CS 343: Artificial Intelligence

Hidden Markov Models

Prof. Yuke Zhu - The University of Texas at Austin

Announcements

- Homework 4: Probability, Bayes Net
- Due Monday 3/27 at 11:59 pm
- Programming 4: Bayes Nets
- Due Wednesday 3/19 at 11:59 pm
- Homework 5: HMMs, Particle Filtering, Naive Bayes, ML Concepts
- Due Monday 4/10 at 11:59 pm
- Start early!
- Final Project: Capture the Flag Contest
- Optional but with extra credits
- Qualification Due: Wednesday 4/12, 11:59 pm
- Tournament Due: Monday 4/17, 11:59 pm

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

- Value of X at a given time is called the state

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model

- Joint distribution:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

- More generally:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{T}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
& =P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

Implied Conditional Independencies

- We assumed: $\quad X_{3} \Perp X_{1} \mid X_{2} \quad$ and $\quad X_{4} \Perp X_{1}, X_{2} \mid X_{3}$
- Do we also have $\quad X_{1} \Perp X_{3}, X_{4} \mid X_{2}$
- Yes! D-Separation
- Or, Proof:

$$
\begin{aligned}
P\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right) & =\frac{P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)}{P\left(X_{2}, X_{3}, X_{4}\right)} \\
& =\frac{P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)}{\sum_{x_{1}} P\left(x_{1}\right) P\left(X_{2} \mid x_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)} \\
& =\frac{P\left(X_{1}, X_{2}\right)}{P\left(X_{2}\right)} \\
& =P\left(X_{1} \mid X_{2}\right)
\end{aligned}
$$

Markov Models Recap

- Explicit assumption for all $t: X_{t} \Perp X_{1}, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{T}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
& =P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

- Implied conditional independencies:
- Past variables independent of future variables given the present i.e., if $t_{1}<t_{2}<t_{3}$ or $t_{1}>t_{2}>t_{3}$ then: $X_{t_{1}} \Perp X_{t_{3}} \mid X_{t_{2}}$
- Additional explicit assumption: $P\left(X_{t} \mid X_{t-1}\right)$ is the same for all t

Conditional Independence

- Basic conditional independence:
- Past and future independent given the present
- Each time step only depends on the previous
- This is the (first order) Markov property (remember MDPs?)
- Note that the chain is just a (growable) BN
- We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example Markov Chain: Weather

- States: $X=\{$ rain, sun $\}$
- Initial distribution: 1.0 sun

- CPT P $\left(X_{t} \mid X_{t-1}\right)$:

Two new ways of representing the same CPT

\mathbf{X}_{t-1}	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Example Markov Chain: Weather

- Initial distribution: 0.6 sun / 0.4 rain

- What is the probability distribution after one step?

$$
\begin{array}{r}
P\left(X_{2}=\operatorname{sun}\right)=\quad P\left(X_{2}=\operatorname{sun} \mid X_{1}=\operatorname{sun}\right) P\left(X_{1}=\text { sun }\right)+ \\
P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right) \\
=0.9 * 0.6+0.3 * 0.4=0.66
\end{array}
$$

Mini-Forward Algorithm

- Question: What's $\mathrm{P}(\mathrm{X})$ on some day t?

$$
\begin{aligned}
P\left(x_{1}\right) & =\text { known } \\
P\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
& =\sum_{x_{t-1}} P(x_{t} \underbrace{\left.x_{t-1}\right)}_{\text {Forward simulation }} P\left(x_{t-1}\right) \underbrace{}_{\text {Recursion }}
\end{aligned}
$$

Example Run of Mini-Forward Algorithm

- From initial observation of sun

- From initial observation of rain

- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:

Stationary Distributions

- For most chains:
- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Example: Stationary Distributions

- Question: What's $\mathrm{P}(\mathrm{X})$ at time $\mathrm{t}=$ infinity?

Remember:

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

$$
P_{\infty}(\text { sun })=P(\text { sun } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { sun } \mid \text { rain }) P_{\infty}(\text { rain })
$$

Also: $P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$
$P_{\infty}($ rain $)=P($ rain \mid sun $) P_{\infty}($ sun $)+P($ rain \mid rain $) P_{\infty}($ rain $)$

$$
P_{\infty}(\text { sun })=0.9 P_{\infty}(\text { sun })+0.3 P_{\infty}(\text { rain })
$$

$$
P_{\infty}(\text { rain })=0.1 P_{\infty}(\text { sun })+0.7 P_{\infty}(\text { rain })
$$

$$
P_{\infty}(\text { sun })=3 P_{\infty}(\text { rain })
$$

$$
P_{\infty}(\text { rain })=1 / 3 P_{\infty}(\text { sun })
$$

Also: $P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =3 / 4 \\
P_{\infty}(\text { rain }) & =1 / 4
\end{aligned}
$$

$\mathbf{X}_{\mathrm{t}-1}$	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Example: Weather HMM

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P\left(E_{t} \mid X_{t}\right)$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Joint Distribution of an HMM

- Joint distribution:

$$
P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)
$$

- More generally:

$$
P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
$$

Implied Conditional Independencies

- Many implied conditional independencies, e.g.,

$$
E_{1} \Perp X_{2}, E_{2}, X_{3}, E_{3} \mid X_{1}
$$

- To prove them
- Approach 1: follow similar (algebraic) approach to what we did for Markov models
- Approach 2: D-Separation

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (the belief state) over time
- We start with $B_{1}(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example: Robot Localization

Example from
Michael Pfeiffer

Prob | | |
| :--- | :--- |

Sensor model: can read in which directions there is a wall, never more than 1 mistake Motion model: may not execute action with small prob.

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Example: Robot Localization

Prob
1
$\mathrm{t}=2$

Example: Robot Localization

Prob
1
$\mathrm{t}=3$

Example: Robot Localization

Prob
1
$\mathrm{t}=4$

Example: Robot Localization

Prob
1
$\mathrm{t}=5$

Inference: Base Cases

$$
P\left(X_{1} \mid e_{1}\right)
$$

$$
\begin{aligned}
P\left(x_{1} \mid e_{1}\right) & =P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
& \propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\
& =P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(X_{2}\right) \\
& P\left(x_{2}\right)=\sum_{x_{1}} P\left(x_{1}, x_{2}\right) \\
&=\sum_{x_{1}} P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)
\end{aligned}
$$

Passage of Time

- Assume we have current belief $P(X \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
$\mathrm{~T}=5$					

Observation

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence):

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Or, compactly:
- Basic idea: beliefs "reweighted" by likelihood of evidence

$$
B\left(X_{t+1}\right) \propto X_{t+1} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

- Unlike passage of time, we have to renormalize

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Putting it All Together: The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

We can normalize as we go if we want to have $P(x \mid e)$ at each time step, or just once at the end...

$$
\begin{aligned}
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

- The forward algorithm does both at once (and doesn't normalize)

Example: Weather HMM

Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X_{t} is either 0 or 1). The transition probabilities are given as follows:

X_{t}	X_{t+1}	$P\left(X_{t+1} \mid X_{t}\right)$
0	0	0.9
0	1	0.1
1	0	0.5
1	1	0.5

(a) (2 pt) The prior belief distribution over the initial state X_{0} is uniform, i.e., $P\left(X_{0}=0\right)=P\left(X_{0}=1\right)=0.5$. After one timestep, what is the new belief distribution, $P\left(X_{1}\right)$?

Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X_{t} is either 0 or 1). The transition probabilities are given as follows:

X_{t}	X_{t+1}	$P\left(X_{t+1} \mid X_{t}\right)$
0	0	0.9
0	1	0.1
1	0	0.5
1	1	0.5

Now, we incorporate sensor readings. The sensor model is parameterized by a number $\beta \in[0,1]$:

X_{t}	E_{t}	$P\left(E_{t} \mid X_{t}\right)$
0	0	β
0	1	$(1-\beta)$
1	0	$(1-\beta)$
1	1	β

(b) (2 pt) At $t=1$, we get the first sensor reading, $E_{1}=0$. Use your answer from part (a) to compute $P\left(X_{1}=0 \mid E_{1}=0\right)$. Leave your answer in terms of β.

Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X_{t} is either 0 or 1). The transition probabilities are given as follows:

X_{t}	X_{t+1}	$P\left(X_{t+1} \mid X_{t}\right)$
0	0	0.9
0	1	0.1
1	0	0.5
1	1	0.5

Now, we incorporate sensor readings. The sensor model is parameterized by a number $\beta \in[0,1]$:

X_{t}	E_{t}	$P\left(E_{t} \mid X_{t}\right)$
0	0	β
0	1	$(1-\beta)$
1	0	$(1-\beta)$
1	1	β

(b) (2 pt) At $t=1$, we get the first sensor reading, $E_{1}=0$. Use your answer from part (a) to compute $P\left(X_{1}=0 \mid E_{1}=0\right)$. Leave your answer in terms of β.
(d) (2 pt) Unfortunately, the sensor breaks after just one reading, and we receive no further sensor information. Compute $P\left(X_{\infty} \mid E_{1}=0\right)$, the stationary distribution very many timesteps from now.

Next Time: Particle Filters

