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Bayes Net Representation
▪ A directed, acyclic graph, one node per random variable

▪ A conditional probability table (CPT) for each node

▪ A collection of distributions over X, one for each combination of 
parents’ values

▪ Bayes nets implicitly encode joint distributions

▪ As a product of local conditional distributions
▪ To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together:



Inference by Enumeration vs. Variable Elimination
▪ Why is inference by enumeration so slow?

▪ You join up the whole joint distribution before 
you sum out the hidden variables

▪ Idea: interleave joining and marginalizing!
▪ Called “Variable Elimination”
▪ Still NP-hard, but usually much faster than 

inference by enumeration
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General Variable Elimination

▪ Query:

▪ Start with initial factors:
▪ Local CPTs (but instantiated by evidence)

▪ While there are still hidden variables (not Q 
or evidence):
▪ Pick a hidden variable H
▪ Join all factors mentioning H
▪ Eliminate (sum out) H

▪ Join all remaining factors and normalize



Variable Elimination Efficiency

▪ Interleave joining and marginalizing, instead 
of fully joining all at once (i.e. enumeration)

▪ dk entries computed for a factor over k 
variables with domain sizes d

▪ Ordering of elimination of hidden variables 
can affect size of factors generated

▪ Worst case: running time exponential in the 
size of the Bayes net (NP-hard)

…

…



Approximate Inference: Sampling



Sampling

▪ Basic idea
▪ Draw N samples from a sampling distribution S

▪ Compute an approximate posterior probability

▪ Show this converges to the true probability P

▪ Why sample?
▪ Learning: get samples from a distribution 

you don’t know

▪ Inference: getting samples can be faster 
than computing the right answer (e.g.
with variable elimination)



Sampling

▪ Sampling from given distribution

▪ Step 1: Get sample u from uniform 
distribution over [0, 1)

▪ E.g. random() in python

▪ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each outcome associated with a 
sub-interval of [0,1) with sub-interval 
size equal to probability of the 
outcome

▪ Example

▪ If random() returns u = 0.83, 
then our sample is C = blue

▪ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3



Sampling in Bayes Nets

▪ Prior Sampling

▪ Rejection Sampling

▪ Likelihood Weighting

▪ Gibbs Sampling



Prior Sampling
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Prior Sampling

▪ For i=1, 2, …, n
▪ Sample xi from P(Xi | Parents(Xi))

▪ Return (x1, x2, …, xn)



Prior Sampling

▪ This process generates samples with probability:

…i.e. the BN’s joint probability

▪ Let the number of samples of a particular event be               and 
and the total number of samples of all events be N. 

▪ Then

▪ I.e., the sampling procedure is consistent



Example

S R

W
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▪ We’ll get a bunch of samples from the BN:
+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r, -w
-c, -s, +r, +w
+c,  -s,  -r, +w

▪ If we want to know P(W)
▪ We have counts <+w:4, -w:1>
▪ Normalize to get P(W) = <+w:0.8, -w:0.2>
▪ This will get closer to the true distribution with more samples
▪ Can estimate anything else, too
▪ What about P(C | +w)?   P(C | +r, +w)?  P(C | -r, -w)?
▪ Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling



+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

▪ Let’s say we want P(C)
▪ No point keeping all samples around
▪ Just tally counts of C as we go

▪ Let’s say we want P(C | +s)
▪ Same thing: tally C outcomes, but ignore 

(reject) samples which don’t have S=+s
▪ This is called rejection sampling
▪ It is also consistent for conditional 

probabilities (i.e., correct in the limit)
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Rejection Sampling
▪ IN: evidence instantiation
▪ For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))
▪ If xi not consistent with evidence

▪ Reject: Return, and no sample is generated in this 
cycle

▪ Return (x1, x2, …, xn)



Likelihood Weighting



▪ Idea: fix evidence variables and sample the 
rest
▪ Problem: sample distribution not consistent!
▪ Solution: weight by probability of evidence given 

parents

Likelihood Weighting

▪ Problem with rejection sampling:
▪ If evidence is unlikely, rejects lots of samples
▪ Evidence not exploited as you sample
▪ Consider P(Shape | blue)

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting
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Likelihood Weighting
▪ IN: evidence instantiation
▪ w = 1.0
▪ for i=1, 2, …, n

▪ if Xi is an evidence variable
▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else
▪ Sample xi from P(Xi | Parents(Xi))

▪ return (x1, x2, …, xn), w



Likelihood Weighting

▪ Sampling distribution if z sampled and e fixed evidence

▪ Now, samples have weights

▪ Together, weighted sampling distribution is consistent
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Likelihood Weighting

▪ Likelihood weighting is good
▪ We have taken evidence into account as we 

generate the sample
▪ Our samples will reflect the state of the world 

suggested by the evidence
▪ No need for rejection!

▪ Likelihood weighting doesn’t solve all our 
problems

▪ Evidence influences the choice of downstream 
variables, but not upstream ones (not more likely 
to get a value matching the evidence)

▪ Can cause many very small weights —> inefficient!
▪ We would like to consider evidence when we 

sample every variable
à Gibbs sampling



Gibbs Sampling



▪ Step 2: Initialize other variables 
▪ Randomly

Gibbs Sampling Example: P( S | +r)

▪ Step 1: Fix evidence
▪ R = +r
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▪ Step 3: Repeat the following:
▪ Choose a non-evidence variable X
▪ Resample X from P( X | all other variables)



Gibbs Sampling

▪ How is this better than sampling from the full joint?
▪ In a Bayes Net, sampling a variable given all the other variables             

(e.g. P(R|S,C,W)) is usually much easier than sampling from the full 
joint distribution

▪ Only requires one join on the variable to be sampled (in this case, a 
join on R)



Further Reading on Gibbs Sampling*

▪ Gibbs sampling produces sample from the query distribution  P( Q | e ) 
in limit of re-sampling infinitely often

▪ Gibbs sampling is a special case of more general methods called 
Markov chain Monte Carlo (MCMC) methods 

▪ Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs 
sampling is a special case of Metropolis-Hastings) 

▪ You may read about Monte Carlo methods – they’re just sampling



Markov Chain Monte Carlo*

▪ Idea: instead of sampling from scratch, create samples that are each like 
the last one.

▪ Procedure: resample one variable at a time, conditioned on all the rest, 
but keep evidence fixed.  E.g., for P(b|c):

▪ Properties: Now samples are not independent (in fact they’re nearly 
identical), but sample averages are still consistent estimators!

▪ What’s the point: both upstream and downstream variables condition 
on evidence.

+a +c+b +a +c-b -a +c-b



Bayes Net Sampling Summary
▪ Prior Sampling  P( Q ) ▪ Rejection Sampling  P( Q | e )

▪ Gibbs Sampling  P( Q | e )▪ Likelihood Weighting  P( Q | e)



Exercise: Bayes Nets Sampling



Exercise: Bayes Nets Sampling


