CS 343: Artificial Intelligence

Hidden Markov Models

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

- Homework 4: Probability, Bayes Net
 - Due Monday 3/27 at 11:59 pm
- Programming 4: Bayes Nets
 - Due Wednesday 3/19 at 11:59 pm
- Homework 5: HMMs, Particle Filtering, Naive Bayes, ML Concepts
 - Due Monday 4/10 at 11:59 pm
 - Start early!
- Final Project: Capture the Flag Contest
 - Optional but with extra credits
 - Qualification Due: Wednesday 4/12, 11:59 pm
 - Tournament Due: Monday 4/17, 11:59 pm

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

Value of X at a given time is called the state

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

$$P(X_1) \qquad P(X_t|X_{t-1})$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model

$$(X_1) \xrightarrow{X_2} \xrightarrow{X_3} \xrightarrow{X_4}$$
$$P(X_1) \qquad P(X_t | X_{t-1})$$

Joint distribution:

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$

More generally:

$$P(X_1, X_2, \dots, X_T) = P(X_1) P(X_2 | X_1) P(X_3 | X_2) \dots P(X_T | X_{T-1})$$
$$= P(X_1) \prod_{t=2}^T P(X_t | X_{t-1})$$

Implied Conditional Independencies

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 - - - +$$

• We assumed: $X_3 \perp \!\!\!\perp X_1 \mid X_2$ and $X_4 \perp \!\!\!\perp X_1, X_2 \mid X_3$

- Do we also have $X_1 \perp \!\!\!\perp X_3, X_4 \mid X_2$?
 - Yes! D-Separation

• Or, Proof:

$$P(X_1 \mid X_2, X_3, X_4) = \frac{P(X_1, X_2, X_3, X_4)}{P(X_2, X_3, X_4)}$$

$$= \frac{P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}{\sum_{x_1} P(x_1)P(X_2 \mid x_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}$$

$$= \frac{P(X_1, X_2)}{P(X_2)}$$

$$= P(X_1 \mid X_2)$$

Markov Models Recap

- Explicit assumption for all $t: X_t \perp \!\!\!\perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

$$P(X_1, X_2, \dots, X_T) = P(X_1) P(X_2 | X_1) P(X_3 | X_2) \dots P(X_T | X_{T-1})$$
$$= P(X_1) \prod_{t=2}^T P(X_t | X_{t-1})$$

- Implied conditional independencies:
 - Past variables independent of future variables given the present i.e., if $t_1 < t_2 < t_3$ or $t_1 > t_2 > t_3$ then: $X_{t_1} \perp X_{t_3} \mid X_{t_2}$
- Additional explicit assumption: $P(X_t \mid X_{t-1})$ is the same for all t

Conditional Independence

Basic conditional independence:

- Past and future independent given the present
- Each time step only depends on the previous
- This is the (first order) Markov property (remember MDPs?)
- Note that the chain is just a (growable) BN
 - We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example Markov Chain: Weather

States: X = {rain, sun}

- Initial distribution: 1.0 sun
- CPT P(X_t | X_{t-1}):

X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT

Example Markov Chain: Weather

Initial distribution: 0.6 sun / 0.4 rain

What is the probability distribution after one step?

$$P(X_2 = \operatorname{sun}) = P(X_2 = \operatorname{sun}|X_1 = \operatorname{sun})P(X_1 = \operatorname{sun}) + P(X_2 = \operatorname{sun}|X_1 = \operatorname{rain})P(X_1 = \operatorname{rain})$$

= 0.9 * 0.6 + 0.3 * 0.4 = 0.66

Mini-Forward Algorithm

A

Next Day

009

?? days later

• Question: What's P(X) on some day t?

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

$$P(x_1) = \text{known}$$

$$P(x_{t}) = \sum_{x_{t-1}} P(x_{t-1}, x_{t})$$

=
$$\sum_{x_{t-1}} P(x_{t} \mid x_{t-1}) P(x_{t-1}) \leftarrow \text{Recursion}$$

Forward simulation

Example Run of Mini-Forward Algorithm

From initial observation of sun

$$\begin{pmatrix} 1.0 \\ 0.0 \end{pmatrix} \begin{pmatrix} 0.9 \\ 0.1 \end{pmatrix} \begin{pmatrix} 0.84 \\ 0.16 \end{pmatrix} \begin{pmatrix} 0.804 \\ 0.196 \end{pmatrix} \longrightarrow \begin{pmatrix} 0.75 \\ 0.25 \end{pmatrix}$$

$$P(X_1) P(X_2) P(X_3) P(X_4) P(X_{\infty})$$

From initial observation of rain

$$\begin{pmatrix} 0.0 \\ 1.0 \\ P(X_1) \end{pmatrix} \begin{pmatrix} 0.3 \\ 0.7 \\ P(X_2) \end{pmatrix} \begin{pmatrix} 0.48 \\ 0.52 \\ P(X_3) \end{pmatrix} \begin{pmatrix} 0.588 \\ 0.412 \\ P(X_4) \end{pmatrix} \longrightarrow \begin{pmatrix} 0.75 \\ 0.25 \\ P(X_{\infty}) \end{pmatrix}$$

From yet another initial distribution P(X₁):

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle$$
 $P(X_1)$

Stationary Distributions

- For most chains:
 - Influence of the initial distribution gets less and less over time.
 - The distribution we end up in is independent of the initial distribution

Stationary distribution:

- The distribution we end up with is called the stationary distribution P_∞ of the chain
- It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Example: Stationary Distributions

Question: What's P(X) at time t = infinity?

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

 $P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$ $P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$

 $P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$ $P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$

$$P_{\infty}(sun) = 3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$

$$P_{\infty}(sun) = 1$$

$$P_{\infty}(sun) = 3/4$$

$$P_{\infty}(sun) = 1/4$$

Remember:

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

ain) Also: $P_{\infty}(sun) + P_{\infty}(rain) = 1$

/4

X _{t-1}	Xt	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step

Example: Weather HMM

• An HMM is defined by:

- Initial distribution: $P(X_1)$
- Transitions: $P(X_t \mid X_{t-1})$
- Emissions: $P(E_t \mid X_t)$

R_t	R _{t+1}	$P(R_{t+1} R_t)$	R _t	Ut	$P(U_t R_t)$
+r	+r	0.7	+r	+u	0.9
+r	-r	0.3	+r	-u	0.1
-r	+r	0.3	-r	+u	0.2
-r	-r	0.7	-r	-u	0.8

Joint Distribution of an HMM

Joint distribution:

 $P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$

More generally:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^T P(X_t|X_{t-1})P(E_t|X_t)$$

Implied Conditional Independencies

Many implied conditional independencies, e.g.,

$E_1 \perp\!\!\!\perp X_2, E_2, X_3, E_3 \mid X_1$

- To prove them
 - Approach 1: follow similar (algebraic) approach to what we did for Markov models
 - Approach 2: D-Separation

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution
 B_t(X) = P_t(X_t | e₁, ..., e_t) (the belief state) over time
- We start with B₁(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Sensor model: can read in which directions there is a wall, never more than 1 mistake Motion model: may not execute action with small prob.

required 1 mistake

t=2

t=4

t=5

Inference: Base Cases

Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

• Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$

• Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 0.76 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

As time passes, uncertainty "accumulates"

T = 1

T = 2

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

• Then, after evidence comes in:

$$\frac{P(X_{t+1}|e_{1:t+1})}{\propto_{X_{t+1}}} = \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})} \\ \propto_{X_{t+1}} \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(X_{t+1}, e_{t+1}|e_{1:t})}$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

 $B(X) \propto P(e|X)B'(X)$

Putting it All Together: The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

 $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

The forward algorithm does both at once (and doesn't normalize)

Example: Weather HMM

R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	Ut	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X_t is either 0 or 1). The transition probabilities are given as follows:

X_t	X_{t+1}	$P(X_{t+1} \mid X_t)$
0	0	0.9
0	1	0.1
1	0	0.5
1	1	0.5

(a) (2 pt) The prior belief distribution over the initial state X_0 is uniform, i.e., $P(X_0 = 0) = P(X_0 = 1) = 0.5$. After one timestep, what is the new belief distribution, $P(X_1)$?

Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X_t is either 0 or 1). The transition probabilities are given as follows:

X	t	X_{t+1}	$P(X_{t+1} \mid X_t)$
0		0	0.9
0		1	0.1
1		0	0.5
1		1	0.5

Now, we incorporate sensor readings. The sensor model is parameterized by a number $\beta \in [0, 1]$:

X_t	E_t	$P(E_t \mid X_t)$
0	0	β
0	1	(1-eta)
1	0	(1-eta)
1	1	β

(b) (2 pt) At t = 1, we get the first sensor reading, $E_1 = 0$. Use your answer from part (a) to compute $P(X_1 = 0 | E_1 = 0)$. Leave your answer in terms of β .

Exercises: Hidden Markov Models

Consider a Markov Model with a binary state X (i.e., X_t is either 0 or 1). The transition probabilities are given as follows:

X	t	X_{t+1}	$P(X_{t+1} \mid X_t)$
0		0	0.9
0		1	0.1
1		0	0.5
1		1	0.5

Now, we incorporate sensor readings. The sensor model is parameterized by a number $\beta \in [0, 1]$:

X_t	E_t	$P(E_t \mid X_t)$
0	0	eta
0	1	(1-eta)
1	0	(1-eta)
1	1	β

- (b) (2 pt) At t = 1, we get the first sensor reading, $E_1 = 0$. Use your answer from part (a) to compute $P(X_1 = 0 | E_1 = 0)$. Leave your answer in terms of β .
- (d) (2 pt) Unfortunately, the sensor breaks after just one reading, and we receive no further sensor information. Compute $P(X_{\infty} | E_1 = 0)$, the stationary distribution very many timesteps from now.

Next Time: Particle Filters