CS 343: Artificial Intelligence
Hidden Markov Models

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

Homework 4: Probability, Bayes Net
= Due Monday 3/27 at 11:59 pm

Programming 4: Bayes Nets
= Due Wednesday 3/19 at 11:59 pm

Homework 5: HMMs, Particle Filtering, Naive Bayes, ML Concepts
= Due Monday 4/10 at 11:59 pm
= Start early!

Final Project: Capture the Flag Contest
= QOptional but with extra credits
= Qualification Due: Wednesday 4/12, 11:59 pm
= Tournament Due: Monday 4/17, 11:59 pm



Reasoning over Time or Space

= Often, we want to reason about a sequence of observations

= Speech recognition
= Robot localization
= User attention

= Medical monitoring

= Need to introduce time (or space) into our models



Markov Models

= Value of X at a given time is called the state

)~~~ -~

P(X1) P(X3[X¢—1)

= Parameters: called transition probabilities or dynamics, specify how the state
evolves over time (also, initial state probabilities)
= Stationarity assumption: transition probabilities the same at all times

= Same as MDP transition model, but no choice of action



Joint Distribution of a Markov Model

P(X1)  P(XyX¢—1)

= Joint distribution:

P(X1, Xa, X5, X4) = P(X1)P(X2| X1)P(X3] X2) P(X4| X5)

= More generally:

P(X1,Xo,...,X7p) = P(X1)P(X2|X1)P(X5|X5) ... P(Xp|X7p_1)
= P(X1) | | P(X¢| Xi—1)

t=2



Implied Conditional Independencies

= Weassumed: X3 1 X; | Xy and X, 1 Xq, X, | X3

* Dowealsohave X; 1 X35, X, | Xy 7

= Yes! D-Separation

P(X1, X2, X3, X4)
. : P(X1 | X0, X3, X,) =
Or, Proof: (X: | X2, X3, X4) P(Xy. X X))

P(X1)P(Xy | X1)P(X3 | X2)P(Xy4 | X3)

> n, P(x1)P(X2 | 21)P(X5 | X2)P(Xy | X3)
B P(X1, X5)
P(X3)
= P(X1 | X2)




Markov Models Recap

Explicit assumption forall t: X; 1. X1,..., X0 | X¢_q
Consequence, joint distribution can be written as:
P(X1,Xs,...,X7) = P(X1)P(X5|X1)P(X5|Xs) ... P(X7p|X7_1)

= P(Xy) | | P(X4]X:-1)

t=2
Implied conditional independencies:
= Past variables independent of future variables given the present
e, if ti<ty<tyort;>t>t; then: X; A Xy, | Xy,
Additional explicit assumption: P(X; | X;_1) is the same for all t



Conditional Independence

_&ree

= Basic conditional independence:
= Past and future independent given the present
= Each time step only depends on the previous

= This is the (first order) Markov property (remember
MDPs?)

= Note that the chain is just a (growable) BN

= We can always use generic BN reasoning on it if we
truncate the chain at a fixed length



Example Markov Chain: Weather

= States: X ={rain, sun}

= |nitial distribution: 1.0 sun

= CPTP(X; | Xi.q): ’ Two new ways of representing the same CPT
Xea | Xe | P(Xe|X¢a) 0.9
sun | sun 0.9 0.3 " 0.3 "
sun | rain 0.1 @ 01 @ W
rain | sun 0.3 07 rain & cain
rain | rain 0.7 ' 0.7




Example Markov Chain: Weather

= |nitial distribution: 0.6 sun / 0.4 rain

0.9
0.1
G
—
0.3
0.7

= What is the probability distribution after one step?

P(XQ = Sun) = +
P(X, = sun|Xy = rain)P(X1 = rain)

=09*06+03*04 = 0.66



Mini-Forward Algorithm

= Question: What’s P(X) on some day t?
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P(.Cl?t> = Z P(xi_1,xy)

Tt—1

— Z P(xt ] act_1)P(CL’t—1) « Recursion

Tt—1 . .
\ Forward simulation




Example Run of Mini-Forward Algorithm

* From initial observation of sun

(00) (o1) (e ) {oss ) =={o2s

P(X)) P(X3) P(X5) P(Xy) P(X.)

* From initial observation of rain

\10) (o7} {os2) {oara ) =={ozs )

P(X)) P(X5) P(X5) P(Xy) P(X.)

* From yet another initial distribution P(X,):

L) = {02

P(X)) P(X.)



Stationary Distributions

= For most chains: = Stationary distribution:
= |Influence of the initial distribution gets = The distribution we end up with is called
less and less over time. the stationary distribution P, of the
» The distribution we end up in is chain
independent of the initial distribution = |t satisfies

Poo(X) = Poos1(X) = ) P(X[2) Poo ()




Example: Stationary Distributions

= Question: What’s P(X) at time t = infinity? Remember-

®_.®_.®_.‘_ . Poo(X) = Poo 1 (X Z P(X|z)P

Also: P, (sun) + Py (rain) =1

Py (sun) = P(sun|sun)Ps (sun) + P(sun|rain) Py (rain)

Py (rain) = P(rain|sun) Py (sun) + P(rain|rain) P (rain)

P (sun) = 0.9P (sun) + 0.3 Px (rain) Xeg | X, | P(Xc|Xe)

Py (rain) = 0.1 P (sun) + 0.7P (rain) sun | sun | 0.9
sun | rain 0.1

Poo(sun) = 3P (rain) rain | sun 0.3

Peo(rain) = 1/3Ps(sun) [ Py (sun) = 3/4 rain | rain 0.7

Py (rain) =1/4
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Hidden Markov Models




Hidden Markov Models

= Markov chains not so useful for most agents
= Need observations to update your beliefs

= Hidden Markov models (HMMs)

= Underlying Markov chain over states X
= You observe outputs (effects) at each time step




Example: Weather HMM

P(X; | X¢q)

Rainq

Umbrella, Umbrella, Umbrella,

Rain;

Et|Xt

= An HMM is defined by:

= |nitial distribution:

= Transitions:
= Emissions:

P(X1)

P(X; | X1
P(E; | Xy)

Raing,

o (7

Ri | Ris1 | P(Rez1|Re) R¢ U: | P(U:|Ry)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8




Joint Distribution of an HMM

= Joint distribution:

P(X1,E1, X2, Eo, X3, E3) = P(X1)P(E1|X1)P(Xa|X1)P(Fs| X2)P(X5|Xs) P(Es| X3)

= More generally: -

P(XhEl)"')XTaET) — P(Xl)P(Elle)HP(Xt‘Xt—l)P(Et’Xt)
t=2



Implied Conditional Independencies

= Many implied conditional independencies, e.g.,
Ey Al Xy, By, X3, B3 | Xy

= To prove them

= Approach 1: follow similar (algebraic) approach to what we did for Markov models
= Approach 2: D-Separation



Real HMM Examples

= Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:

= QObservations are words (tens of thousands)
= States are translation options

= Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the distribution
B.(X) = Pi(X; | e, ..., &) (the belief state) over time

We start with B,(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first implemented
as a method of trajectory estimation for the Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer
1
v
s
Prob 0 1

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.



Example: Robot Localization

S
Prob 0 1

t=1
Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake




Example: Robot Localization

Prob 0 1

t=2



Example: Robot Localization

Prob 0 1

t=3



Example: Robot Localization

Prob 0 1

t=4



Example: Robot Localization

Prob 0 1

t=5



Inference: Base Cases

e

P(X1|€1) P(XQ)
P(z1le1) = P(z1,e1)/P(e1) P(zp) =) P(x1,22)
<x Play,en) =" P(a1) P(x2]e1)

= P(xz1)P(e1|z1)



Passage of Time

= Assume we have current belief P(X | evidence to date) @ @
B(X:) = P(Xtle1:)

= Then, after one time step passes:

P(Xt+1’€1:t) — ZP(Xt—I—laxt‘elrt)

Tt
— ZP(X’J“‘%’elzt)P(xt‘el"f) = Or compactly:
= ZP(Xt+1’CUt)P(Cl?t|€1:t) Xt—|—1 ZP X ’xt

= Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it
includes

)



Example: Passage of Time

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

EEETEE
TTCITET
ITETTTT = DooDo




Observation

= Assume we have current belief P(X | previous evidence):

B'(Xi41) = P(X¢q1lers)

= Then, after evidence comes in:

P(Xt+1\€1:t+1) = P(Xt—|-176t—|—1|61:t)/P(6t—|—1|61:t)
X X1 P(Xt—l—lyet—l—l‘@l:t)

— P(€t+1 elztaXt+1)P(Xt+1|€1:t)
= P(et41]Xi11) P(Xig1ler)

= Or, compactly: .

Basic idea: beliefs “reweighted”
by likelihood of evidence
B(Xi41) xx,,, Plett1|Xe41)B (Xeq1) * Unlike passage of time, we have
to renormalize



Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation

B(X) «x P(e|X)B'(X)




Putting it All Together: The Forward Algorithm

We are given evidence at each time and want to know

Bi(X) = P(Xtle1:t)

We can derive the following updates

P(ztle1:t) ocx P(xt,e1:t)

We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end...

= > P(z4_1,2t,€1:1)

Li—1

= 3" P(x_1,e1:4-1)P(xt|ws_1) P(et|at)

Lt—1

= P(etlxt) Y, P(wtlwp—1)P(xi—1,€1:4—1)

Lt—1




Online Belief Updates

Every time step, we start with current P(X | evidence)
We update for time:

P(xtler:4—1) = Z P(xi_1ler:1—1) - P(x¢|wi—1) @—@

Lt—1

We update for evidence: @

Platler) ocx Patlers 1) - Pledze) \

The forward algorithm does both at once (and doesn’t normalize)



Example: Weather HMM [ ( [ (

B’(+r) = 0.5 B’(+r) = 0.627 .
/ Fir) =0 / F(r) = 0373 P(wileq:t) ocx P(ailer:t—1) - Plet|mt)
B(+r) = 0.5 B(+r) =0.818 B(+r) = 0.883
B(-r) =0.5 B(-r) =0.182 B(-r) =0.117
» Rain, Rain, Re | Rex | PRualR) | [ R | UL | P(ULIRY
+r +r 0.7 +r +U 0.9

X Y +r -r 0.3 +r | -u 0.1

Umbrella; Umbrella, -r | +r 0.3 -r | +u 0.2
-r -r 0.7 -r -U 0.8




Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X; is either 0 or 1). The transition probabilities are
given as follows:

Xt | Xey1 | P(Xiq1 | Xo)
0 0 0.9

0 1 0.1

1 0 0.5

1 1 0.5

(a) (2 pt) The prior belief distribution over the initial state X is uniform, i.e., P(Xo = 0) = P(Xo, = 1) = 0.5.
After one timestep, what is the new belief distribution, P(X;)?



Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X; is either 0 or 1). The transition probabilities are
given as follows:

Xt | Xey1 | P(Xiq1 | Xo)
0 0 0.9

0 1 0.1

1 0 0.5

1 1 0.5

Now, we incorporate sensor readings. The sensor model is parameterized by a number 5 € [0, 1]:

X, | E, | P(E, | X,)
0] o0 B
0] 1] (1-8)
1[0 )
1|1 3

(b) (2 pt) At t = 1, we get the first sensor reading, F; = 0. Use your answer from part (a) to compute
P(X; =0]| E; =0). Leave your answer in terms of 3.



Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X; is either 0 or 1). The transition probabilities are
given as follows:

Xt | Xey1 | P(Xiq1 | Xo)
0 0 0.9

0 1 0.1

1 0 0.5

1 1 0.5

Now, we incorporate sensor readings. The sensor model is parameterized by a number 5 € [0, 1]:

X, | E, | P(E, | X,)
0] o0 B
0] 1] (1-8)
1o )
1|1 3

(b) (2 pt) At t = 1, we get the first sensor reading, F; = 0. Use your answer from part (a) to compute
P(X; =0]| E; =0). Leave your answer in terms of 3.

(d) (2 pt) Unfortunately, the sensor breaks after just one reading, and we receive no further sensor informa-
tion. Compute P(X | E1 = 0), the stationary distribution very many timesteps from now.



Next Time: Particle Filters



