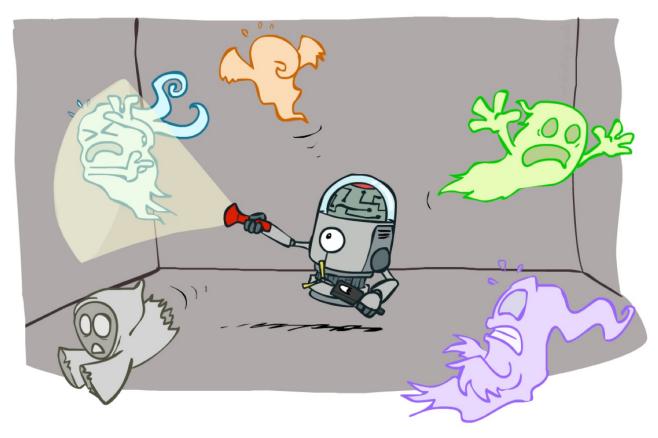
CS 343: Artificial Intelligence Particle Filters and Applications of HMMs



Prof. Yuke Zhu — The University of Texas at Austin

Announcements

- Project 5: released today deadline: due Wednesday 4/5, 11:59 pm
- Excited to announce our two guest speakers!

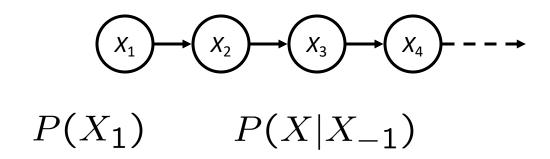
Prof. Bruce Porter (April 11th)
UT-Austin, SparkCognition

Dr. Jim Fan (April 18th)

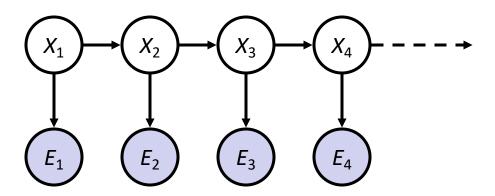
NVIDIA Research

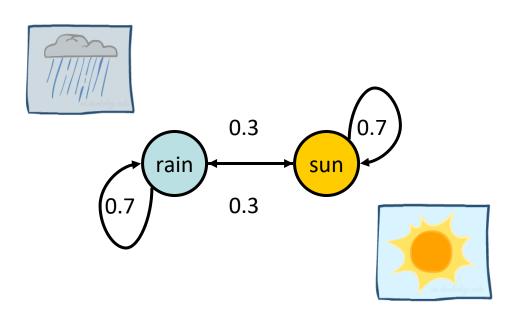
Recap: Reasoning Over Time

Markov models



Hidden Markov models



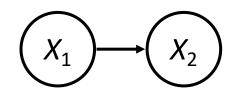


X	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Recap: Forward Algo - Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t|e_{1:t})$$



Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

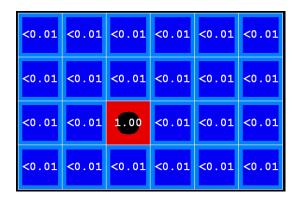
Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Recap: Forward Algo - Passage of Time

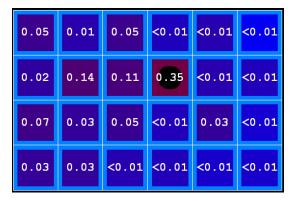
As time passes, uncertainty "accumulates"



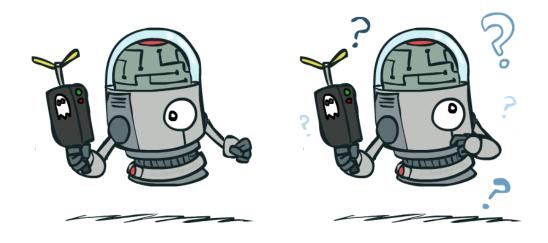


T = 1

T = 2



T = 5



Recap: Forward Algo - Observation

Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

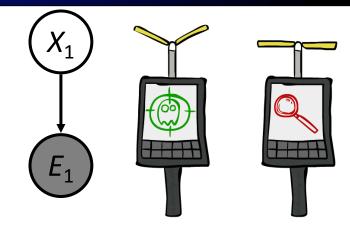
$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

Or, compactly:

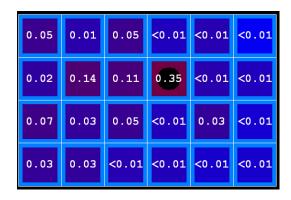
$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$



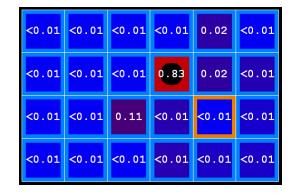
- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Recap: Forward Algo - Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"



Before observation



After observation

 $B(X) \propto P(e|X)B'(X)$

Recap: The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

We can derive the following updates

$$P(x_{t}|e_{1:t}) \propto_{X} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

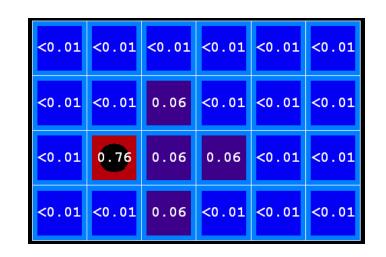
Recap: Online Filtering w/ Forward Algo

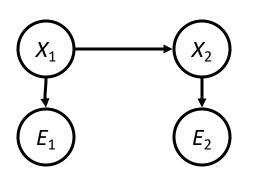
Elapse time: compute P($X_t \mid e_{1:t-1}$)

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute P($X_t \mid e_{1:t}$)

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$





Belief: <P(rain), P(sun)>

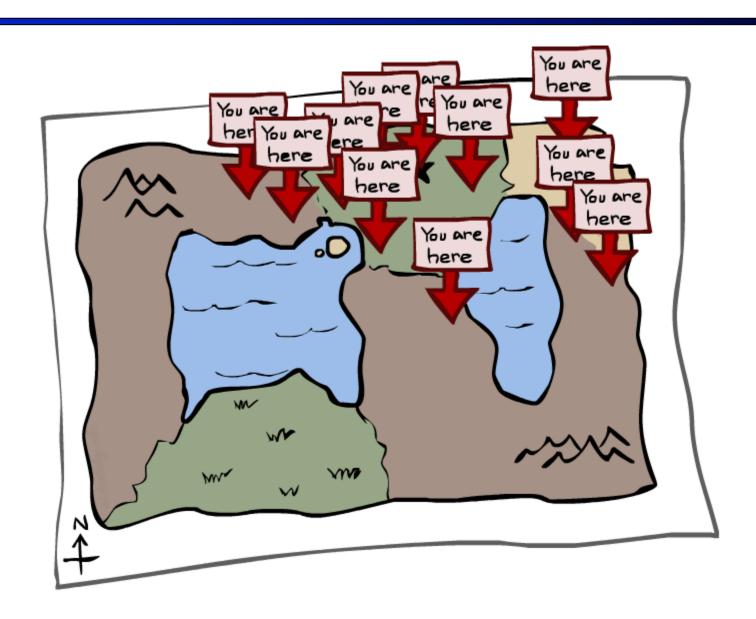
$$P(X_1)$$
 <0.5, 0.5> Prior on X_1

$$P(X_1 \mid E_1 = umbrella)$$
 <0.82, 0.18> *Observe*

$$P(X_2 \mid E_1 = umbrella)$$
 <0.63, 0.37> Elapse time

$$P(X_2 \mid E_1 = umb, E_2 = umb)$$
 <0.88, 0.12> Observe

Particle Filtering



Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

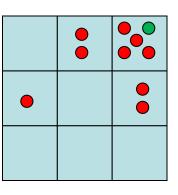
0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

	•
• •	

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X| (...but not in project 5)
 - Storing map from X to counts would defeat the point

- So, many x may have P(x) = 0!
- More particles, more accuracy
- For now, all particles have a weight of 1
- Particle filtering uses three repeated steps:
 - Elapse time and observe (similar to exact filtering) and resample



Particles:

(3,3)

(2,3)

(3,3)

(3.2)

(3,3)

(3,2)

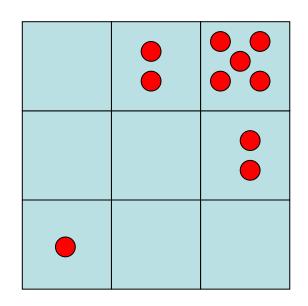
(1,2)

(3,3)

(3,3)

(2,3)

Example: Elapse Time



Elapse Time

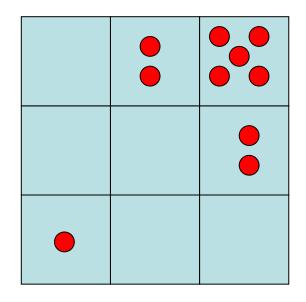
Policy: ghosts always move up (or stay in place if already at top)

?

Belief over possible ghost positions at time **t**

New belief at time **t+1**

Example: Elapse Time



Elapse Time

Policy: ghosts always move up (or stay in place if already at top)

Belief over possible ghost positions at time **t**

New belief at time **t+1**

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- Sample frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place

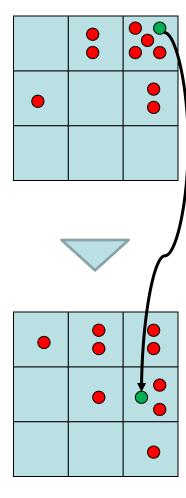
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(3,3)
(2,3)

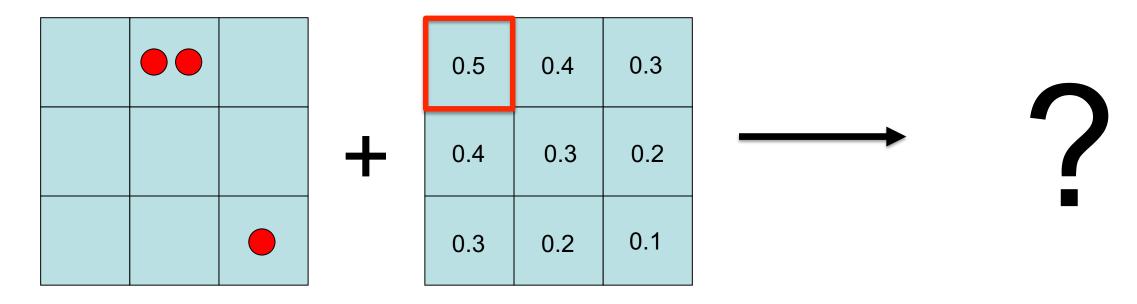
Particles:	
(3,2)	
(2,3)	
(3,2)	
(3,1)	
(3,3)	
(3,2)	
(1,3)	
(2,3)	

(3,2)

(2,2)



Example: Observe



Observation and evidence

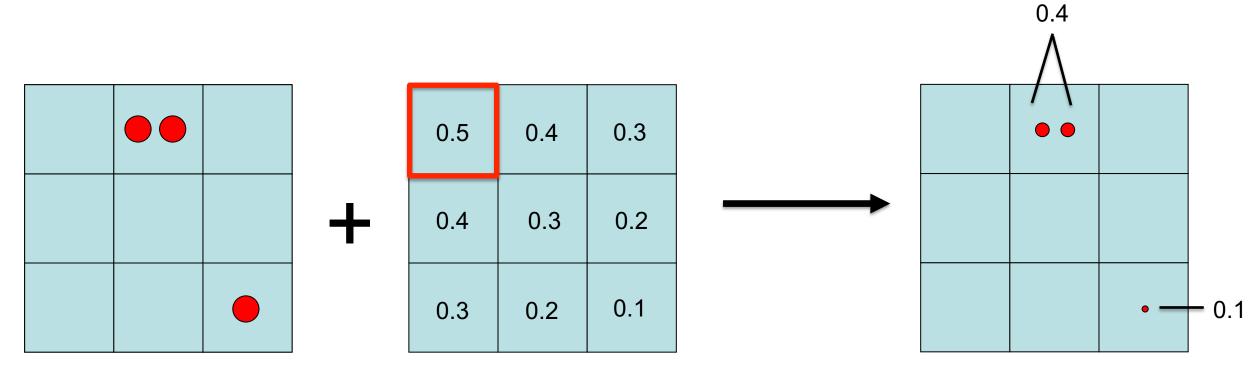
likelihoods p(e | X)

Belief over possible ghost

positions before observation

New belief after observation

Example: Observe



Belief over possible ghost positions before observation

Observation and evidence likelihoods p(e | X)

New belief after observation

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted

Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3) (3,2)

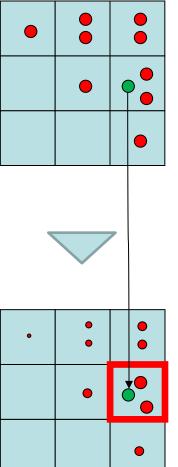
(2,2)

Particles:

(3,2) w=.9 (2,3) w=.2 (3,2) w=.9 (3,1) w=.4 (3,3) w=.4

(3,2) w=.9 (1,3) w=.1

(2,3) w=.2 (3,2) w=.9 (2,2) w=.4

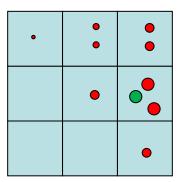


Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This essentially renormalizes the distribution
- Now the update is complete for this time step, continue with the next one

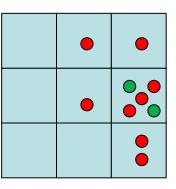
Particles:

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3,2) w=.9
- (2,2) w=.4



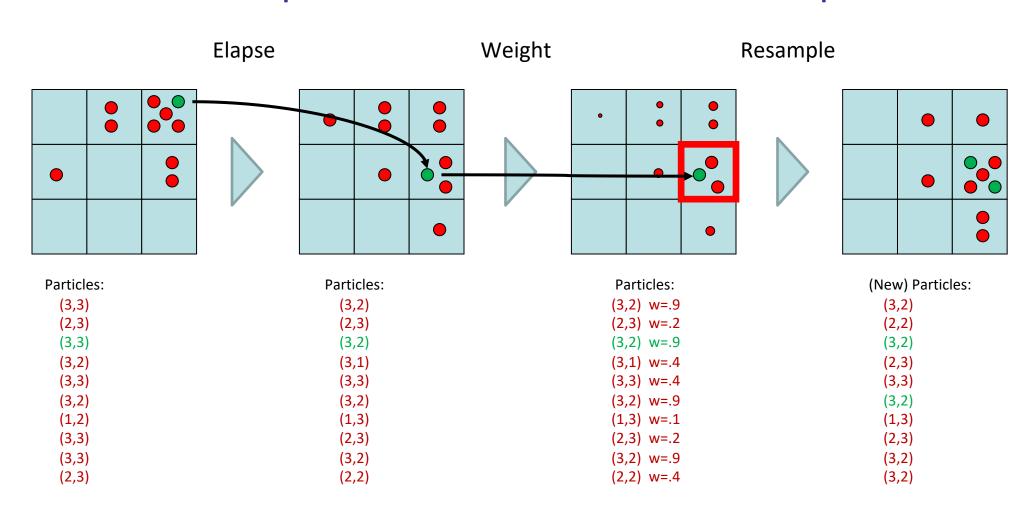
(New) Particles:

- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2)
- (1,3)
- (2,3)
- (3,2)
- (3,2)

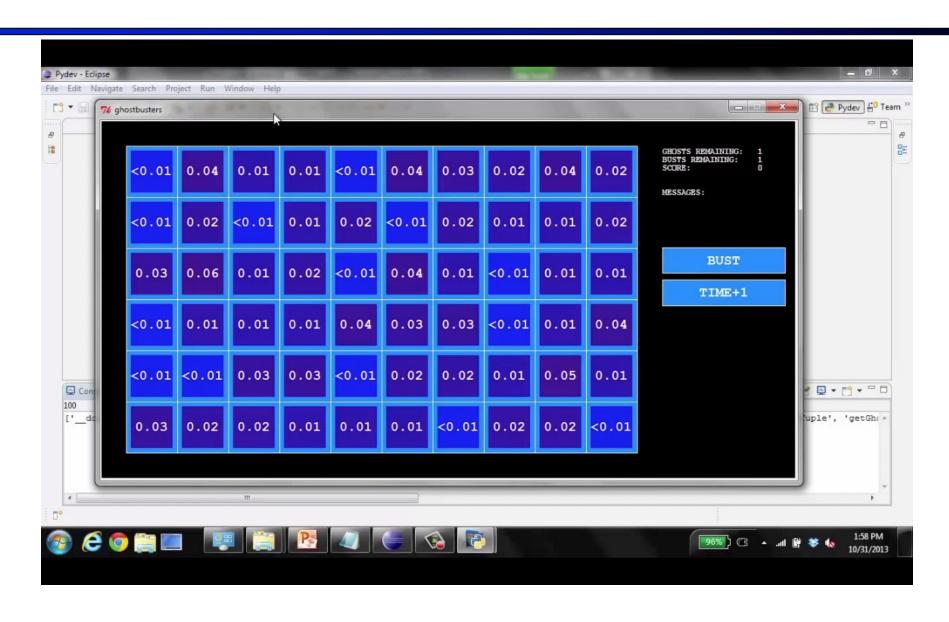


Recap: Particle Filtering

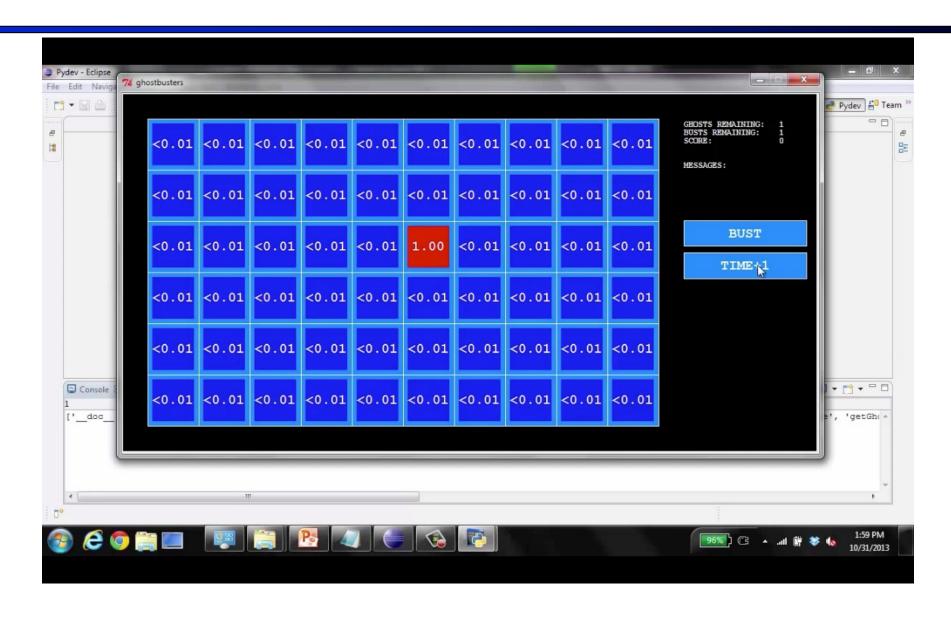
Particles: track samples of states rather than an explicit distribution



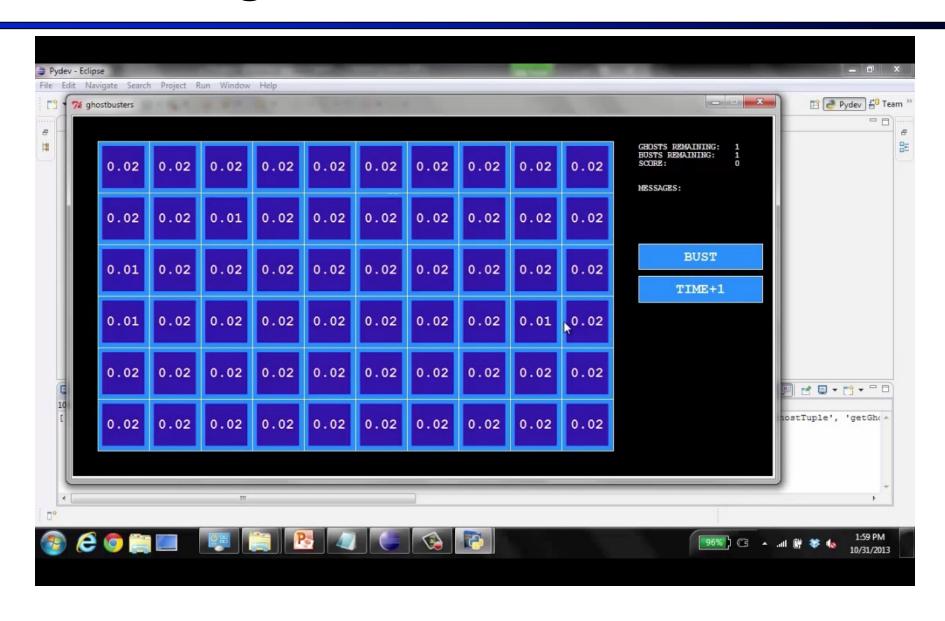
Moderate Number of Particles



One Particle

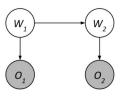


Huge Number of Particles



Exercises: Particle Filters

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1=A,O_2=B)$. Here's the HMM again:



W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	Α	0.9
0	В	0.1
1	Α	0.5
1	В	0.5

We start with two particles representing our distribution for W_1 .

 $P_1: W_1 = 0$ $P_2: W_1 = 1$

1. **Observe**: Compute the weight of the two particles after evidence $O_1 = A$.

4. **Observe**: Compute the weight of the two particles after evidence $O_2 = B$.

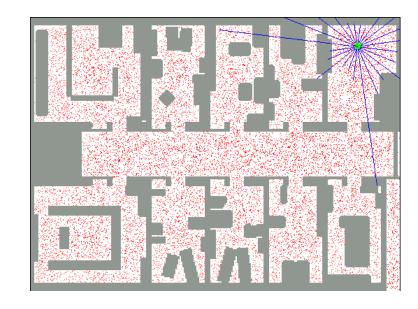
2. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights. Use random numbers: [0.22, 0.05]

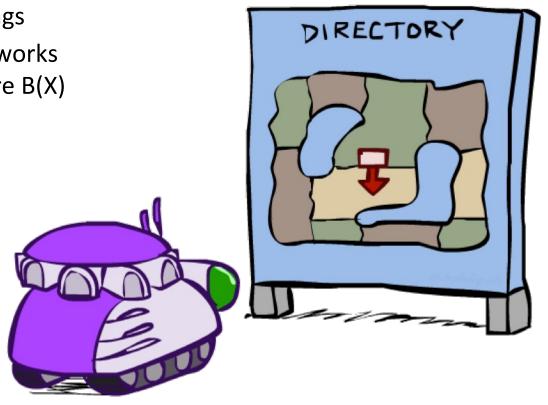
- 5. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights. Use random numbers: [0.84, 0.54]
- 3. Elapse Time: Now let's compute the elapse time particle update. Sample P_1 and P_2 from applying the time update. Use random numbers: [0.33, 0.20]
- 6. What is our estimated distribution for $P(W_2|O_1 = A, O_2 = B)$?

Robot Localization

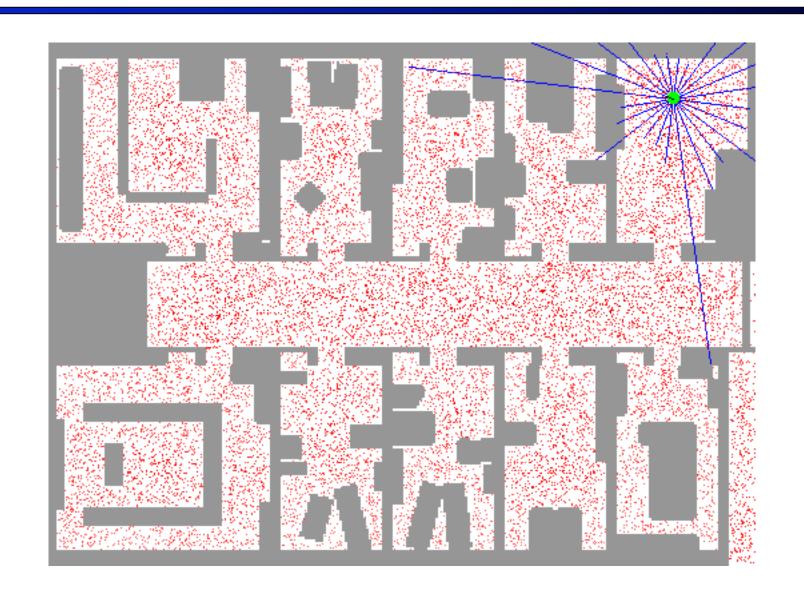
In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique



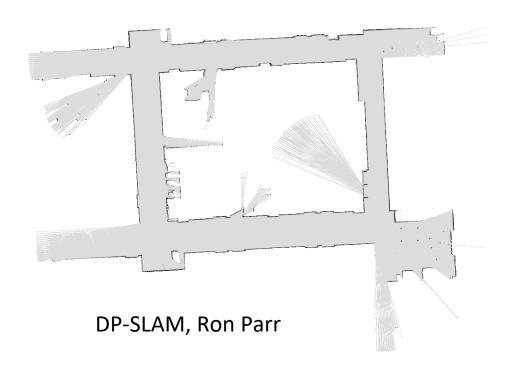


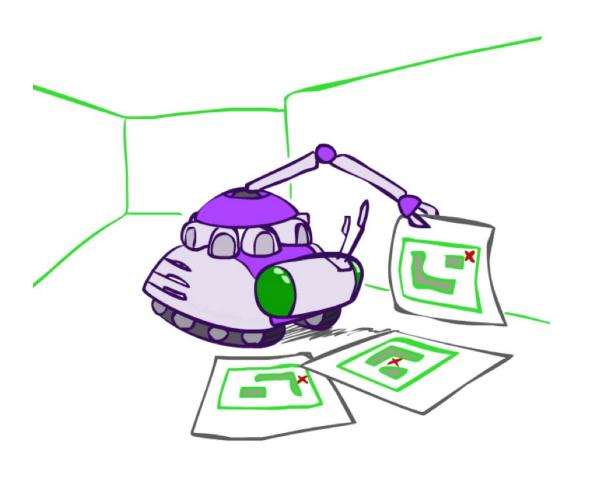
Particle Filter Localization (Laser)



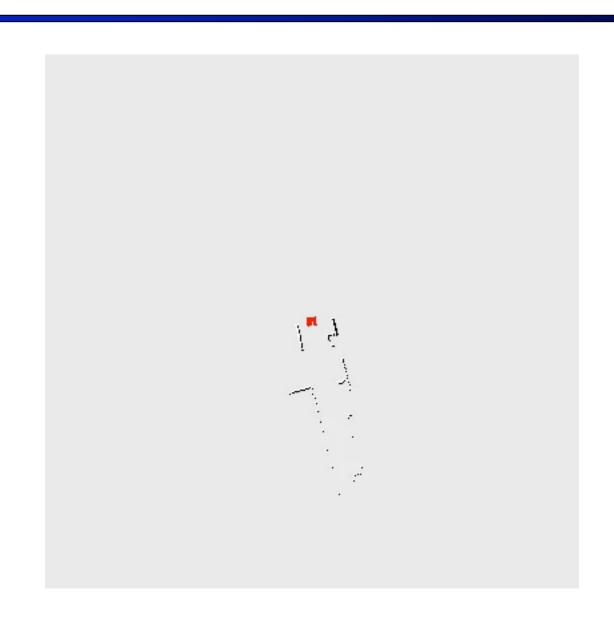
Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

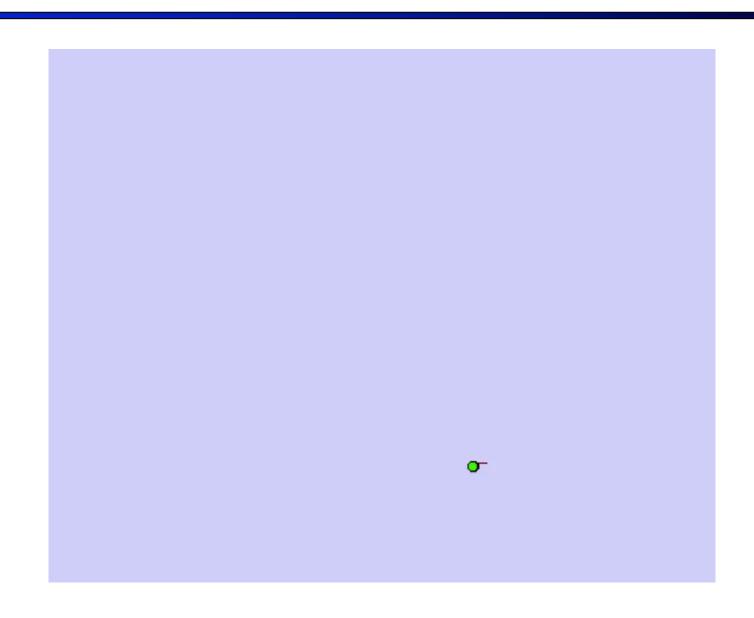




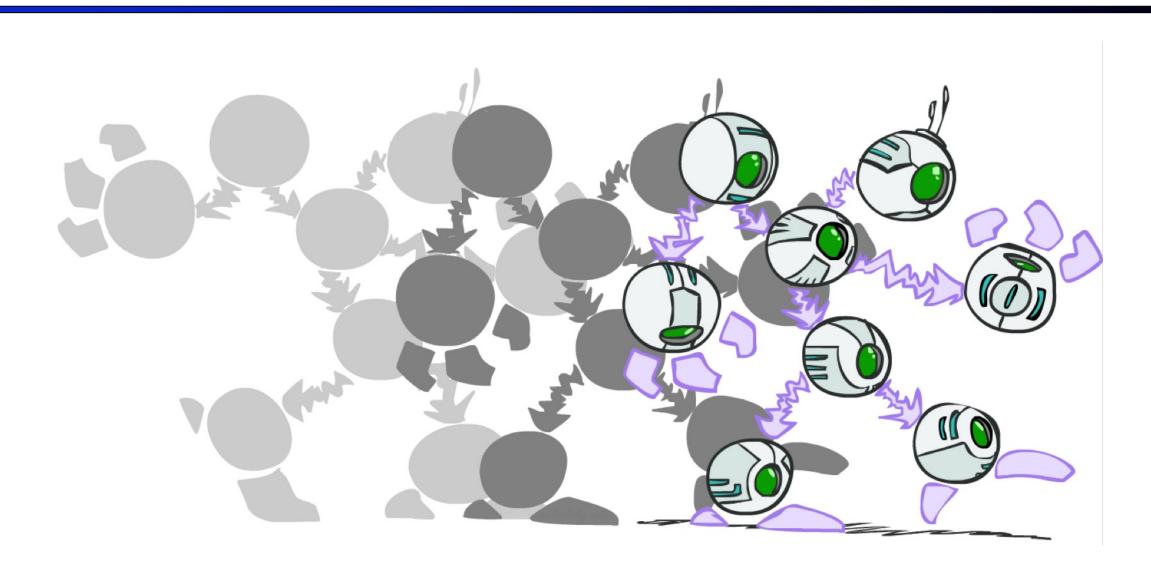
Particle Filter SLAM – Video 1



Particle Filter SLAM – Video 2

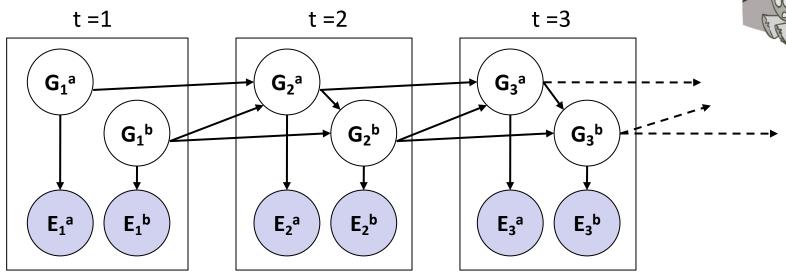


Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1



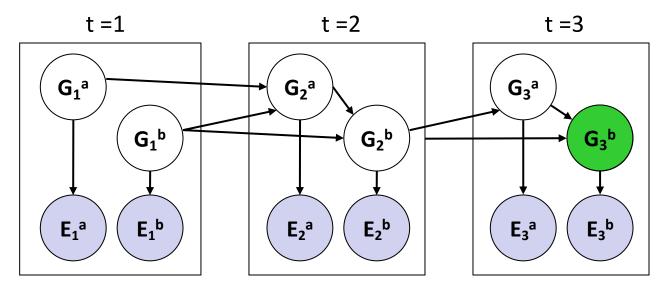
Dynamic Bayes nets are a generalization of HMMs

Exact Inference in DBNs

Variable elimination applies to dynamic Bayes nets

• Procedure: "unroll" the network for T time steps, then eliminate variables until $P(G_3^b | E_{1:3}^{a,b})$ is

computed



 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- **Elapse time**: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- **Observe**: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select samples (tuples of values) in proportion to their likelihood (weight)

Next Time: Value of Information