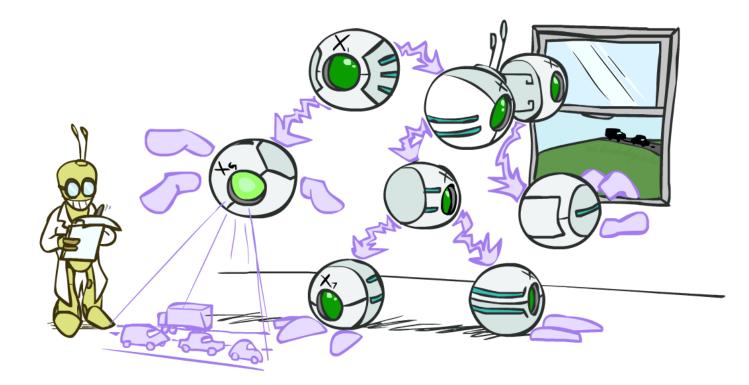
CS 343: Artificial Intelligence

Bayes Nets: Inference



Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

- No reading this or next week!
- Project 4: Bayes Nets
 - Now released
 - Due on 3/29, 11:59 pm
- Midterm this Thursday Friday
 - No lecture on Thursday
 - Will be released on Gradescope
 - See details on Piazza

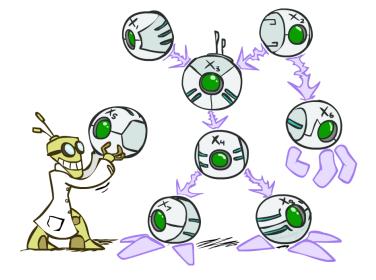
Bayes Net Representation

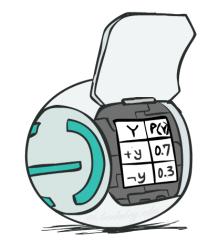
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

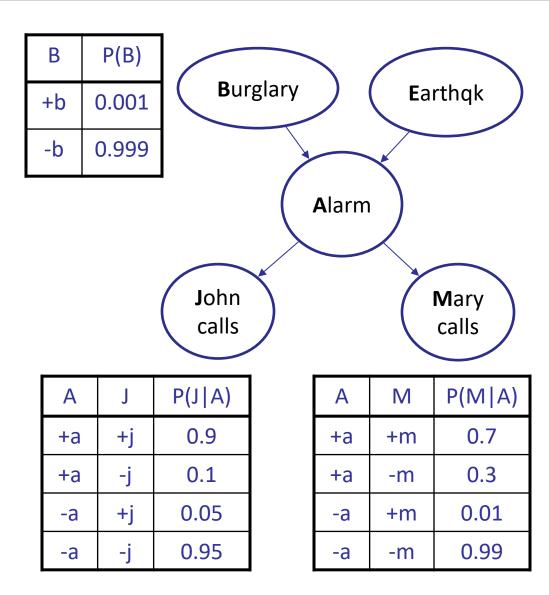
- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

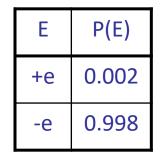
$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

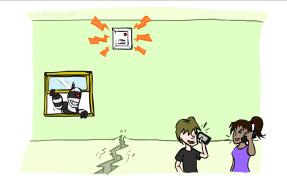




Example: Alarm Network

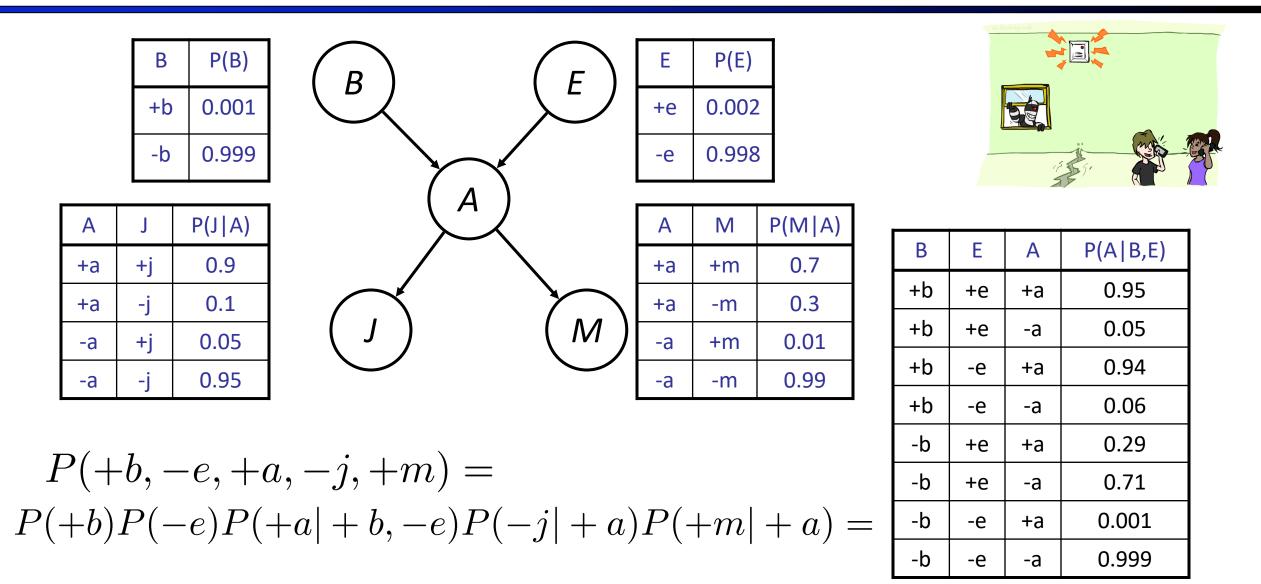




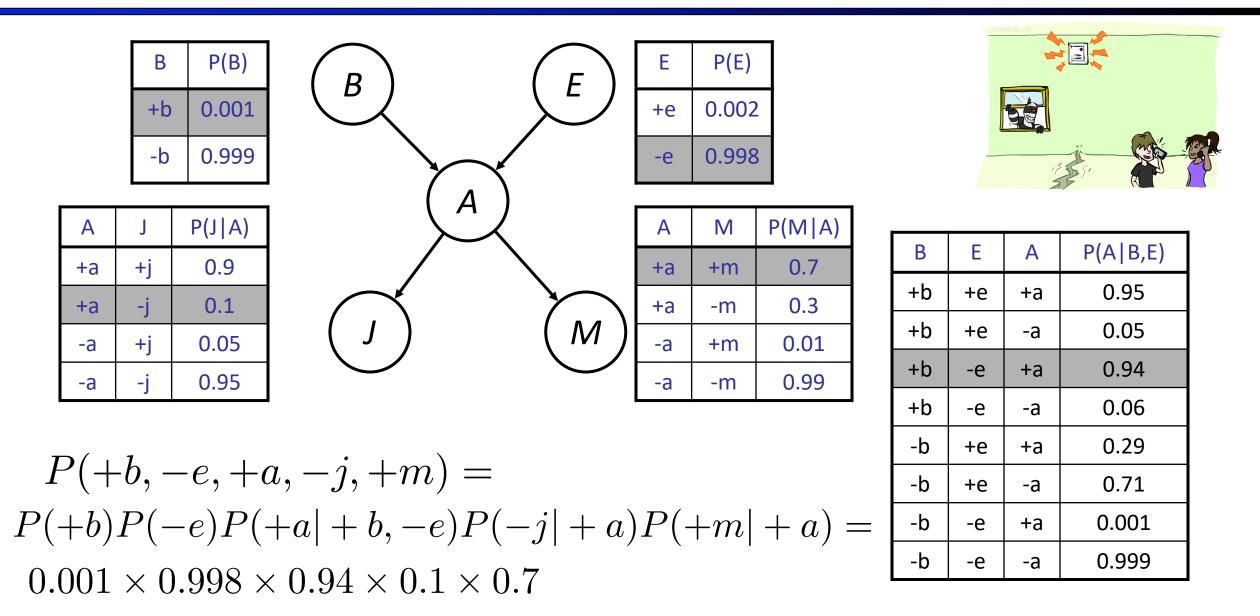


В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

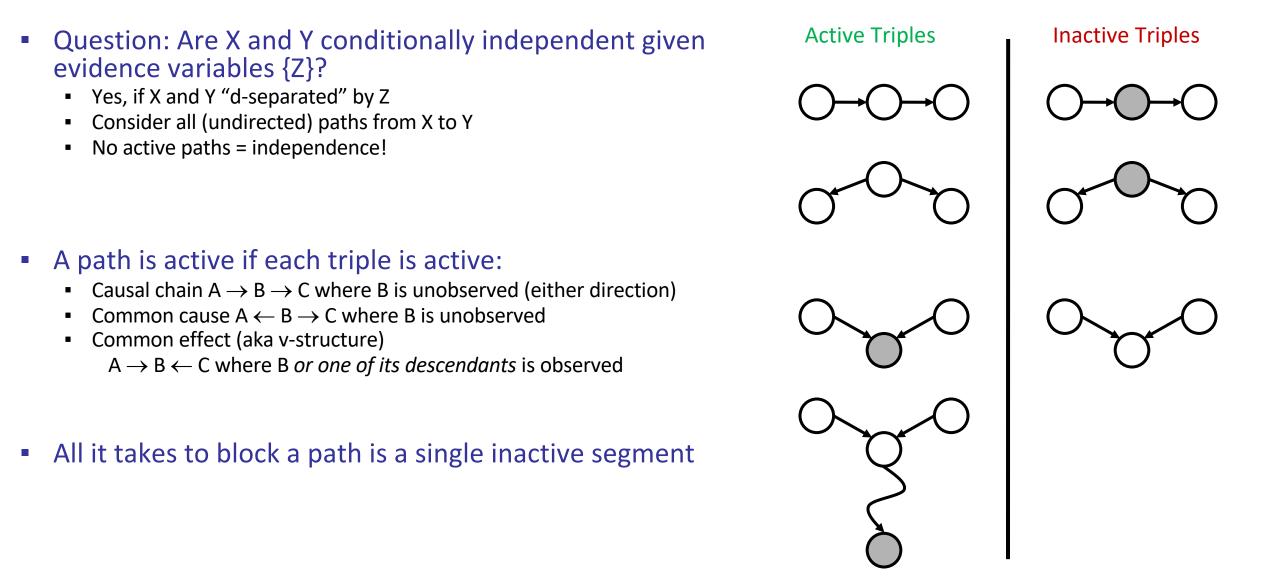
Example: Alarm Network



Example: Alarm Network



D-Separation



Bayes Nets

- Representation
- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)

Learning Bayes Nets from Data

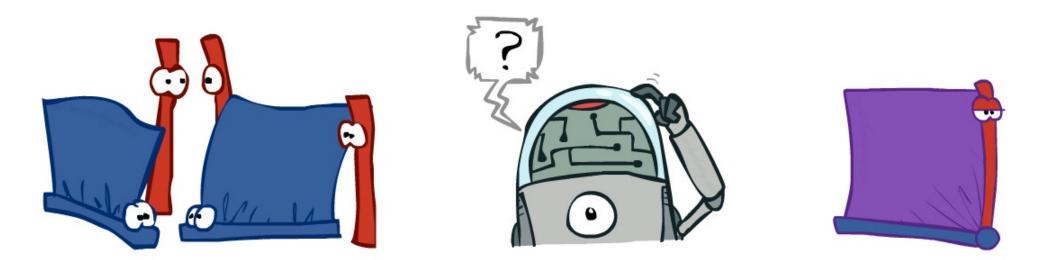
Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability

 $P(Q|E_1 = e_1, \dots E_k = e_k)$

Most likely explanation:

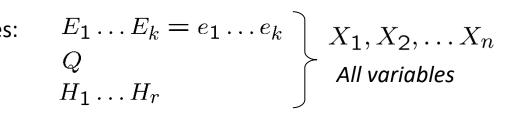
 $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$



Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
 - Step 1: Select the entries consistent with the evidence

0.15



 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{--})$

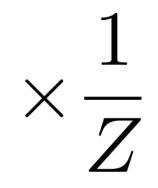
 Step 2: Sum out H to get joint of Query and evidence

• We want:

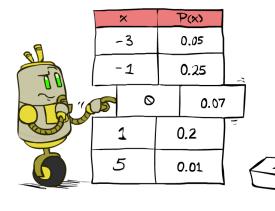
* Works fine with multiple query variables, too

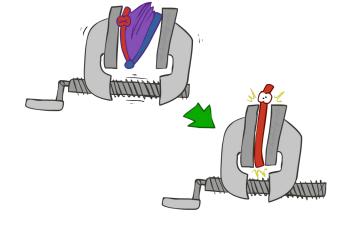
$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize



 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$





 X_1, X_2, \ldots, X_n

Inference by Enumeration in Bayes Net

Ε

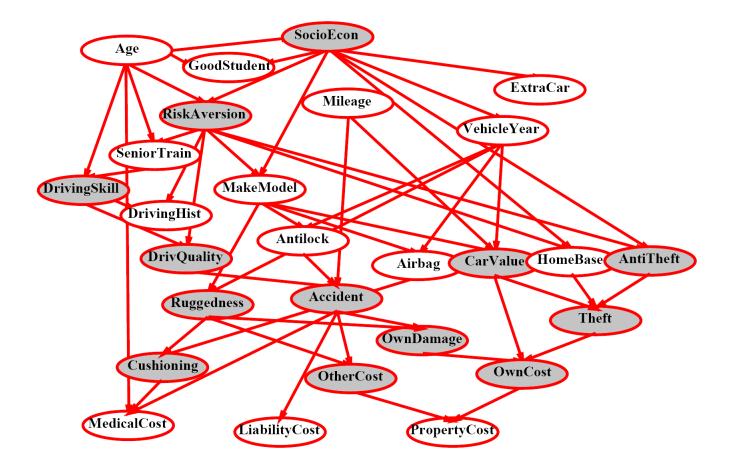
B

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

 $P(B \mid +j,+m) \propto P(B,+j,+m)$ $= \sum_{e,a} P(B,e,a,+j,+m)$ $= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$ M

 $=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a) \\ P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a) \\ P(B)P(-e)P(+a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a) \\ P(B)P(-e)P(+a|B,-e)P(+j|-a)P(+m|-a)$

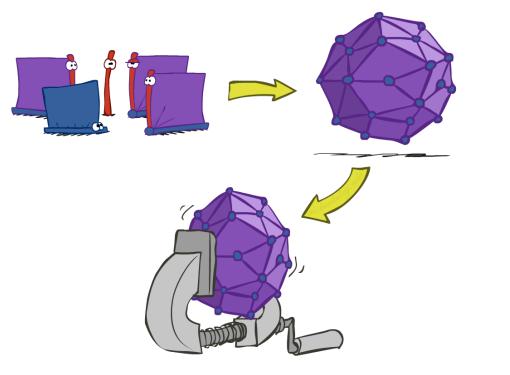
Inference by Enumeration?

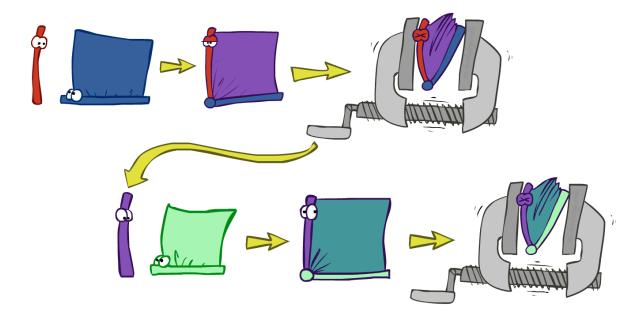


P(Antilock|observed variables) = ?

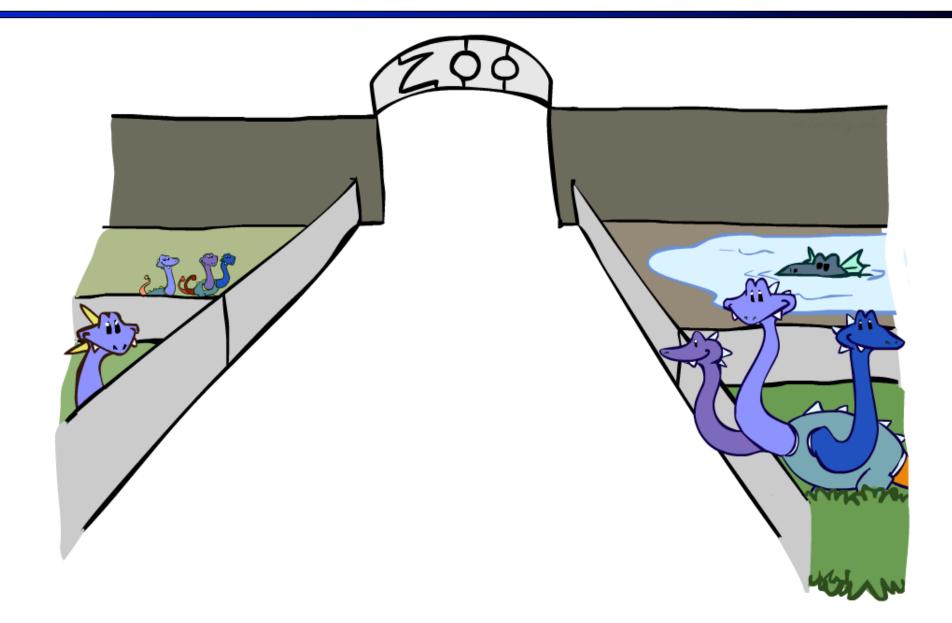
Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration





Factor Zoo



Factor Zoo I

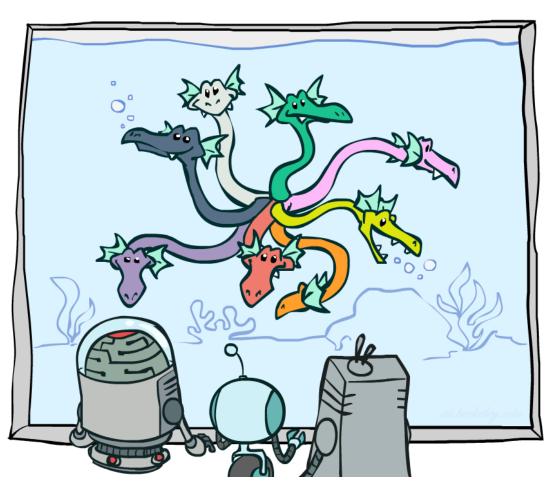
- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals determines the size of the table

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

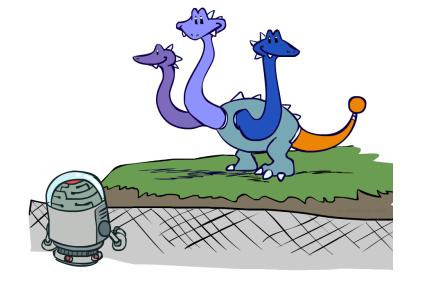
P(T, W)

P(cold, W)			
Т	W	Р	
cold	sun	0.2	
cold	rain	0.3	



Factor Zoo II

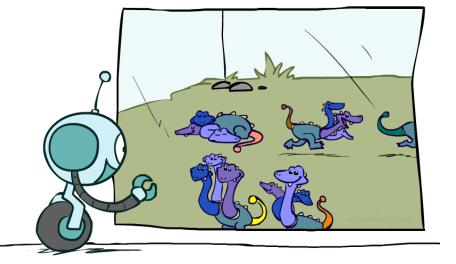
- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1



P(W|cold)

Т	W	Ρ
cold	sun	0.4
cold	rain	0.6

- Family of conditionals:
 P(Y | X)
 - Multiple conditionals
 - Entries P(y | x) for all x, y
 - Sums to |X|



P(W T)				
Т	W	Р		
hot	sun	0.8	-	
hot	rain	0.2	-	
cold	sun	0.4	-	
cold rain 0.6				

P(W|hot)

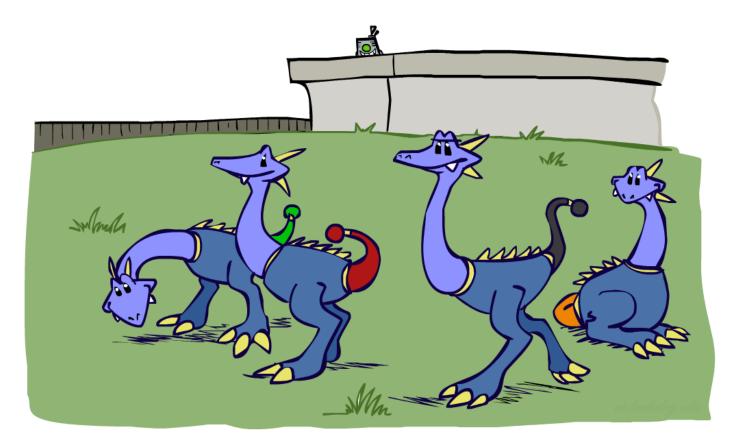
P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

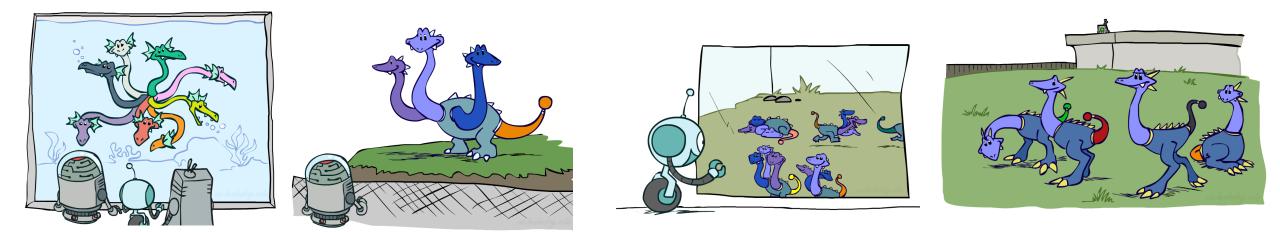
P	(rain)	T)
-		- /

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	P(rain cold)



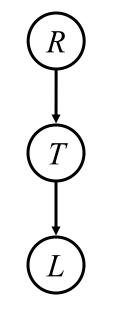
Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N | X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 \dots y_N | x_1 \dots x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array



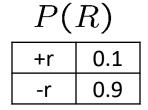
Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!

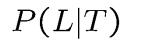


$$P(L) = ?$$

= $\sum_{r,t} P(r,t,L)$
= $\sum_{r,t} P(r)P(t|r)P(L|t)$

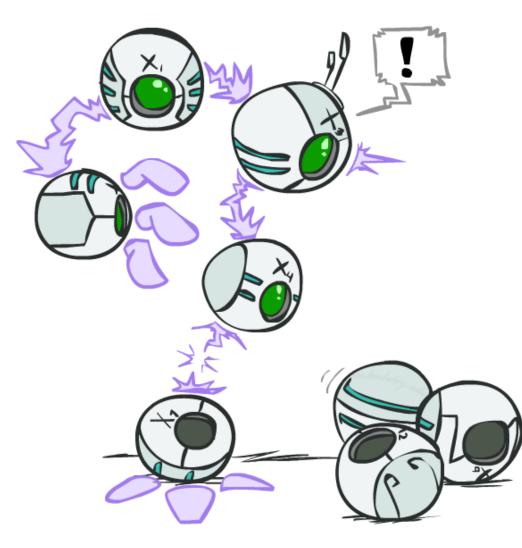


+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9



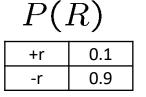
+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

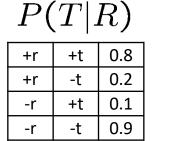
Variable Elimination (VE)



Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)



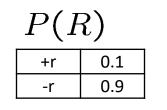


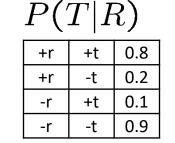
P(L T)			
+t	+	0.3	
+t	-	0.7	
-t	+	0.1	

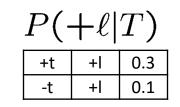
0.9

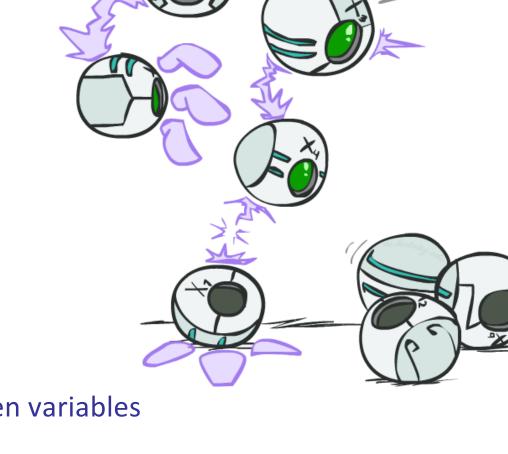
-t

- Any known values are selected
 - E.g. if we know $L = +\ell$, then the initial factors are:





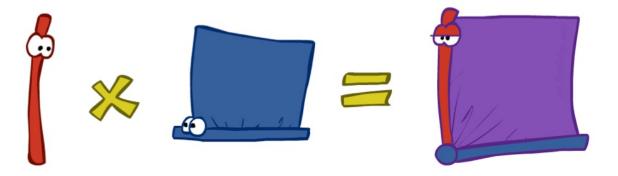




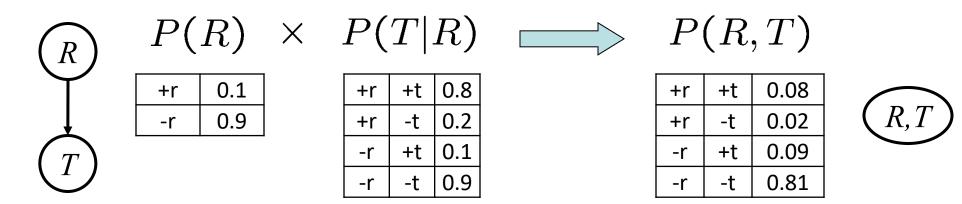
• Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

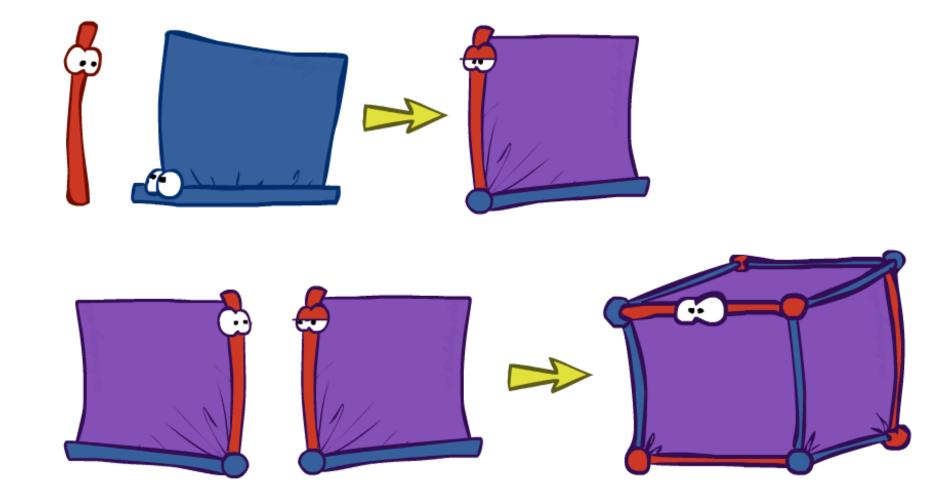


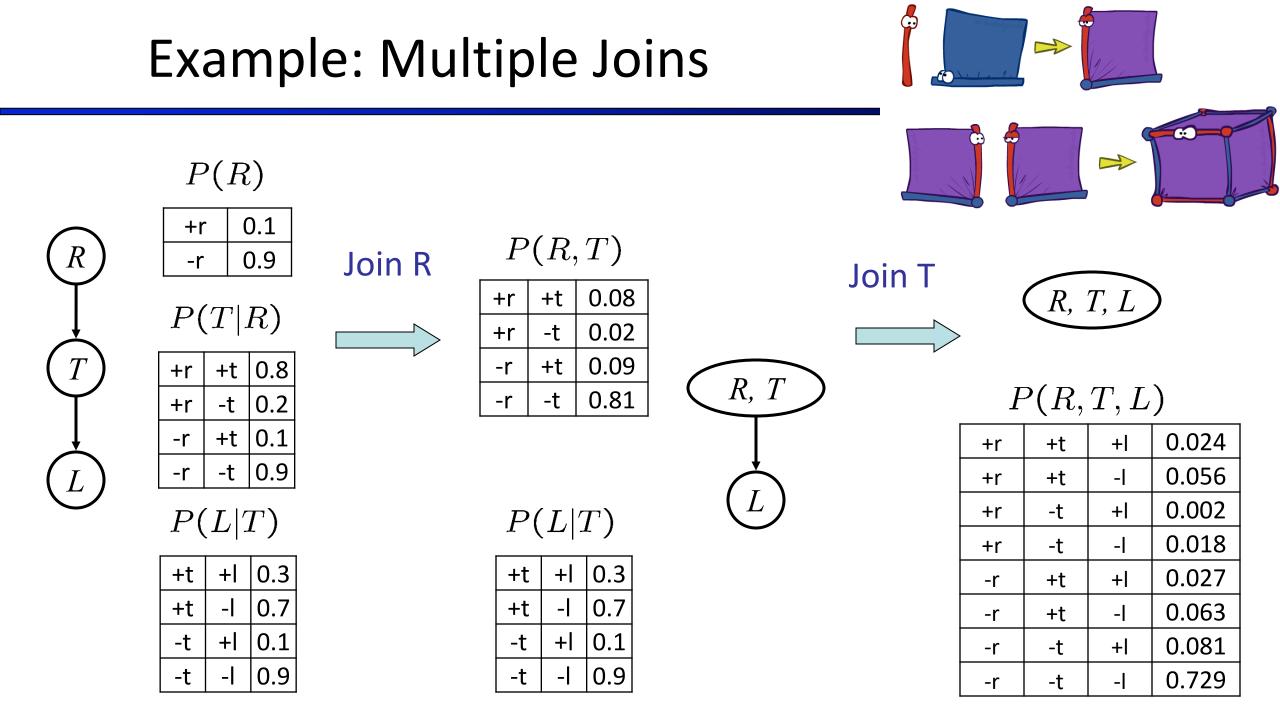
• Example: Join on R



• Computation for each entry: pointwise products $\forall r,t: P(r,t) = P(r) \cdot P(t|r)$

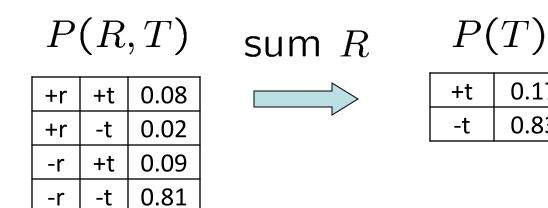
Example: Multiple Joins

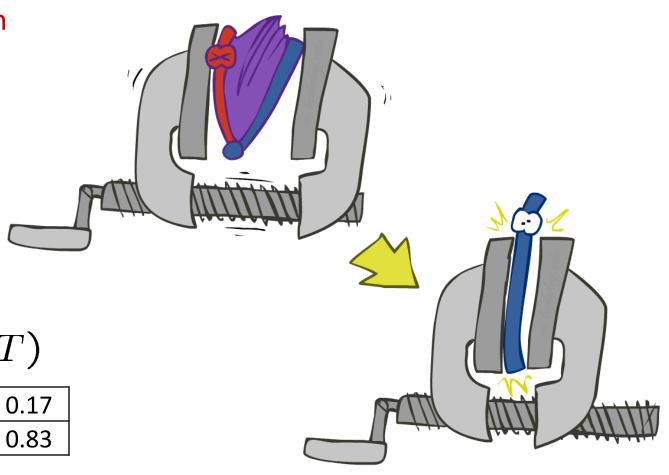




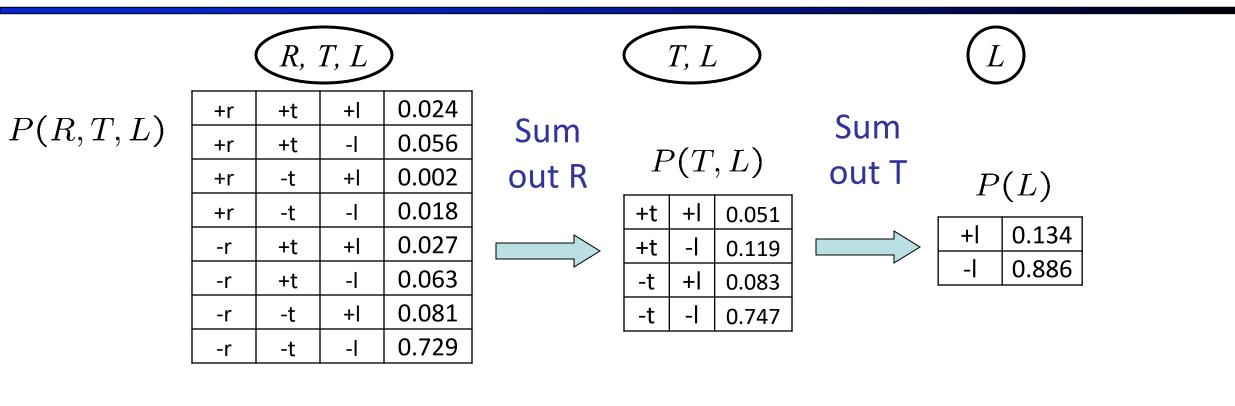
Operation 2: Eliminate

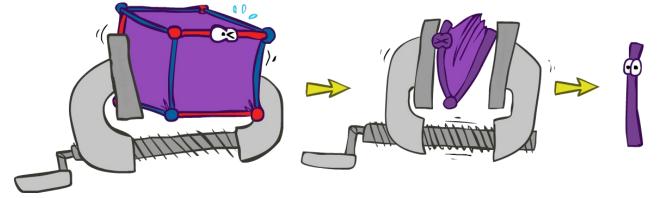
- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:



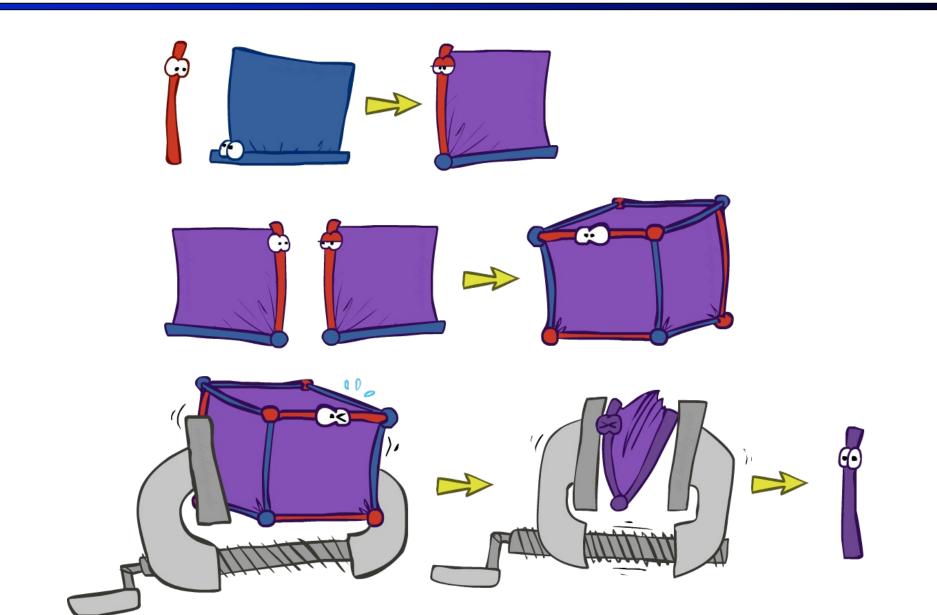


Multiple Elimination

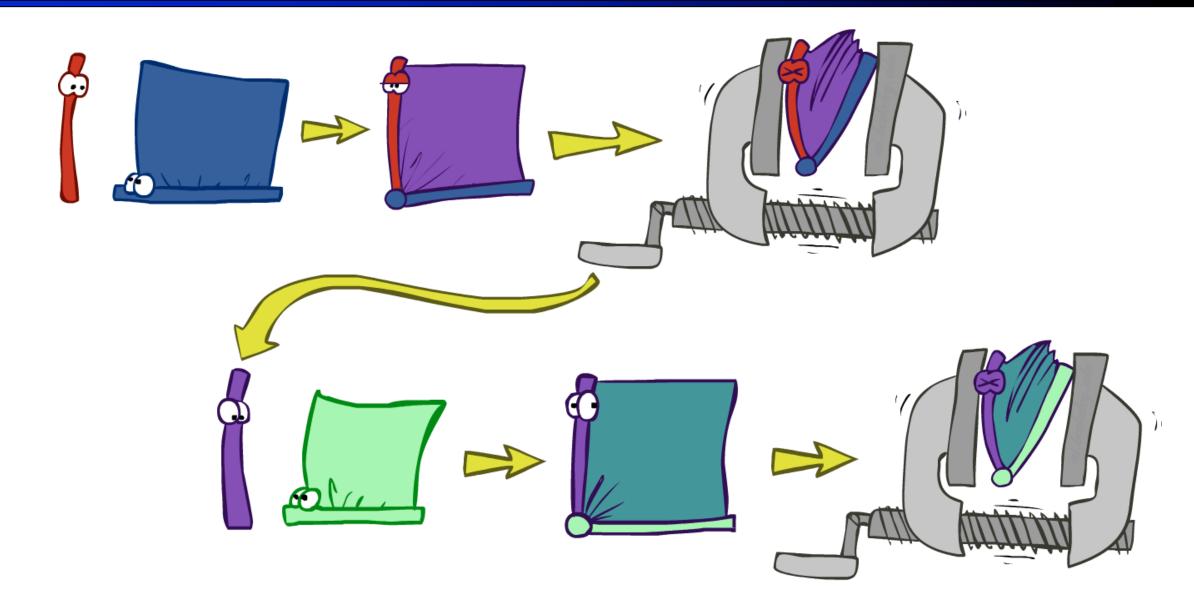




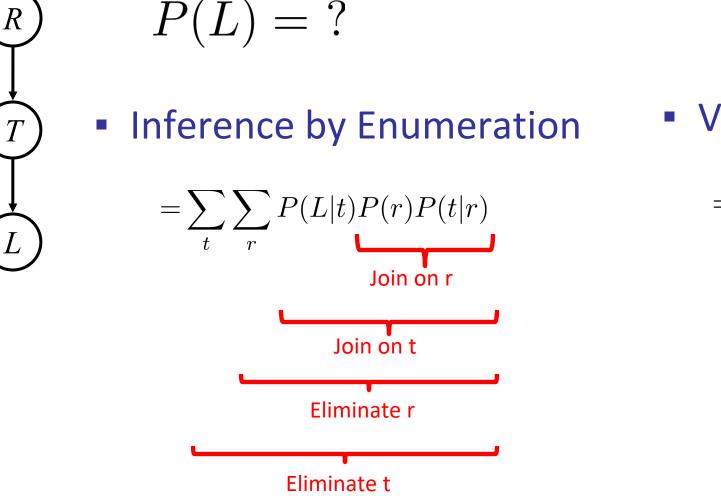
Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



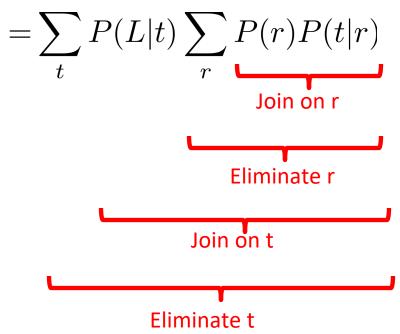
Marginalizing Early (= Variable Elimination)



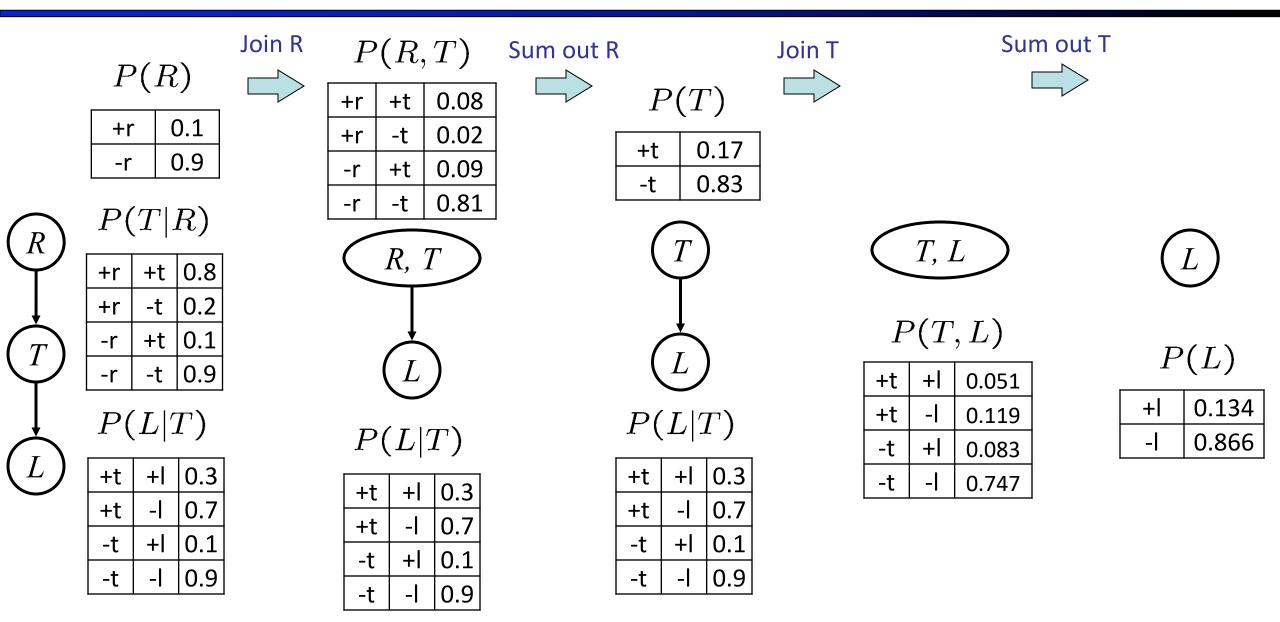
Traffic Domain



Variable Elimination

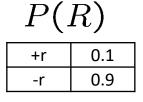


Marginalizing Early! (aka VE)



Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:



P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

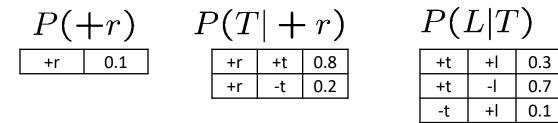
P(L I)				
+t	+	0.3		
+t	-	0.7		
-t	+	0.1		
-t	-	0.9		

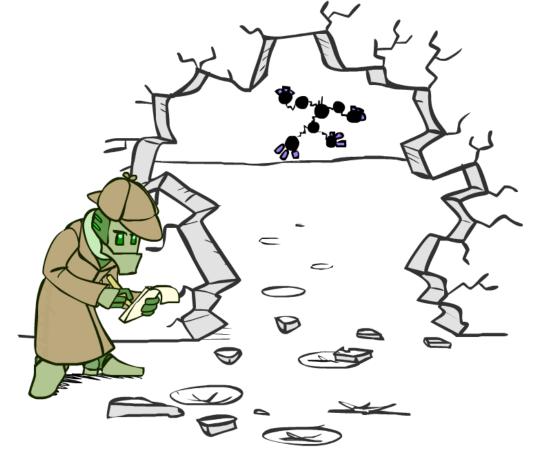
0.9

-t

D(T|T)

• Computing P(L|+r), the initial factors become:

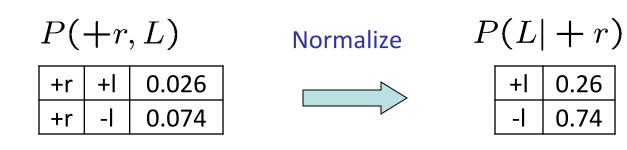




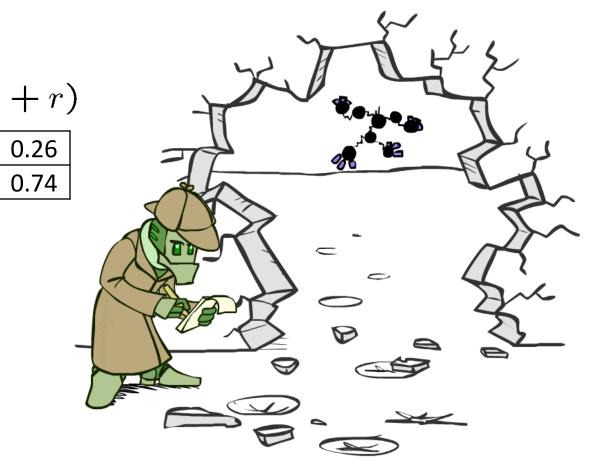
• We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

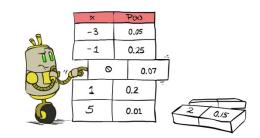


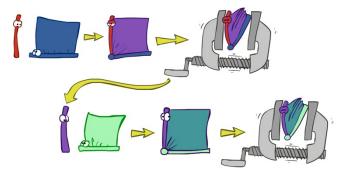
- To get our answer, just normalize this!
- That 's it!



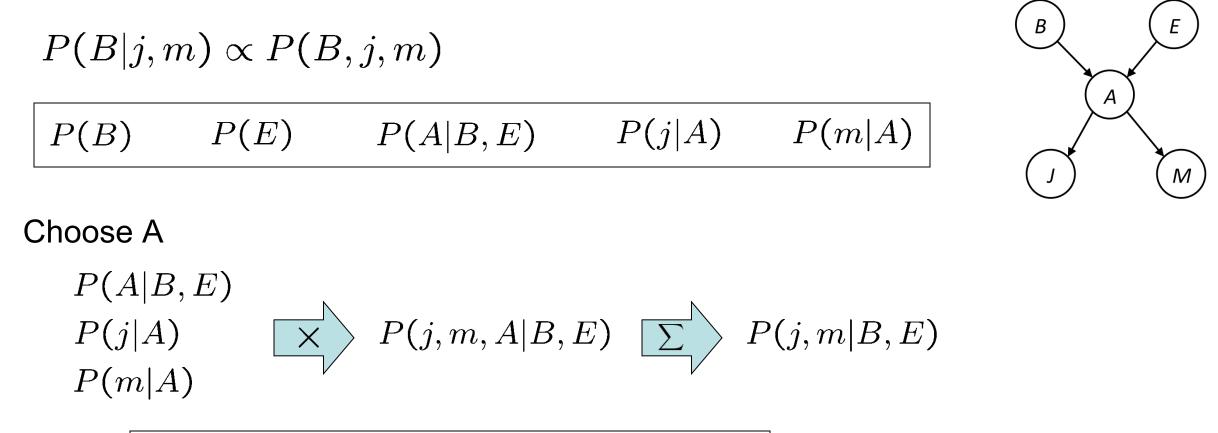
General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize



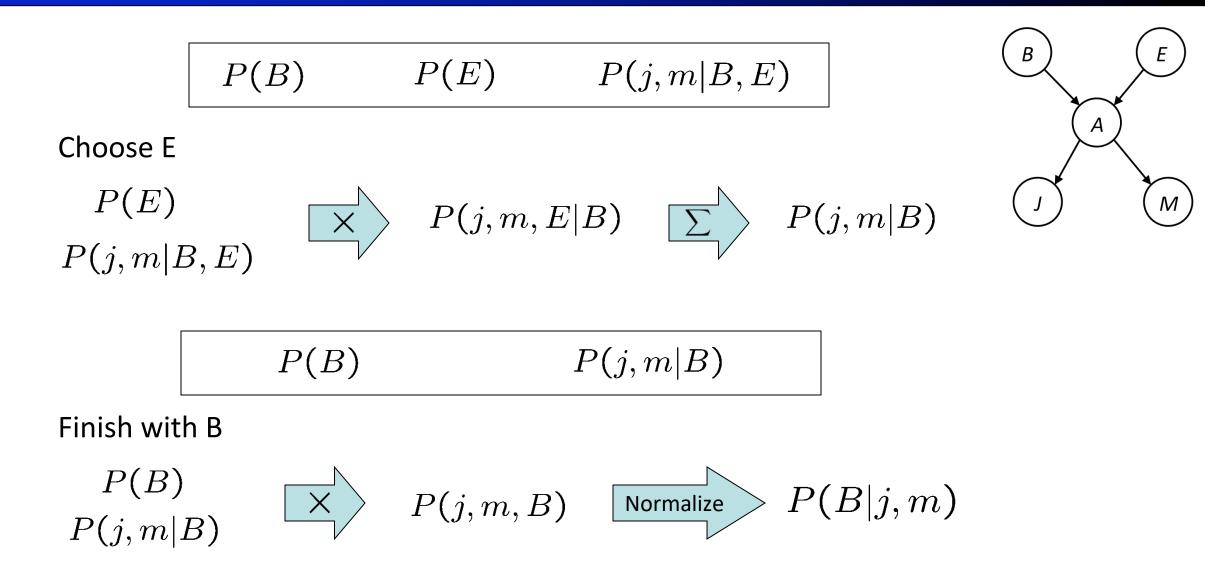


Example



$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

Example



Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

 $P(B|j,m) \propto P(B,j,m)$

$$=\sum_{e,a}P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

- $= \sum_{e} P(B)P(e)f_1(B, e, j, m)$
- $= P(B) \sum_{e} P(e) f_1(B, e, j, m)$ $= P(B) f_2(B, j, m)$

marginal can be obtained from joint by summing out

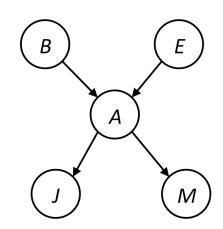
use Bayes' net joint distribution expression

use $x^*(y+z) = xy + xz$

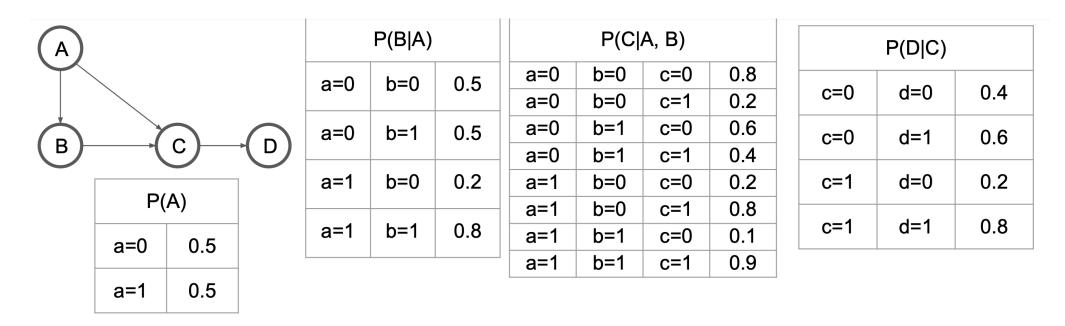
joining on a, and then summing out gives f_1

use $x^*(y+z) = xy + xz$

joining on e, and then summing out gives f_2



Exercise: Variable Elimination

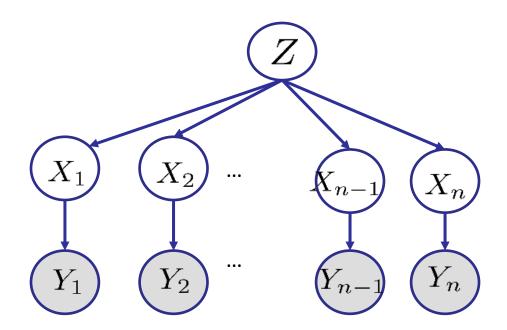


Answer the question based on the given Bayes Net. All variables have domains of {0, 1}

- (1) Before eliminating any variables or including any evidence, how many entries does the factor f(C,A,B) have?
- (2) Now to answer the query P(B|d=1), you pick C as the first variable to be eliminated. How many entries does the factor have if we eliminate C?
- (3) Compute the result of joining P(B|A) and P(C|A, B)? And the result if we further marginalize over B?

Variable Elimination Ordering

 For the query P(X_n | y₁,...,y_n) work through the following two different orderings: Z, X₁, ..., X_{n-1} and X₁, ..., X_{n-1}, Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

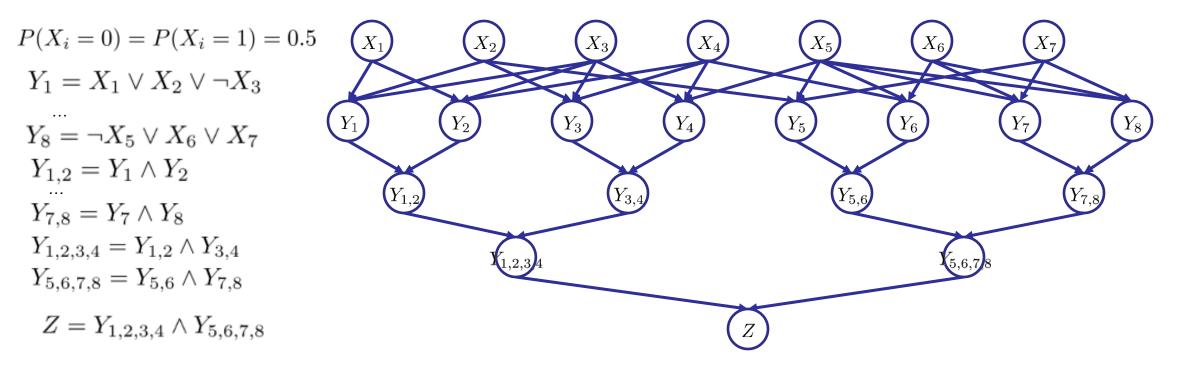
VE: Computational and Space Complexity

- All we are doing is changing the ordering of the variables that are eliminated...
- ...but it can (sometimes) reduce storage and complexity to linear w.r.t. number of variables!
- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ⁺¹ vs. 2²
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

• CSP:

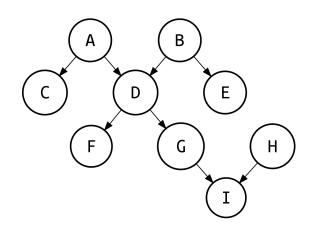
 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_6 \lor \neg x_7) \land (\neg x_6 \lor \neg x_6 \lor x_7) \land (\neg x_6 \lor \neg x_6 \lor \neg x_7) \land (\neg x_6 \lor \neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor \neg x_6 \lor \neg x_6 \lor (\neg x_6 \lor \neg x_6$



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
 - Very similar to tree-structured CSP algorithm
- Cut-set conditioning for Bayes net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!



Bayes Nets

- Representation
- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes Nets from Data