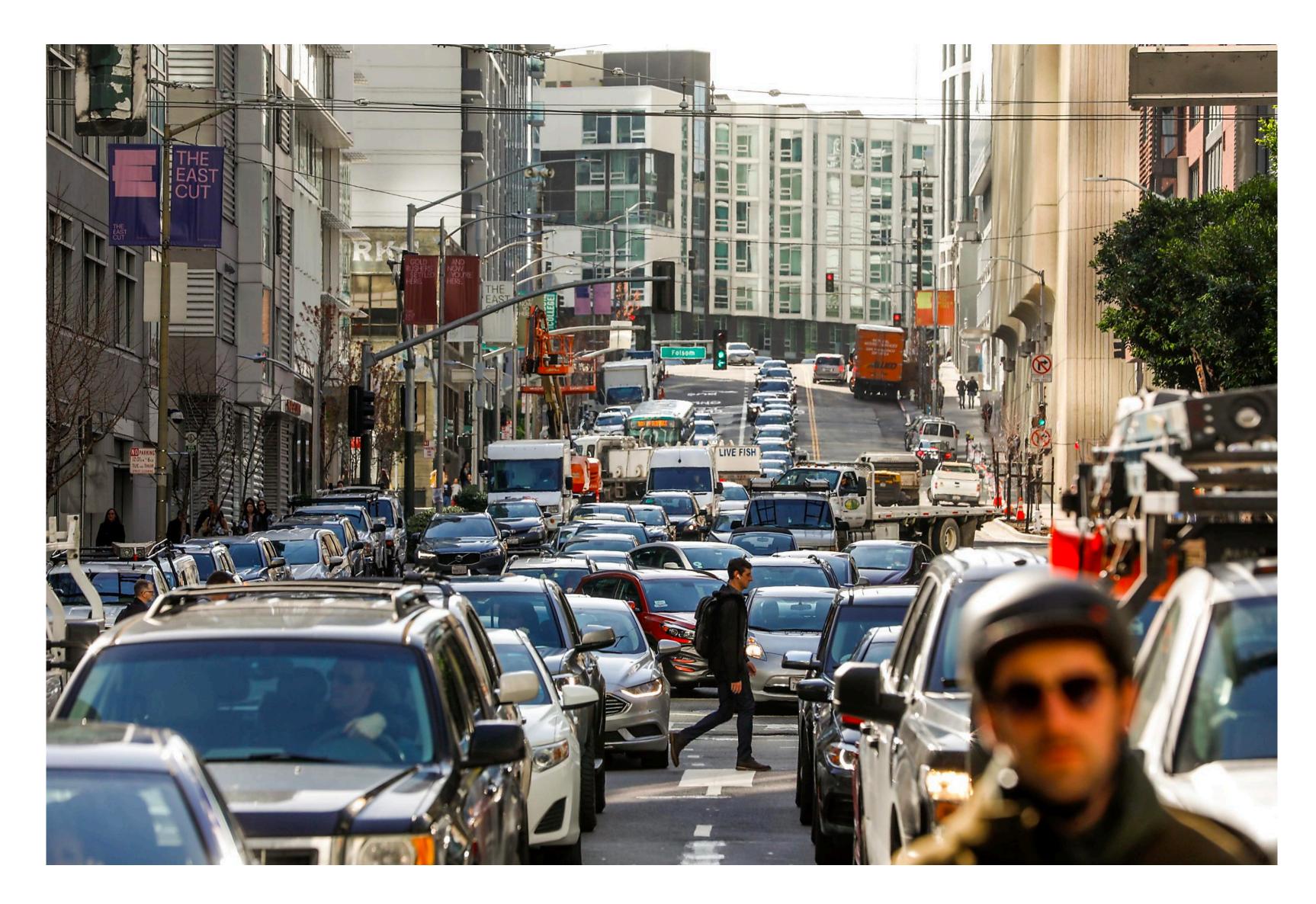
Autonomous Driving

Jerry Lin

Why do we want autonomous driving?



Humans are not always good drivers

- ~3700 people lose their lives everyday on roads
- We want much better drivers than humans

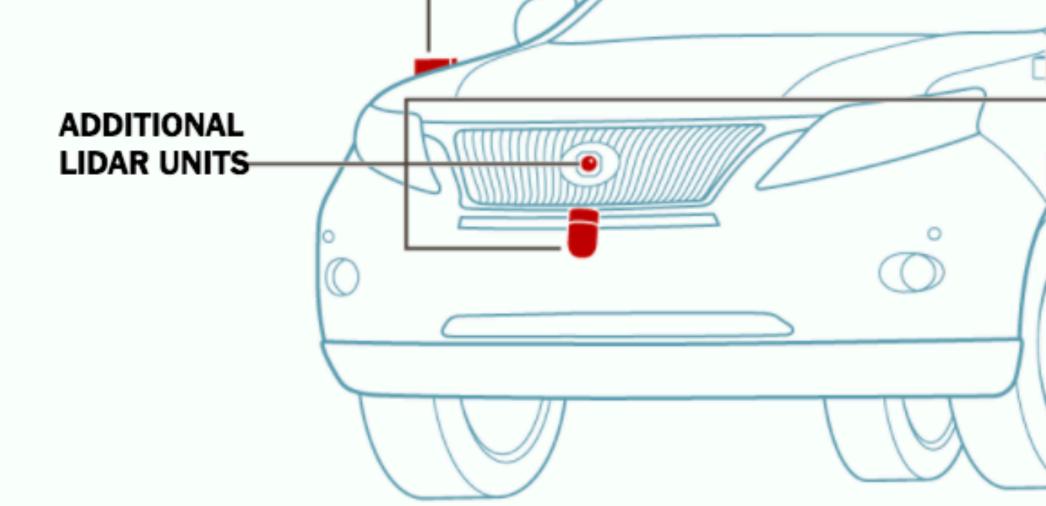
SDVs have better perception

LIDAR UNIT

Constantly spinning, it uses laser beams to generate a 360-degree image of the car's surroundings.

RADAR SENSORS

Measure the distance from the car to obstacles.



CAMERAS

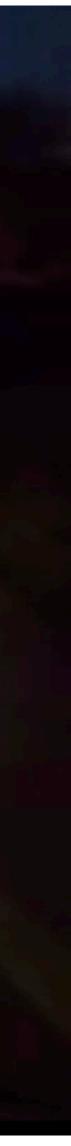
. . .

Uses parallax from multiple images to find the distance to various objects. Cameras also detect traffic lights and signs, and help recognize moving objects like pedestrians and bicyclists.

MAIN COMPUTER (LOCATED IN TRUNK)

Analyzes data from the sensors, and compares its stored maps to assess current conditions.

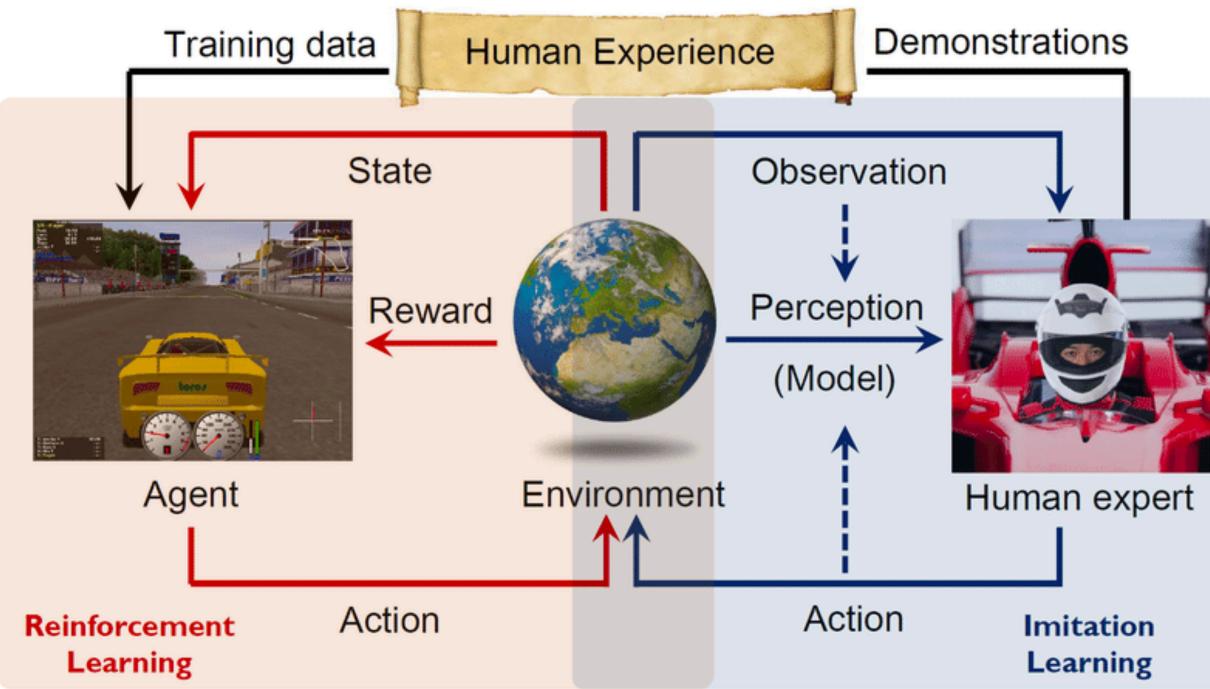
What does SDV 'see'?

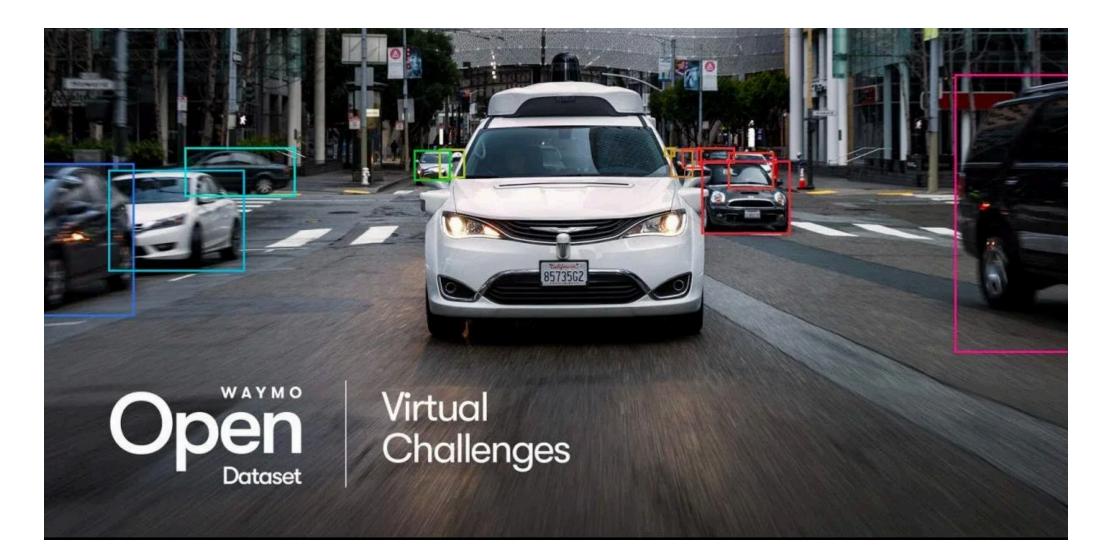


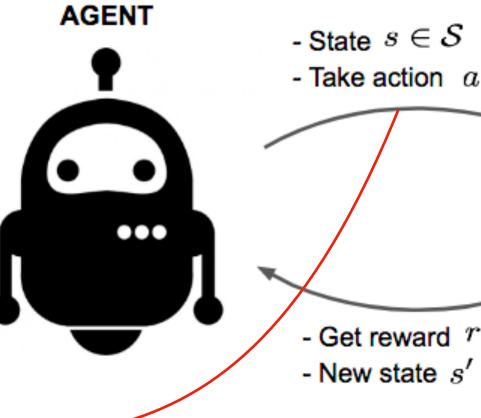
SDVs have better control

What do we have so far?

- Huge real-world dataset
- Algorithms







Learn a policy from data

- Imitation Learning (IL)
 - A detour into sensor fusion
- Reinforcement Learning (RL)
 - Model-free
 - Model-based

Learn to simulate from data

 Trajectory Forecasting • From LiDAR points • From cameras

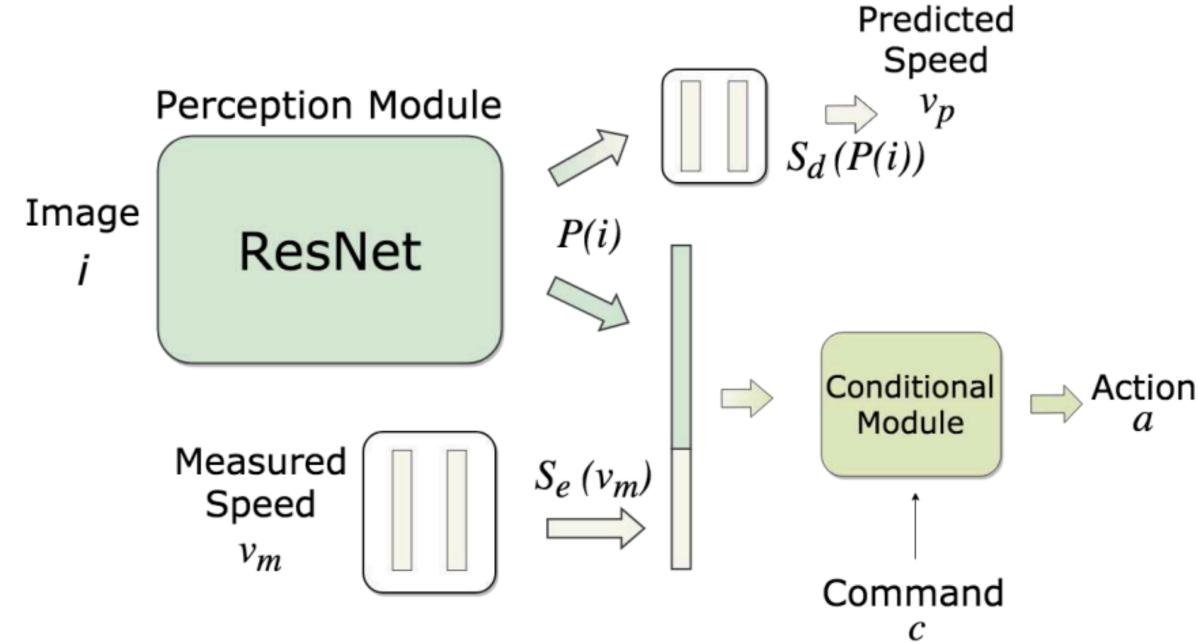
ENVIRONMENT - Take action $a \in \mathcal{A}$ - New state $\,s' \in \mathcal{S}\,$

State representation

- Rasterized map
- Occupancy field
- Vectorized map

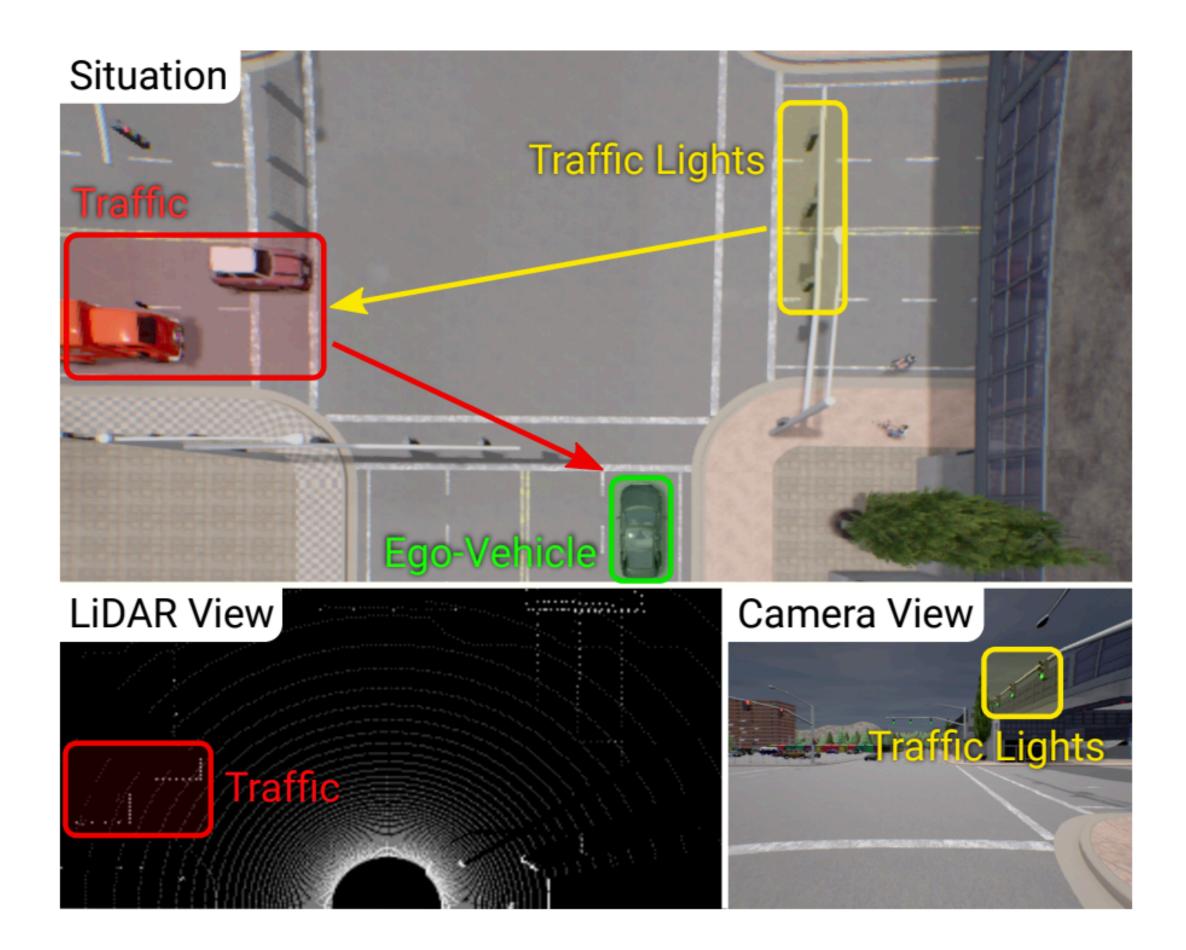
Imitate expert behavior

- CIRLS improves Conditional Imitation Learning (CIL)
 - Speed prediction
 - Prevent action predictor to overly rely on current speed
 - L1 loss (instead of MSE)
 - Better backbone lacksquare
- Common tricks
 - Noise injection (DART)
 - 3-camera trick

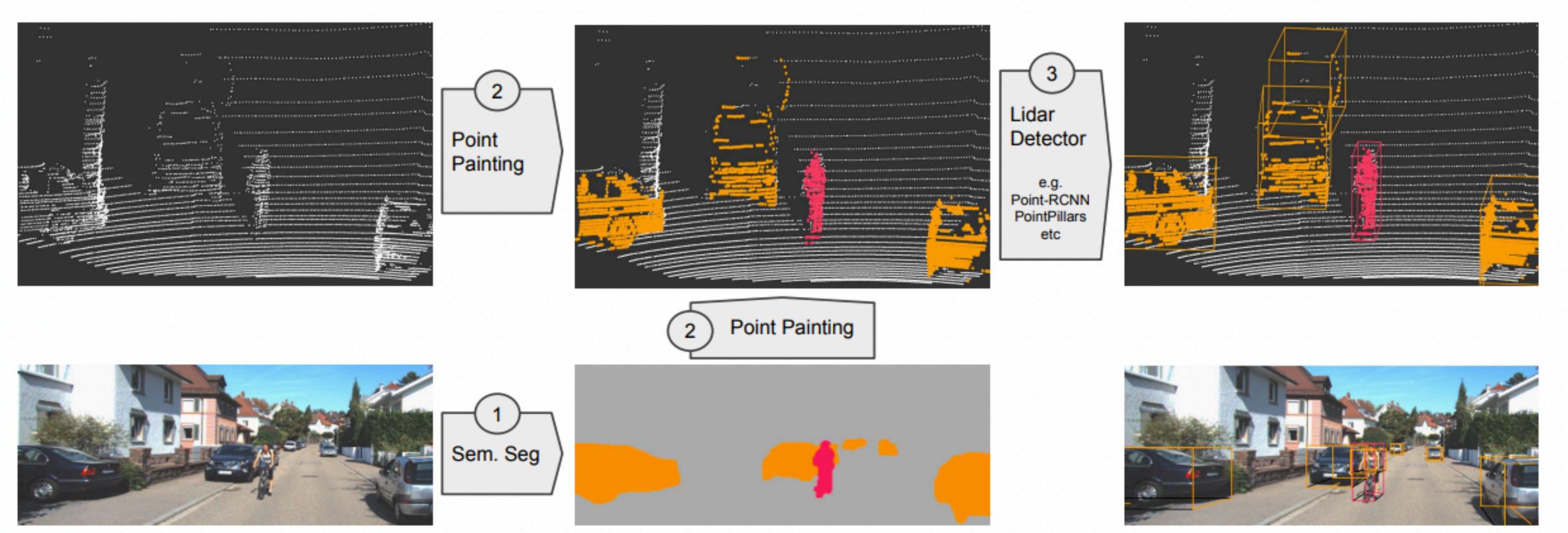


Go beyond cameras

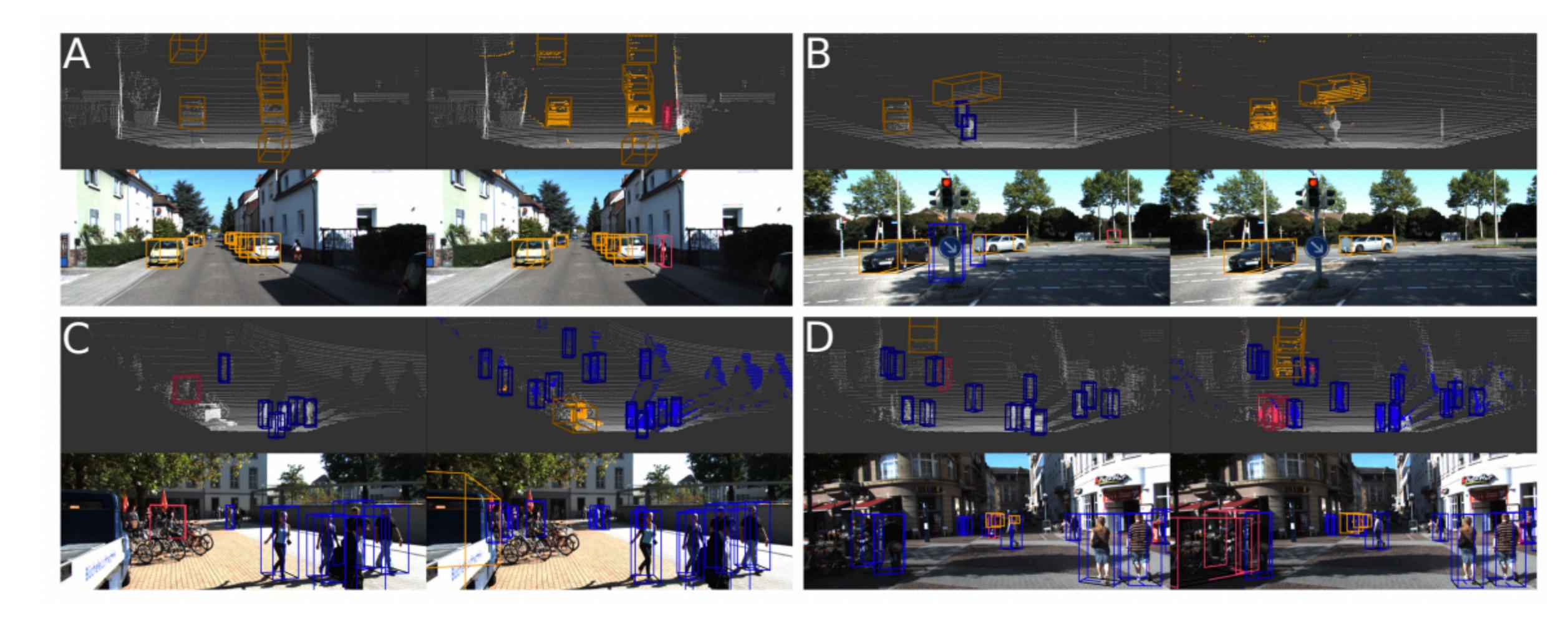
- Get traffic lights from camera
- Get vehicle detections from LiDAR



Sensor fusion: PointPainting

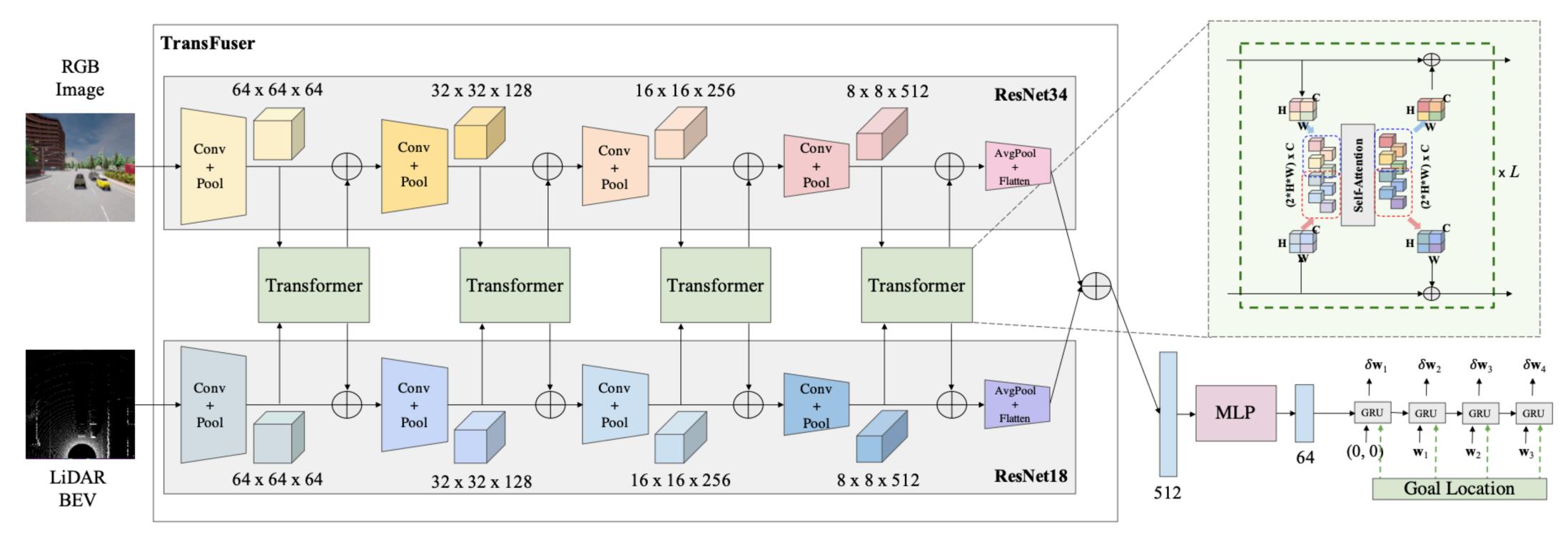


Results



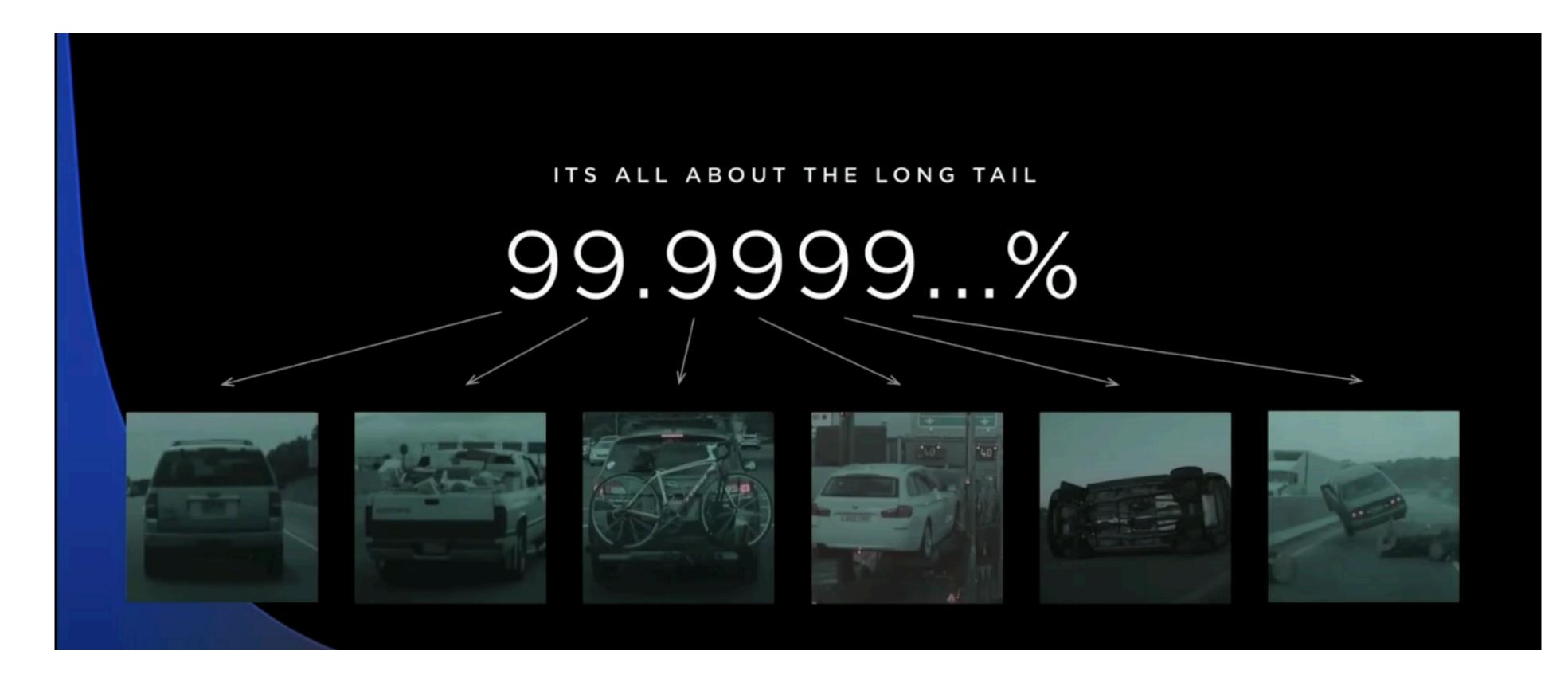
Sensor fusion: feature-level

- Use image and LiDAR data
- Use Transformer (self-attention) to fuse at multiple resolutions (S*H*W, C)
- Learnable positional embedding to infer spatial dependencies

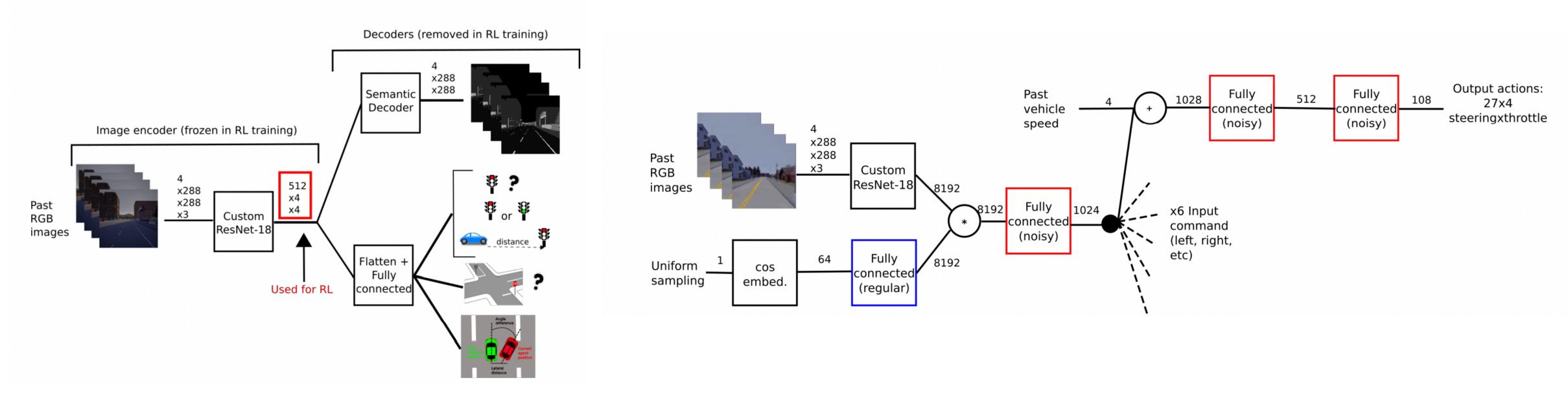


Limitations of imitation learning

- Human drivers seldom encounter long-tail cases
- Doesn't learn from mistakes



Model-free RL

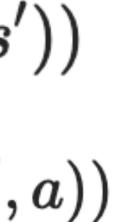


- Use affordances to pre-train the enc
- Use hidden states (512*4*4) in Rainb (distributed deep Q-learning)
- Best model-free RL results so far

coder
$$Q^{\pi}(s,a) = r + \gamma Q^{\pi}(s',\pi(s'))$$

bow-IQN $\delta = Q(s,a) - (r + \gamma \max_a Q(s'))$

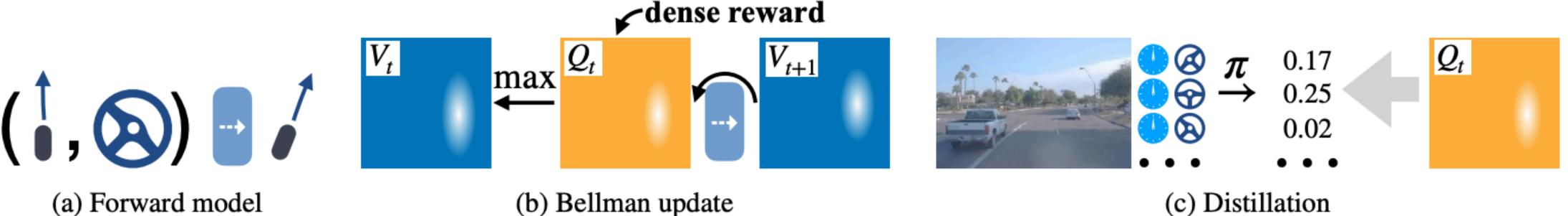
Toromanoff et.al. End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances.

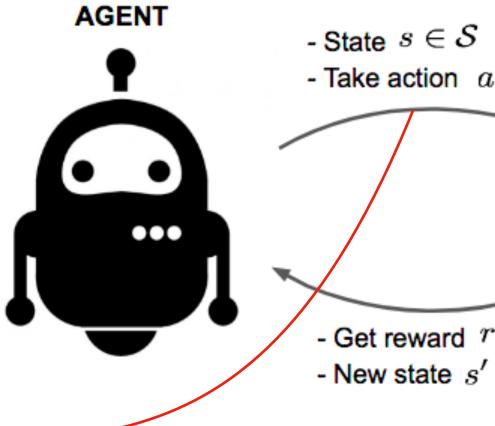


Model-based RL

- Assume the world is independent of ego vehicle's behaviors
- Bellman update is simplified to ego model + log replay

$$\begin{split} V(L_t^{ego}, \hat{L}_t^{world}) = &\max_a Q(L_t^{ego}, \hat{L}_t^{world}, a) \\ Q(L_t^{ego}, \hat{L}_t^{world}, a_t) = &r(L_t^{ego}, \hat{L}_t^{world}, a_t) + \\ &\gamma V(\mathcal{T}^{ego}(L_t^{ego}, \hat{L}_t^{world}, a), \hat{L}_{t+1}^{world}). \end{split}$$





Learn a policy from data

Learn to simulate from data

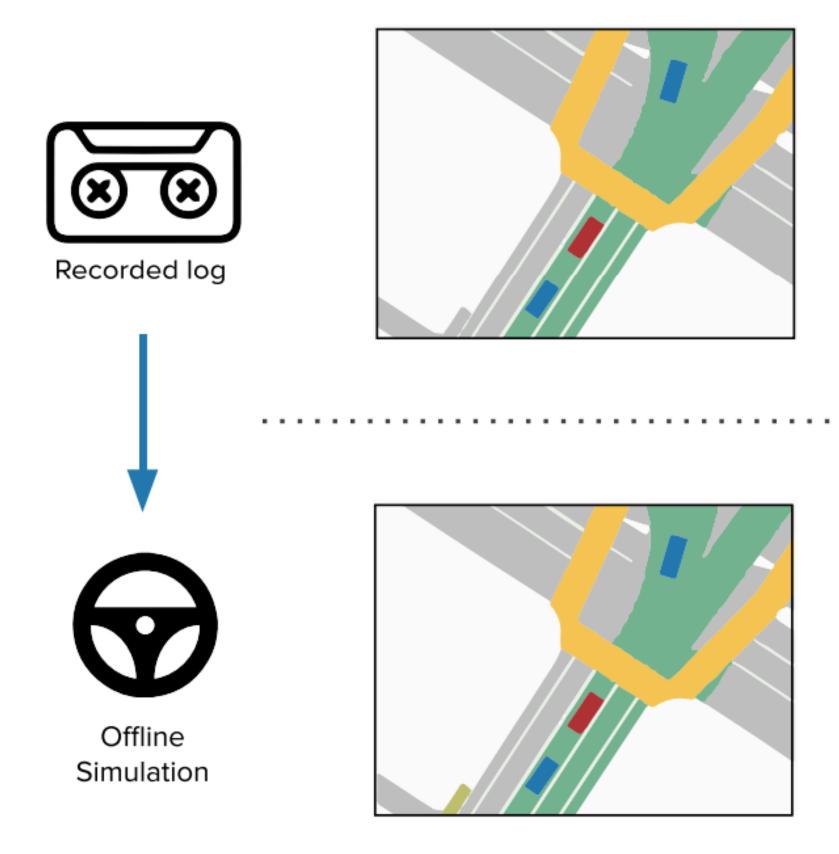
ENVIRONMENT - Take action $a \in \mathcal{A}$ - New state $\,s' \in \mathcal{S}\,$

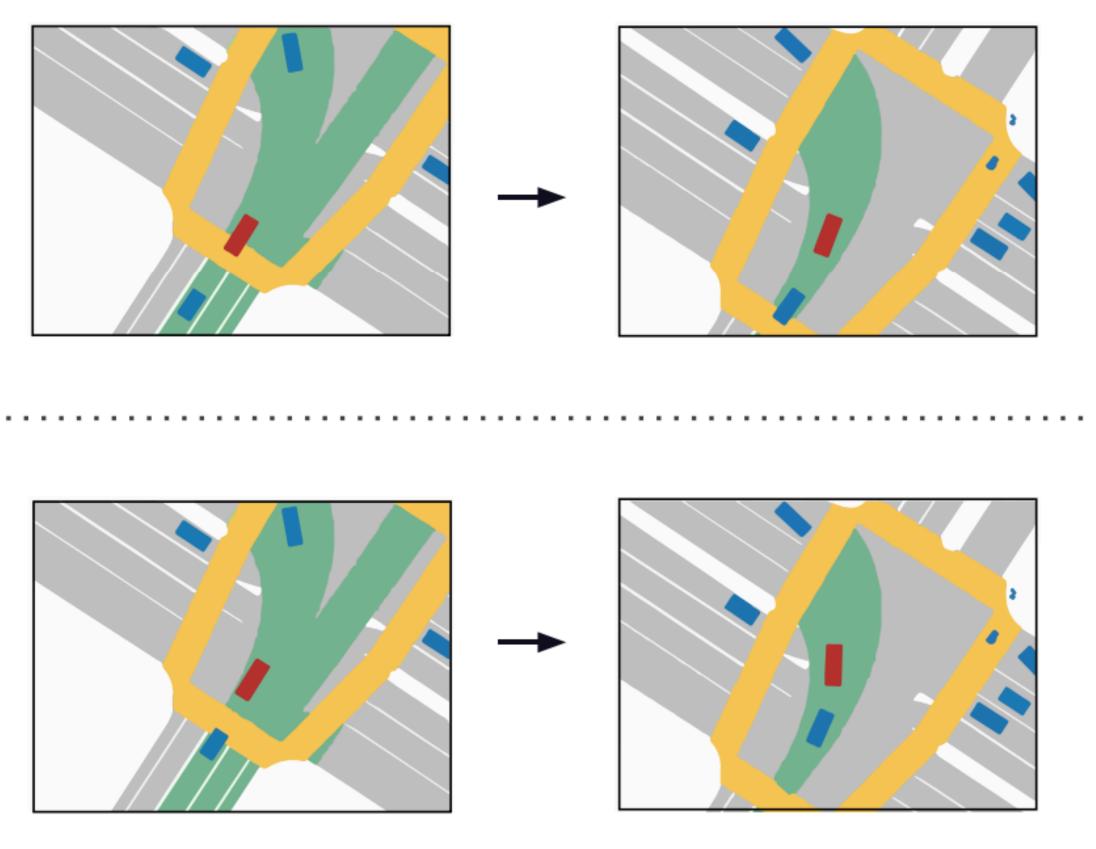
 Trajectory Forecasting • From LiDAR points • From cameras

State representation

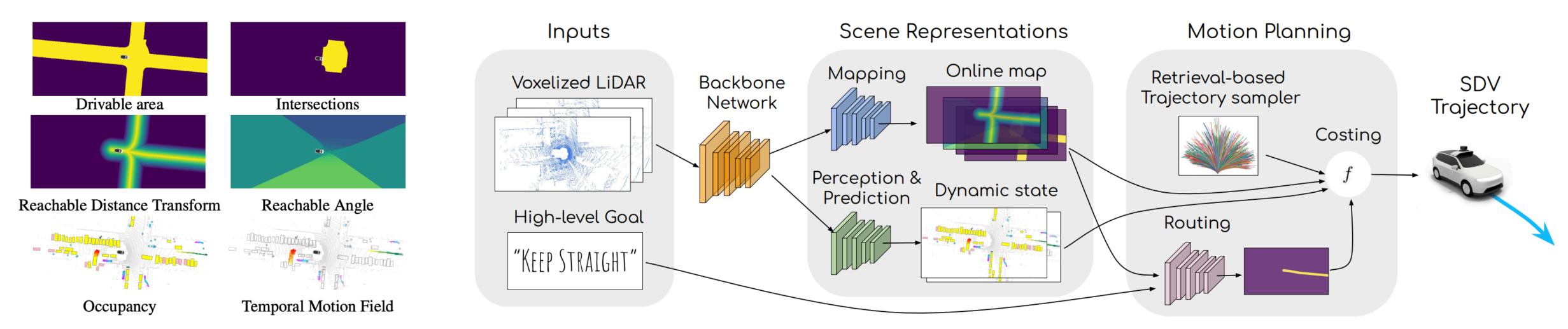
Data-driven closed-loop simulation

 synthesize diverse and realistic driving scenarios with high fidelity and reactivity





Simulation: Trajectory Forecasting from LiDAR



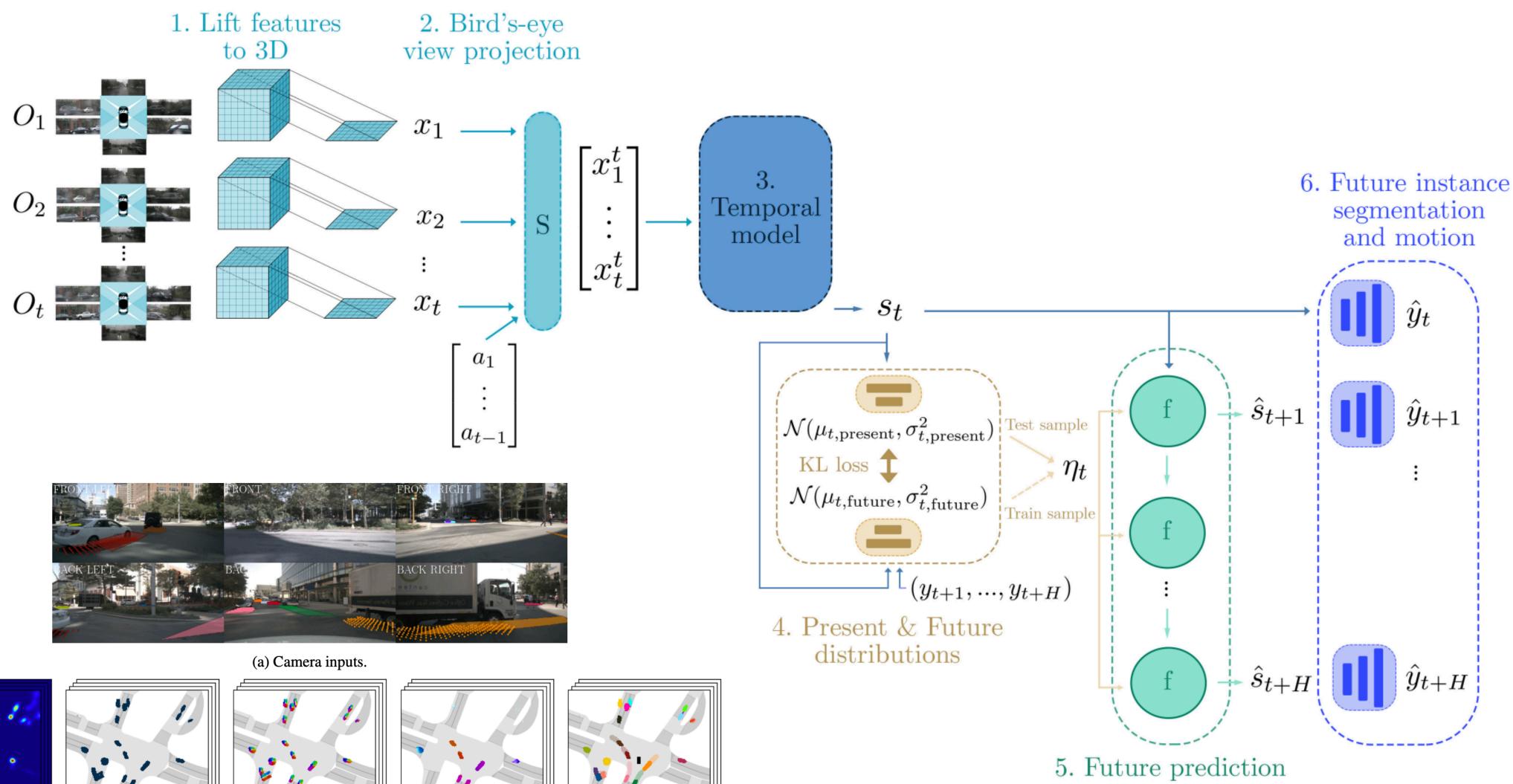
- Probabilistic model for state represent
- Motion representation
 - K motion vectors for each class and spatial temporal loc $\{\mathcal{V}_{t,i,k}^c : k \in 1.$

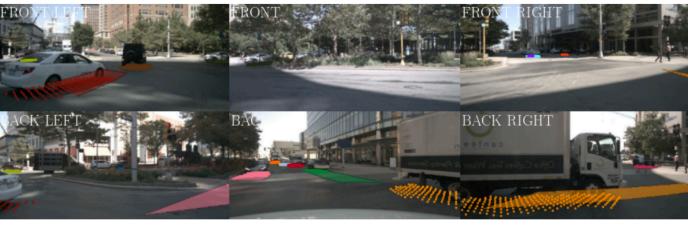
tation

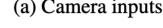
$$p(\mathcal{F}_{(t,i_1)\to(t+1,i_2)}^c) = \sum_k p(\mathcal{O}_{t,i_1}^c) p(\mathcal{K}_{t,i_1}^c = k) p(\mathcal{V}_{t,i_1,k}^c = k)$$
 $p(\mathcal{O}_{t+1,i}^c) = 1 - \prod_j (1 - p(\mathcal{F}_{(t,j)\to(t+1,i)}^c))$
 $\dots K$

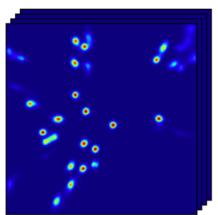
$= i_2)$

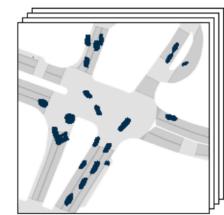
Simulation: Trajectory Forecasting from Images

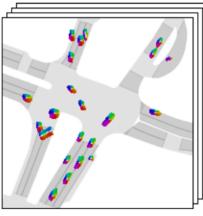


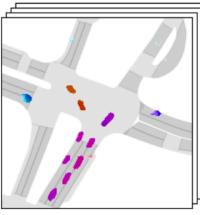


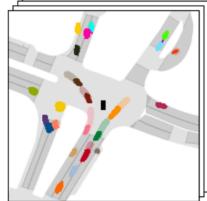












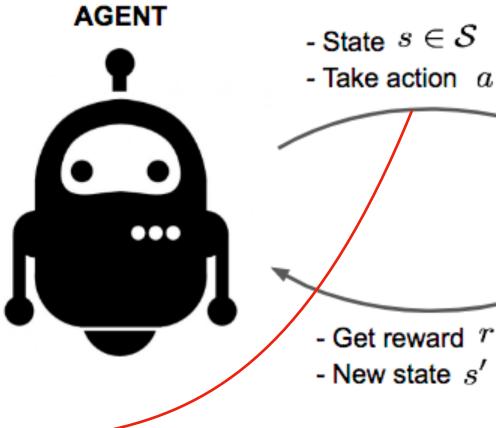
(b) Centerness.

(c) Segmentation.

(d) Offset.

(e) Future flow.

(f) Instance segmentation.



Learn a policy from data

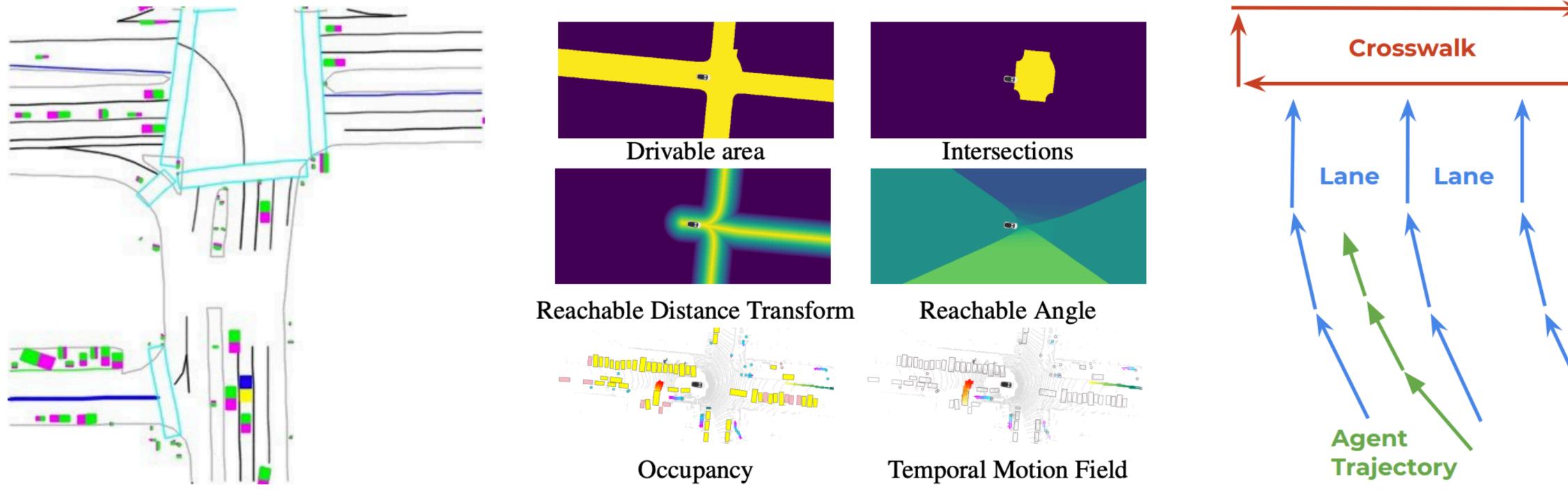
ENVIRONMENT - Take action $a \in \mathcal{A}$ - New state $\,s' \in \mathcal{S}\,$

Learn to simulate from data

State representation

- Rasterized map
- Occupancy field
- Vectorized map

State representation



Rasterized Map

Vectors

Limitations of rasterized representation

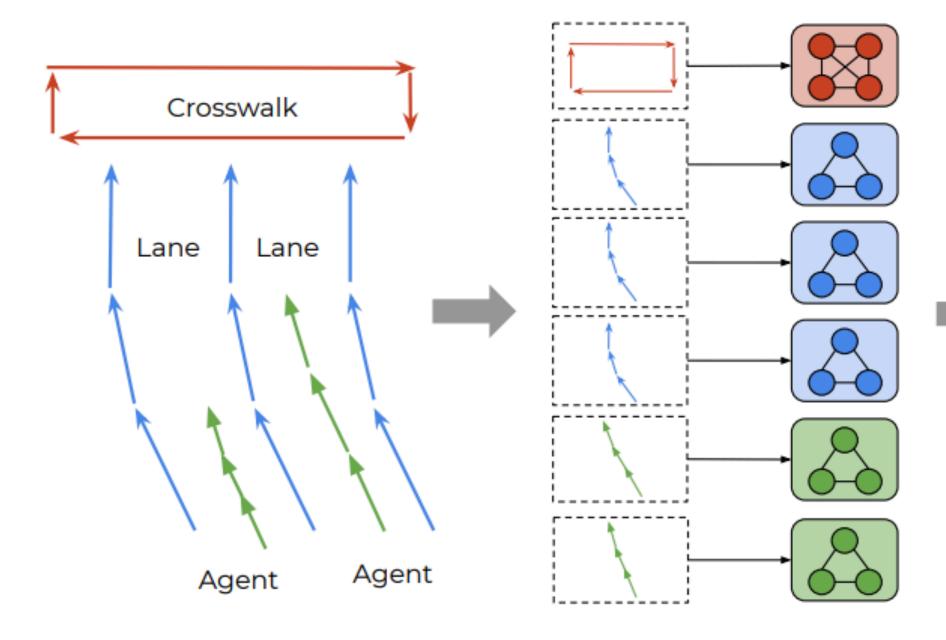
- Need larger receptive field (larger resolution/kernel size/crop size)
- Need more computationally efficient representations

Resolution	Kernel	Crop	In-house dataset				Argoverse dataset			
			DE@1s	DE@2s	DE@3s	ADE	DE@1s	DE@2s	DE@3s	ADE
100×100	3×3	1×1	0.63	0.94	1.32	0.82	1.14	2.80	5.19	2.21
200×200	3×3	1×1	0.57	0.86	1.21	0.75	1.11	2.72	4.96	2.15
400×400	3×3	1×1	0.55	0.82	1.16	0.72	1.12	2.72	4.94	2.16
400×400	3×3	3×3	0.50	0.77	1.09	0.68	1.09	2.62	4.81	2.08
400×400	3×3	5×5	0.50	0.76	1.08	0.67	1.09	2.60	4.70	2.08
400×400	3×3	traj	0.47	0.71	1.00	0.63	1.05	2.48	4.49	1.96
400×400	5×5	1×1	0.54	0.81	1.16	0.72	1.10	2.63	4.75	2.13
400×400	7×7	1×1	0.53	0.81	1.16	0.72	1.10	2.63	4.74	2.13

Simulation w/ HD map: Vector representation

Input vectors

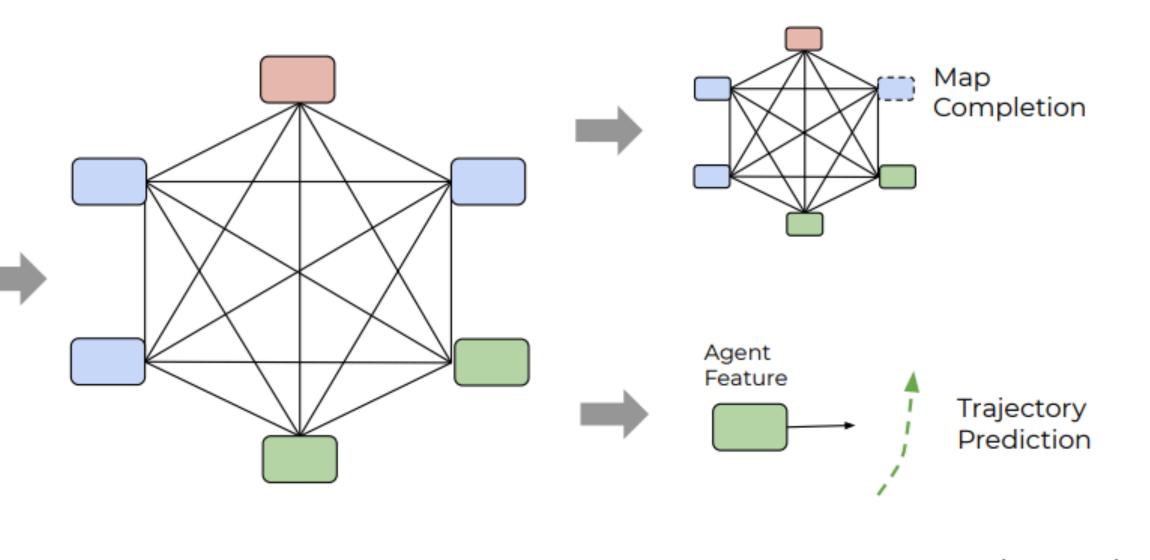
Polyline subgraphs



$$\mathbf{v}_{i}^{(l+1)} = \varphi_{\text{rel}}\left(g_{\text{enc}}(\mathbf{v}_{i}^{(l)}), \varphi_{\text{agg}}\left(\left\{g_{\text{enc}}(\mathbf{v}_{j}^{(l)})\right\}\right)\right)$$

Global interaction graph

Supervision & Prediction

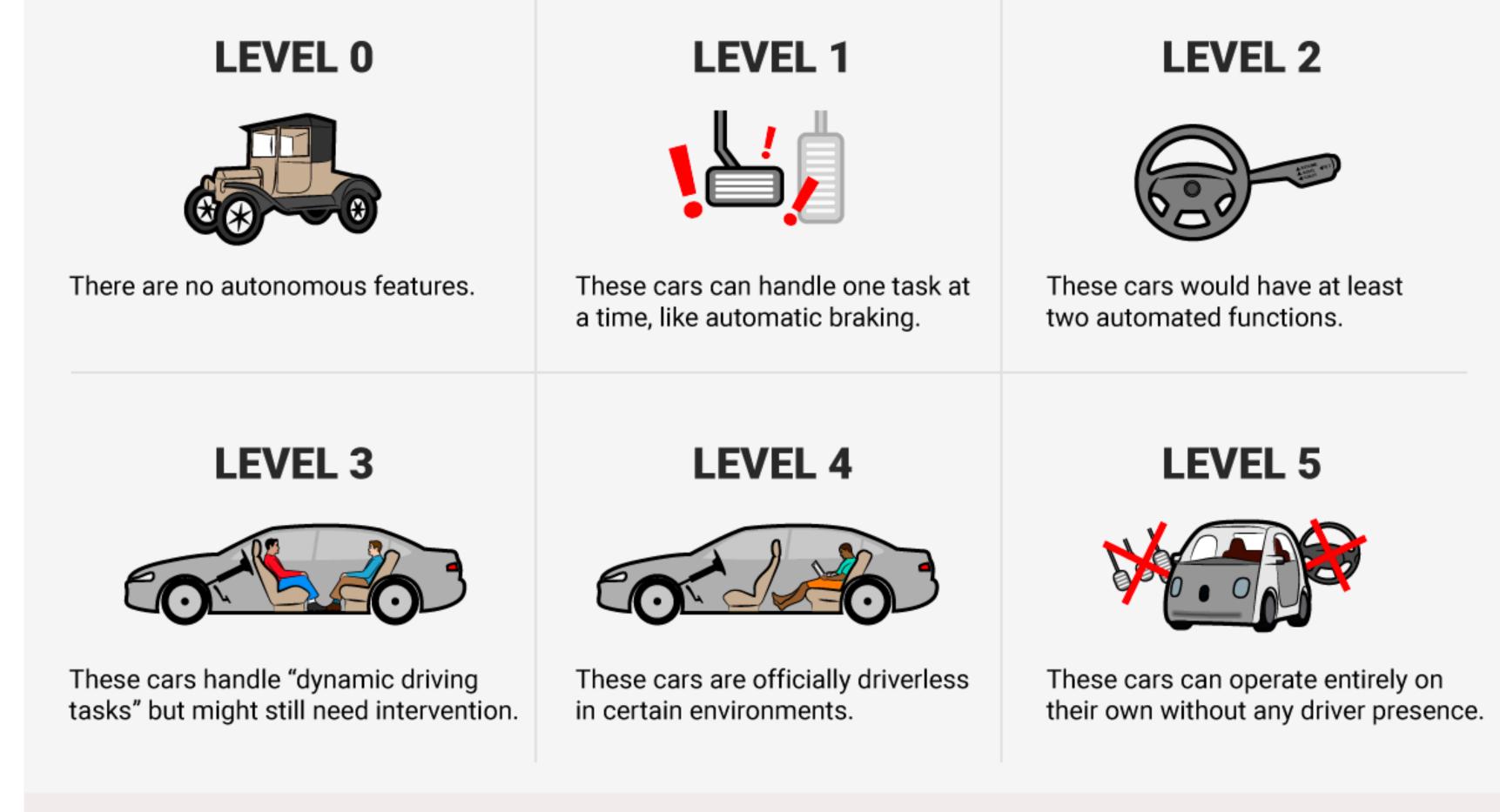


$$\mathbf{\hat{p}}_{i} = \varphi_{\text{node}} \left(\mathbf{p}_{i}^{(L_{t})} \right)$$

$$\mathbf{p}_{i}^{(l+1)} = \operatorname{GNN}\left(\left\{\mathbf{p}_{i}^{(l)}\right\}, \mathcal{A}\right)$$
$$\mathbf{v}_{i}^{\text{future}} = \varphi_{\text{traj}}\left(\mathbf{p}_{i}^{(L_{t})}\right)$$

Why don't we see many SDVs on the road?

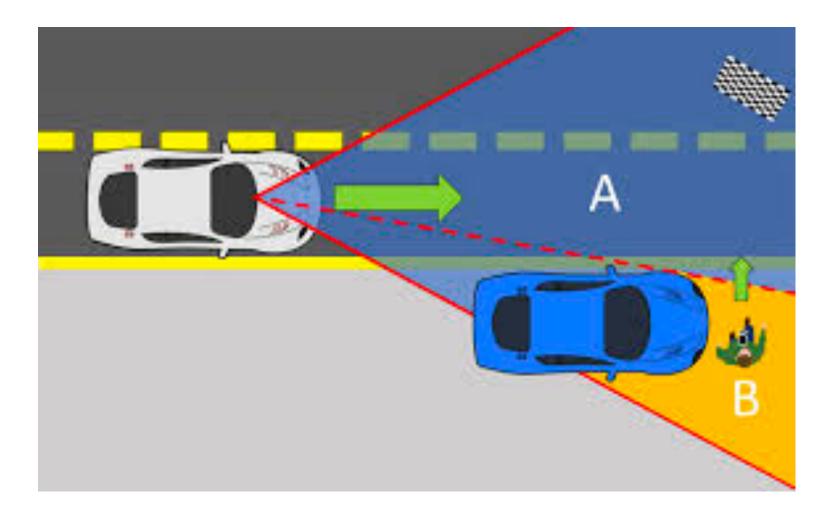
AUTOMATION LEVELS OF AUTONOMOUS CARS



SOURCE: SAE International

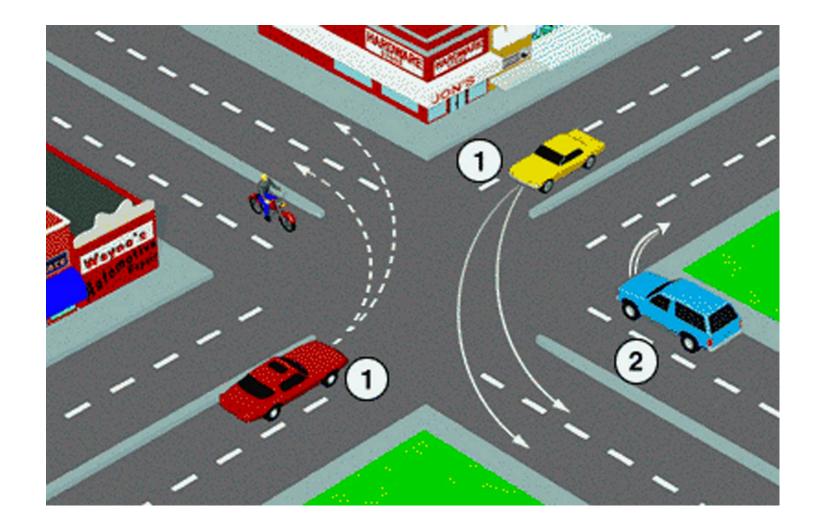
BUSINESS INSIDER

Challenges

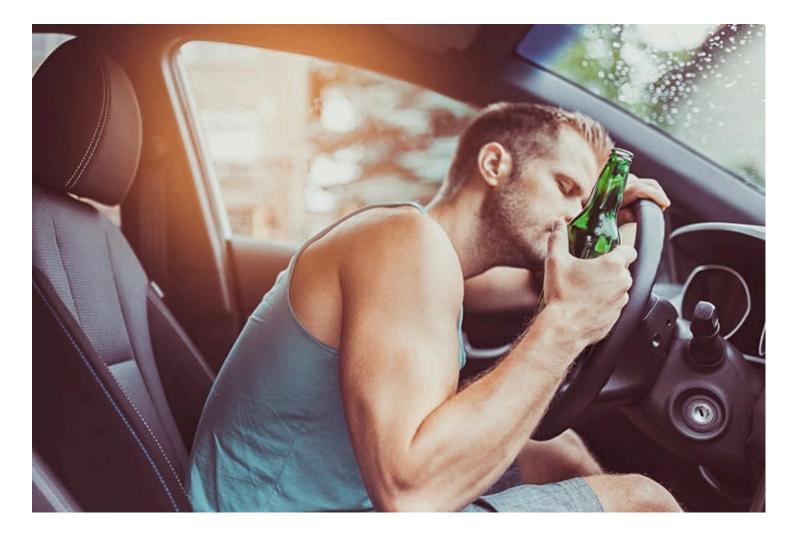


Occlusion

Long-tail distribution



Theory of minds (Interactions)



Multi-modal behaviors

Open problems

- What is the appropriate state representation for simulation and planning? How much should it be learned vs interpretable?
- How should we measure the probability of scenarios? How should we detect outlier, neverbefore-seen cases?
- What are the limits of what can be trained offline from human demonstrations vs need real-time reasoning using search?
- How much do we need to simulate? How should we measure the performance of the offline simulation itself?
- How much data do we need to train high-performing planning and simulation components? What sensors should we use for large-scale data collection?