CS 343: Artificial Intelligence
Particle Filters and Applications of HMMs

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

= Project 5: released today — deadline: due Wednesday 4/5, 11:59 pm

= Excited to announce our two guest speakers!

Prof. Bruce Porter (April 11th) Dr. Jim Fan (April 18th)
UT-Austin, SparkCognition NVIDIA Research



Recap: Reasoning Over Time
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Recap: Forward Algo - Passage of Time

= Assume we have current belief P(X | evidence to date) @ﬁ@
B(Xt) = P(Xtle1:t)

= Then, after one time step passes:

P(Xt+1’€1:t) — ZP(Xt—I—laxt‘elit)

Tt
- ZP(XH‘l‘xt’elit)P(xt‘elzt) = Or compactly:
3 (X P(X’
=" P(Xpsalw) Plzer) r41) Z 20)B

= Basicidea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it
includes

)



Recap: Forward Algo - Passage of Time

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)
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Recap: Forward Algo - Observation

B'(Xi41) = P(X¢q1lers)

= Then, after evidence comes in:

= Assume we have current belief P(X | previous evidence): \i/

| se— —

P(Xt+1\€1:t+1) = P(Xt—|-176t—|—1|61:t)/P(6t—|—1|61:t
X X1 P(Xt—l—lyet—kl‘@l:t)

= P(et11

= P(e4 41

= Or, compactly:

elztaXt+1>P(Xt—|—1|€1:t)
Xt+1)P(Xt+1|€1:t)

= Basic idea: beliefs “reweighted”
by likelihood of evidence

B(Xi41) xx,,, Plett1|Xe41)B (Xeq1) = Unlike passage of time, we have

to renormalize



Recap: Forward Algo - Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

M

<0 . 01
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Recap: The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(Xtle1:t)

= We can derive the following updates

We can normalize as we go if we
want to have P(x|e) at each time

P(xt|elit) XX P(ajbelit)  ‘ step, or just once at the end...

= > P(z4_1,2t,€1:1)

Li—1

= 3" P(x_1,e1:4-1)P(xt|ws_1) P(et|at)

Lt—1

= P(etlxt) Y, P(wtlwp—1)P(xi—1,€1:4—1)

Lt—1



Recap: Online Filtering w/ Forward Algo

Elapse time: compute P( X, | €;.+.1)
Plolerin) = 30 Plocilevn) - Ploeer) | s
Lt—1

TEETTZ
Observe: compute P( X, | e1+)
TEETET
P($t|€1:t) X P(xt‘elzt—l) ' P(€t|33t)

Belief: <P(rain), P(sun)>

Xy =\Xz P(X1) <0.5, 0.5> Prior on X;

| v P(Xl | E1 = umbrella <0.82, 0.18> Observe

)
@ @ P(X5 | 1 = umbrella)  <0.63,0.37>  Elapse time
)

P(X5 | By = umb, E5 = umb <0.88,0.12>  Observe



Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes |X]| is too big to use exact inference
= |X] may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles
= Time per step is linear in the number of samples
= But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample
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Representation: Particles

Our representation of P(X) is now a list of N particles (samples)
= Generally, N << |[X]| (...but notin project 5)
» Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

For now, all particles have a weight of 1

Particle filtering uses three repeated steps:
= Elapse time and observe (similar to exact filtering) and resample

Particles:
(3,3)




Example: Elapse Time

o (©.° .
< ‘0‘ Elapse Time
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Policy: ghosts always move up -
® (or stay in place if already at top)
Belief over possible New belief at

ghost positions at time t time t+1



Example: Elapse Time

Belief over possible
ghost positions at time t

Elapse Time

—

Policy: ghosts always move up
(or stay in place if already at top)

New belief at
time t+1




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next particles. .
o I 53) ~
position from the transition model (33 - .o:\
3.3)
/ / (3,2) ® @ \
x' = sample(P(X"'|xz)) et ®
(12)
: . . (3.3)
= Sample frequencies reflect the transition probabilities (3,3)
(2.3)
= Here, most samples move clockwise, but some move in
another direction or stay in place Pa(rticl)es:
3,2
(2.3)
o lelslf
3,3) . i.
= This captures the passage of time o e
= |f enough samples, close to exact values before and g;; ®
after (consistent) (2.2)




Belief over possible ghost
positions before observation

Example: Observe
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likelihoods p(e | X)
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observation



Belief over possible ghost
positions before observation

Example: Observe

0.4

0.4
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Observation and evidence
likelihoods p(e | X)

New belief after
observation
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Particle Filtering: Observe

Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)

B(X) < P(e|X)B'(X)

As before, the probabilities don’t sum to one,
since all have been downweighted

Particles:
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Particle Filtering: Resample

Rather than tracking weighted samples, we
resample

N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

This essentially renormalizes the distribution

Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
® ® 0 m——__ ) ) ° %)
@ @ ©_ 0
® ® ® % ® | ¢%
o o o
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)



Moderate Number of Particles

= Pydev - Eclipse = X [
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One Particle

= Pydev - Eclipse "
74 ghostbusters

GHOSTS REMAINING:
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Huge Number of Particles

» Pydev - Eclipse

( Y
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Exercises: Particle Filters

Let’s use Particle Filtering to estimate the distribution of P(W5|0; = A, O, = B). Here’s the HMM again:

@ @ Wi | Wig1 | P(Wig1|Wh) Wi | O | P(Og|Wy)
Wy | P(Wh) 0 0 0.4 0 A 0.9
0 0.3 0 1 0.6 0 B 0.1
1 0.7 1 0 0.8 1 A 0.5
Q @ 1 1 0.2 1 B 0.5

We start with two particles representing our distribution for Wj.
P1 . W1 = 0
P. 2 . W1 =1

. Observe: Compute the weight of the two particles after evidence O; = A. 4. Observe: Compute the weight of the two particles after evidence Os = B.

. Resample: Using the random numbers, resample P; and P> based on the weights. 5. Resample: Using the random numbers, resample P; and P, based on the weights.

Use random numbers: [0.22, 0.05] Use random numbers: [0.84, 0.54]

. Elapse Time: Now let’s compute the elapse time particle update. Sample P; and P, from applying the 6. What is our estimated distribution for P(W,|0; = A, O, = B)?
time update.  Jse random numbers: [0.33, 0.20]



Robot Localization

= In robot localization:
= We know the map, but not the robot’s position
= QObservations may be vectors of range finder readings

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique

DIRECTORY




Particle Filter Localization (Laser)




Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs) e S —
and particle methods |
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DP-SLAM, Ron Parr



Particle Filter SLAM — Video 1



Particle Filter SLAM — Video 2



Dynamic Bayes Nets




Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple
sources of evidence

|dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

t=1 t=2 t=3
(o) D
G, // "}/G_Zh’/ GsP LT . >

HE® O OE

Dynamic Bayes nets are a generalization of HMMs




Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets

= Procedure: “unroll” the network for T time steps, then eliminate variables until P(G5°|E,.;*?) is

computed
t=1 t=2 t=3

G,° » G,°
1 2
/

> sz —

@) (@E &E

= Online belief updates: Eliminate all variables from the previous time step; store factors for current
time only




DBN Particle Filters

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G?=(3,3) G,°=(5,3)

Elapse time: Sample a successor for each particle
= Example successor: G,*=(2,3) G,°=(6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
= Likelihood: P(E,® |G,?) * P(E," |G,?)

Resample: Select samples (tuples of values) in proportion to their likelihood (weight)



Next Time: Value of Information



