Autonomous Driving

Jerry Lin



Why do we want autonomous driving?
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SDVs have better perception

LIDAR UNIT
Constantly spinning, it uses laser beams to

generate a 360-degree image of the car’s
surroundings.

RADAR SENSORS

Measure the distance from
the car to obstacles.
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CAMERAS

Uses parallax from multiple images to find the
distance to various objects. Cameras also detect
traffic lights and signs, and help recognize
moving objects like pedestrians and bicyclists.

ADDITIONAL
LIDAR UNITS

MAIN COMPUTER
(LOCATED IN TRUNK)

Analyzes data from the
sensors, and compares
Its stored maps to assess

current conditions.




What does SDV ‘see’?




SDVs have better control



https://www.youtube.com/watch?v=MfU5_gzqPaM

What do we have so far?

 Huge real-world dataset
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AGENT ENVIRONMENT
-State s € S

- Take action a € A

- Getreward 7
-New state s' € S

Learn a policy \

from data

~earn to simuiate State representation

e |mitation Learning (IL) from data
® A detour into sensor e Rasterized map
fusion ® Trajectory Forecasting e Occupancy field
® Reinforcement Learning ® From LIDAR points e Vectorized map
(RL) ¢ From cameras

® Model-free
® Model-based



Imitate expert behavior

* CIRLS improves Conditional Imitation Learning (CIL)

* Speed prediction

* Prevent action predictor to overly rely on current speed

|1 loss (instead of MSE)

e Better backbone
e Common tricks
* Noise injection (DART)

e 3-camera trick
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Codevilla et.al. Exploring the Limitations of Behavior Cloning for Autonomous Driving.



Go beyond cameras

o Get traffic lights from camera Situation

e (Get vehicle detections from LIDAR
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Sensor fusion: PointPainting

Lidar
Detector

Point
Painting

ettt T Point-RCNN
e PointPillars
' : etc

Point Painting

Sem. Seg ) |

Vora et.al. PointPainting: Sequential Fusion for 3D Object Detection



Results




Sensor fusion: feature-level
 Use image and LIDAR data

 Use Transformer (self-attention) to fuse at multiple resolutions (S*H*W, C)

* | earnable positional embedding to infer spatial dependencies
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Prakash and Chitta et.al. Multi-Modal Fusion Transformer for End-to-End Autonomous Driving.



Limitations of imitation learning

 Human drivers seldom encounter long-tail cases

e Doesn’t learn from mistakes

ITS ALL ABOUT THE LONG TAIL

PRSI W




Model-free RL

Decoders (removed in RL training)

Image encoder (frozen in RL training)
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* Use affordances to pre-train the encoder
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e Use hidden states (512*4*4) in Rainbow-1QN

(distributed deep Q-learning)

e Best model-free RL results so far
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Toromanoff et.al. End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances.



Model-based RL

 Assume the world is independent of ego vehicle’s behaviors

* Bellman update is simplified to ego model + log replay

V(L L) = max Q(L{, Ly a)

Q(LEQO, i;uorld’ at) :T(L:QO, i;uorld, at)+
YV (Te9°(L59°, f/:vorld, a), z;uf{ld).

(dense reward

O, | .
(v, @) 8+ jes oo

(a) Forward model (b) Bellman update (c) Daistillation

Chen et.al. L

earning to drive from a world on rails.



AGENT ENVIRONMENT
-State s € S

- Take action a € A

-Getreward T
-New state s’ € S

\

Learn to simulate
Learn a policy from from data

data

State representation

® [rajectory Forecasting
® From LIDAR points
® From cameras



Data-driven closed-loop simulation

* synthesize diverse and realistic driving scenarios with high fidelity and
reactivity

Offline ' , -

Simulation '




Simulation: Trajectory Forecasting from LIiDAR

- - . Inputs Scene Representations Motion Planning
- Voxelized LIDAR Backbone pp'”g online mop Retrieval-based SDV
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* Probabilistic model for state representation
P(}—(ct,z'l)a(tﬂ,iz)) = ZP(OEQ)P(’C?M — k)p(vtc,il,k = 12)
k

 Motion representation

_ P(O§+1,z’) =1- (1 — p('F(ct,j)—>(t—|-1,i)))
K motion vectors for each class and 1;[

spatial temporal loc {v¢,, : k € 1...K}



Simulation: Trajectory Forecasting from Images

1. Lift features 2. Bird’s-eye
to 3D view projection

6. Future instance
segmentation
and motion
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AGENT ENVIRONMENT
-State s € S

- Take action a € A

-Getreward T
-New state s’ € S

\

Learn to simulate

from data ¢ Rasterized map

® Occupancy field
® \ectorized map

Learn a policy from State representation

data



State representation
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Limitations of rasterized representation

* Need larger receptive field (larger resolution/kernel size/crop size)

 Need more computationally efficient representations

Resolution | Kernel | Crop In-house dataset Argoverse dataset

DE@1s | DE@2s | DE@3s | ADE | DE@1ls | DE@2s | DE@3s | ADE
100x 100 3x3 1x1 0.63 0.94 1.32 0.82 1.14 2.80 5.19 2.21
200x200 3x3 1x1 0.57 0.86 1.21 0.75 1.11 2.72 4.96 2.15
400x400 3x3 1x1 0.55 0.82 1.16 0.72 1.12 2.72 4.94 2.16
400x400 3x3 | 3%3 0.50 0.77 1.09 0.68 1.09 2.62 4.81 2.08
400x400 3xX3 | 5X5 0.50 0.76 1.08 0.67 1.09 2.60 4.70 2.08
400x400 3x3 traj 0.47 0.71 1.00 0.63 1.05 2.48 4.49 1.96
400x400 3X35 1x1 0.54 0.81 1.16 0.72 1.10 2.63 4.75 2.13
400x400 TXT 1x1 0.53 0.81 1.16 0.72 1.10 2.63 4.74 2.13




Simulation w/ HD map: Vector representation

Input vectors Polyline subgraphs Global interaction graph Supervision & Prediction
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Why don’t we see many SDVs on the road?

AUTOMATION LEVELS OF AUTONOMOUS CARS

LEVEL O LEVEL 1 LEVEL 2

\,é/

There are no autonomous features. These cars can handle one task at These cars would have at least
a time, like automatic braking. two automated functions.

LEVEL 3 LEVEL 4 LEVEL 5

These cars handle “dynamic driving These cars are officially driverless These cars can operate entirely on
tasks” but might still need intervention. in certain environments. their own without any driver presence.

SOURCE: SAE International BUSINESS INSIDER



Challenges

Occlusion

Long-tail distribution Multi-modal behaviors



Open problems

* What is the appropriate state representation for simulation and planning? How much should
it be learned vs interpretable?

 How should we measure the probability of scenarios? How should we detect outlier, never-
before-seen cases?

e What are the limits of what can be trained offline from human demonstrations vs need
real-time reasoning using search?

 How much do we need to simulate? How should we measure the performance of the offline
simulation 1itself?

 How much data do we need to train high-performing planning and simulation components?
What sensors should we use for large-scale data collection?

Jain et.al. Autonomy 2.0: Why is self-driving always 5 years away?



