CS 343: Artificial Intelligence

Markov Decision Processes

Prof. Yuke Zhu, The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

= Homework 3: Games
= Due 2/28 at 11:59 pm.

= Programming Project 2: Multi-Agent Pacman
= Due 3/2 at 11:59 pm.

= Homework 4: MDPs
= Due 3/7 at 11:59 pm.

Non-Deterministic Search

Example: Grid World

= A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned

= 80% of the time, the action has the intended effect
(if there is no wall there)

= 20% of the time an adjacent action occurs instead. Ex: North
has 10% chance of East and 10% chance of West

= [fthereis a wall in the direction the agent would have been
taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

s Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

An MDP is defined by:

Markov Decision Processes

A set of statess & S
A set of actionsa E A
A transition function T(s, a, s’)

= Probability that a from s leads to s/, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems

One way to solve them is with expectimax search
...but with modification to allow rewards along the way
We'll have a new, more efficient tool soon

What is Markov about MDPs?

“Markov” generally means that given the present state, the future and the
past are independent

For Markov decision processes, “Markov” means action outcomes depend
only on the current state

P(St—|—1 = Sl\St — StaAt = QA¢, Si—1 = St—laAt—la ...50 = So)

Andrey Markov
P(St_|_1 = S"St = Sy, A, = at) (1856-1922)

This is just like search, where the successor function could only depend on
the current state (not the history)

Policies

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want an optimal policy t*: S > A

= A policy it gives an action for each state

= An optimal policy is one that maximizes expected utility
if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
Expectimax didn’t compute entire policies for all non-terminals s

= |t computed the action for a single state only

Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward

Slow

Overheated

1.0

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

AS a Sisastate

o /_> (s,a,s’) called a transition
T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now orlater? 10,0,1] or [1,0,0]

Discounting

= |t's reasonable to maximize the sum of rewards
= |t's also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

X

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3]) =1*1 + 0.5%2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Discounting:use0O<y<1

= Smaller y means smaller “horizon” — shorter term focus

U([ro,-.-Too]) = D 4'r¢ < Rmax/(1 —7)
t=0

» Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)

= Gives nonstationary policies (i depends on time left)

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

= Markov decision processes:
= Set of states S
» Start state s,

= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount y) 78,a,5

= MIDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

= The value (utility) of a state s:

V*(s) = expected utility starting in s and zt';tae
acting optimally
(s, a)is ag-
= The value (utility) of a g-state (s,a): state
Q*(s,a) = expected utility starting out 7 eas (s,a,5') is a
having taken action a from state s and transition

(thereafter) acting optimally

= The optimal policy:
nt*(s) = optimal action from state s

Optimal Quantities

= The value (utility) of a state s:
V*(s) = expected utility starting in s and acting optimally

= The value (utility) of a g-state (s,a):

Q*(s,a) = expected utility starting out having taken action a
from state s and (thereafter) acting optimally

= The optimal policy: o
mt*(s) = optimal action from state s

Values of States

= Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

= Recursive definition of (optimal) value:
V*(s) = maxQ* (s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + 'yV*(s’)}

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S

The Bellman Equations

= Definition of “optimal utility” via expectimax recurrence gives a simple
one-step lookahead relationship amongst optimal utility values

V*(s) = max Q*(s,a)

QR*(s,a) =) T(s,a, s {R(S, a,s’) + ’yV*(S’)]

V*i(s) = mC?XZT(s, a,s’) [R(s, a,s’) + ny*(s’)}

S

= These are the Bellman equations, and they characterize optimal
values in a way we’ll use over and over

Time-Limited Values

= Key idea: time-limited values

« Define V,(s) to be the optimal value of s if the game ends in

k more time steps
= Equivalently, it’s what a depth-k expectimax would give from s

Computing Time-Limited Values

= “3 ;" = ‘2; e & o
4y
Iul A 'A B A s

RN LV b e b

VT T T | O O O VT O O O O o VOO Y |

llIIIIll I "I |‘||l||xll| - Illlllll . lIIlIIJI IIII]' - llllllxl I lxIl'

VT CRERREERI TR TR TR TR

—
—
=
—
—

Value lteration

Value lteration

Start with V(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V, (s) values, do one step of expectimax from each state:
Vi1 (9) © max 705 00) [RGs.0) 49|
S/

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Value lteration

= Bellman equations characterize the optimal values:

V*i(s) = mC?XZT(S,a,, s") {R(s,a, s") + ny*(s/)}

S

= Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + nyk(s/)}

S

= Value iteration is just a fixed point solution method

= ...though the V, vectors are also interpretable as time-limited values

VALUES AFTER O ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7t says to do

= Expectimax trees max over all actions to compute the optimal values

= If we fixed some policy 1t(s), then the tree would be simpler — only one action per state

= ...though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

= Another basic operation: compute the utility of a state s under a
fixed (generally non-optimal) policy

= Define the utility of a state s, under a fixed policy m:

V7(s) = expected total discounted rewards starting in s and following &

= Recursive relation (one-step look-ahead / Bellman equation):

VT(s) = > T(s,m(s),s)[R(s,m(s),s) + V7 (s)]

Utilities for a Fixed Policy

= Another basic operation: compute the utility of a state s under a
fixed (generally non-optimal) policy

= Define the utility of a state s, under a fixed policy m:

V7(s) = expected total discounted rewards starting in s and following &

= Recursive relation (one-step look-ahead / Bellman equation):

VT(s) = > T(s,m(s),s)[R(s,m(s),s) + V7 (s)]

Compare: 1/*(g) = mC?XZT(S, a,s’) {R(S,a, s") + vv*(s’)}

S

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy m? S

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vkﬁ—l—l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + ’YV]Z(S,)]

S

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Computing Actions from Values

» Let’s imagine we have the optimal values V*(s) n
e e]
= It’s not obvious!
n
= We need to do a mini-expectimax (one step) .

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

» This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let’s imagine we have the optimal g-values: WW
NN VN

How should we act? v
= Completely trivial to decide! }4-4

Important lesson: actions are easier to select from g-values than values!

In fact, you don’t even need a model!

Policy Iteration

Problems with Value Iteration

= Value iteration repeats the Bellman updates: S
A
Vig1(s) < max>_T(s,a,s) |R(s,a,s) + 7 Vi(s))] :

S

= Problem 1: It’s slow — O(S2A) per iteration

= Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy m, find values with policy evaluation:

= |terate until values converge:

Vi1 (s) ZT<s mi(s),8") |R(s,mi(s),s") + vV (s))]

= Improvement: For fixed values, get a better policy using policy extraction

= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + nyWi(S/)}

8,

Comparison

» Both value iteration and policy iteration compute the same thing (all optimal values)

= |nvalue iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

= |n policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

= The new policy will be better (or we’re done)

= Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= SO0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

= These all look the same!
= They basically are — they are all variations of Bellman updates
= They all use one-step lookahead expectimax fragments
= They differ only in whether we plug in a fixed policy or max over actions

Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward

Slow

Overheated

1.0

Next Time: Reinforcement Learning!

