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Hidden Markov Models



Announcements

▪ Homework 4: Probability, Bayes Net
▪ Due Monday 3/27 at 11:59 pm

▪ Programming 4: Bayes Nets
▪ Due Wednesday 3/19 at 11:59 pm

▪ Homework 5: HMMs, Particle Filtering, Naive Bayes, ML Concepts
▪ Due Monday 4/10 at 11:59 pm
▪ Start early!

▪ Final Project: Capture the Flag Contest
▪ Optional but with extra credits
▪ Qualification Due: Wednesday 4/12, 11:59 pm
▪ Tournament Due: Monday 4/17, 11:59 pm



Reasoning over Time or Space

▪ Often, we want to reason about a sequence of observations
▪ Speech recognition

▪ Robot localization

▪ User attention

▪ Medical monitoring

▪ Need to introduce time (or space) into our models



Markov Models

▪ Value of X at a given time is called the state

▪ Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

▪ Stationarity assumption: transition probabilities the same at all times
▪ Same as MDP transition model, but no choice of action

X2X1 X3 X4



Joint Distribution of a Markov Model

▪ Joint distribution:

▪ More generally:

X2X1 X3 X4



Implied Conditional Independencies

▪ We assumed:                                 and

▪ Do we also have ?
▪ Yes! D-Separation
▪ Or, Proof:

X2X1 X3 X4



Markov Models Recap

▪ Explicit assumption for all t :
▪ Consequence, joint distribution can be written as: 

▪ Implied conditional independencies: 
▪ Past variables independent of future variables given the present
i.e., if                      or                      then:

▪ Additional explicit assumption:                        is the same for all t



Conditional Independence

▪ Basic conditional independence:
▪ Past and future independent given the present
▪ Each time step only depends on the previous
▪ This is the (first order) Markov property (remember 

MDPs?)

▪ Note that the chain is just a (growable) BN
▪ We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length



Example Markov Chain: Weather

▪ States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1
0.9

0.7
0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ CPT P(Xt | Xt-1):



Example Markov Chain: Weather

▪ Initial distribution: 0.6 sun / 0.4 rain

▪ What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

= 0.9 * 0.6 + 0.3 * 0.4   =   0.66



Mini-Forward Algorithm

▪ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

Recursion



Example Run of Mini-Forward Algorithm

▪ From initial observation of sun

▪ From initial observation of rain

▪ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…



▪ Stationary distribution:
▪ The distribution we end up with is called 

the stationary distribution   of the 
chain

▪ It satisfies

Stationary Distributions

▪ For most chains:
▪ Influence of the initial distribution gets 

less and less over time.
▪ The distribution we end up in is 

independent of the initial distribution



Example: Stationary Distributions

▪ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:

Remember:

Also:



Hidden Markov Models



Hidden Markov Models

▪ Markov chains not so useful for most agents
▪ Need observations to update your beliefs

▪ Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X
▪ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

▪ An HMM is defined by:
▪ Initial distribution:
▪ Transitions:
▪ Emissions:



Joint Distribution of an HMM

▪ Joint distribution:

▪ More generally:

X5X2

E1

X1 X3

E2 E3 E5



Implied Conditional Independencies

▪ Many implied conditional independencies, e.g.,

▪ To prove them
▪ Approach 1: follow similar (algebraic) approach to what we did for Markov models
▪ Approach 2: D-Separation

X2

E1

X1 X3

E2 E3



Real HMM Examples

▪ Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)
▪ States are specific positions in specific words (so, tens of thousands)

▪ Machine translation HMMs:
▪ Observations are words (tens of thousands)
▪ States are translation options

▪ Robot tracking:
▪ Observations are range readings (continuous)
▪ States are positions on a map (continuous)



Filtering / Monitoring

▪ Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

▪ We start with B1(X) in an initial setting, usually uniform

▪ As time passes, or we get observations, we update B(X)

▪ The Kalman filter was invented in the 60’s and first implemented 
as a method of trajectory estimation for the Apollo program



Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference: Base Cases

E1

X1

X2X1



Passage of Time

▪ Assume we have current belief P(X | evidence to date)

▪ Then, after one time step passes:

▪ Basic idea: beliefs get “pushed” through the transitions
▪ With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it 

includes

X2X1

▪ Or compactly:



Example: Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Observation
▪ Assume we have current belief P(X | previous evidence):

▪ Then, after evidence comes in:

▪ Or, compactly:

E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence

▪ Unlike passage of time, we have 
to renormalize



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Putting it All Together: The Forward Algorithm
▪ We are given evidence at each time and want to know

▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…



Online Belief Updates

▪ Every time step, we start with current P(X | evidence)
▪ We update for time:

▪ We update for evidence:

▪ The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117



Exercises: Hidden Markov Models



Exercises: Hidden Markov Models



Exercises: Hidden Markov Models



Next Time: Particle Filters


