

Recap: Forward Algo - Passage of Time

- Assume we have current belief $P(X \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Recap: Forward Algo - Passage of Time

- As time passes, uncertainty "accumulates"

$\mathrm{T}=1$

$\mathrm{T}=2$
(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

$$
\mathrm{T}=5
$$

Recap: Forward Algo - Observation

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence):

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Or, compactly:
" Basic idea: beliefs "reweighted" by likelihood of evidence

$$
B\left(X_{t+1}\right) \propto X_{t+1} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

- Unlike passage of time, we have to renormalize

Recap: Forward Algo - Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Recap: The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto{ }_{X} P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

We can normalize as we go if we want to have $P(x \mid e)$ at each time step, or just once at the end...

Recap: Online Filtering w/ Forward Algo

Elapse time: compute $P\left(X_{t} \mid e_{1: t-1}\right)$

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

Observe: compute $P\left(X_{t} \mid e_{1: t}\right)$

$$
P\left(x_{t} \mid e_{1: t}\right) \propto P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

\[

\]

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $\mathrm{N} \ll|\mathrm{X}|$ (...but not in project 5)
- Storing map from X to counts would defeat the point
- $P(x)$ approximated by number of particles with value x

- So, many x may have $P(x)=0$!
- More particles, more accuracy

Particles:

- For now, all particles have a weight of 1
- Particle filtering uses three repeated steps:
- Elapse time and observe (similar to exact filtering) and resample

Example: Elapse Time

Elapse Time

Policy: ghosts always move up
(or stay in place if already at top)

Belief over possible ghost positions at time \mathbf{t}

New belief at time $\mathbf{t + 1}$

Example: Elapse Time

Belief over possible ghost positions at time \mathbf{t}

New belief at time $\mathbf{t + 1}$

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- Sample frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Example: Observe

Belief over possible ghost positions before observation

0.5	0.4	0.3
0.4	0.3	0.2
0.3	0.2	0.1

Observation and evidence
likelihoods $p(e \mid X)$

New belief after observation

Example: Observe

Belief over possible ghost positions before observation

0.5	0.4	0.3
0.4	0.3	0.2
0.3	0.2	0.1

Observation and evidence
likelihoods $p(e \mid X)$

New belief after observation

Particle Filtering: Observe

- Slightly trickier:
- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence
- As before, the probabilities don't sum to one, since all have been downweighted

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This essentially renormalizes the distribution

Now the update is complete for this time step, continue with the next one

(New) Particles:

Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Elapse

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Weight

Particles:
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(2,2)$

Particles:
$(3,2) w=.9$
$(2,3) w=.2$
$(3,2) w=.9$
$(3,1) \quad w=.4$
$(3,3) w=.4$
$(3,2) \quad w=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) w=.9$
$(2,2) \mathrm{w}=.4$

Resample

(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Moderate Number of Particles

One Particle

Huge Number of Particles

Exercises: Particle Filters

Let's use Particle Filtering to estimate the distribution of $P\left(W_{2} \mid O_{1}=A, O_{2}=B\right)$. Here's the HMM again:

W_{t}	W_{t+1}	$P\left(W_{t+1} \mid W_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_{t}	O_{t}	$P\left(O_{t} \mid W_{t}\right)$
0	A	0.9
0	B	0.1
1	A	0.5
1	B	0.5

We start with two particles representing our distribution for W_{1}.
$P_{1}: W_{1}=0$
$P_{2}: W_{1}=1$

1. Observe: Compute the weight of the two particles after evidence $O_{1}=A$.
2. Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.

Use random numbers: [0.22, 0.05]
3. Elapse Time: Now let's compute the elapse time particle update. Sample P_{1} and P_{2} from applying the time update. Use random numbers: [0.33, 0.20]
4. Observe: Compute the weight of the two particles after evidence $O_{2}=B$.
5. Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights. Use random numbers: [0.84, 0.54]
6. What is our estimated distribution for $P\left(W_{2} \mid O_{1}=A, O_{2}=B\right)$?

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique

Particle Filter Localization (Laser)

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Particle Filter SLAM - Video 1

Particle Filter SLAM - Video 2

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P\left(G_{3}{ }^{b} \mid E_{1: 3}{ }^{a, b}\right)$ is computed

- Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net
- Example particle: $\mathbf{G}_{\mathbf{1}}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{\mathbf{1}}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $P\left(\mathbf{E}_{1}{ }^{a} \mid \mathbf{G}_{1}{ }^{a}\right) * P\left(\mathbf{E}_{1}{ }^{\mathbf{b}} \mid \mathbf{G}_{1}{ }^{\mathbf{b}}\right)$
- Resample: Select samples (tuples of values) in proportion to their likelihood (weight)

Next Time: Value of Information

