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Recap: Reasoning Over Time

= Markov models
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= Hidden Markov models
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rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8




Recap: Forward Algo - Passage of Time

= Assume we have current belief P(X | evidence to date) @_,@
B(Xt) = P(Xtle1:)

= Then, after one time step passes:

P(Xt+1’€1:t) — ZP(Xt+1>$t|€1:t)
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= Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it
includes
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Recap: Forward Algo - Passage of Time

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)
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Recap: Forward Algo - Observation

| s— —

= Assume we have current belief P(X | previous evidence): @ i/
B'(Xi41) = P(Xeqaler) i
)

= Then, after evidence comes in:

P(Xt+1\€1:t+1) = P(Xt—|—1>6t—|—1|61:t)/P(6t—|—1|61:t
XX P(Xt+1,€t+1\€1:t)

— P(€t+1 61:t,Xt+1)P(Xt+1|€1:t)
= P(et41]Xi11) P(Xiq1ler)

= Basic idea: beliefs “reweighted”

by likelihood of evidence
B(Xi41) XXi41 P(esy1|Xir1) B (Xey1) = Unlike passage of time, we have
to renormalize

= Or, compactly:



Recap: Forward Algo - Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”
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Recap: The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(X¢le1:t)

= We can derive the following updates

P(wile1:) ocx Pay, e1:) o

We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end...

= > P(z4_1,2t,€1:¢)

Li—1

= 3" P(x_1,e1:4-1)P(at|ay_1) P(et|at)
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= P(etlxt) Y, P(wtlwp—1)P(xi—1,€1:4—1)
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Recap: Online Filtering w/ Forward Algo

Elapse time: compute P( X, | e,..,)

P(xlers—1) = Z P(ri1lers—1) - P(ag|me—1) n

= TECOTT

Observe: compute P( X, | e,..) M
P(zyers) o< P(xileri—1) - Pleg|zy)

Belief: <P(rain), P(sun)>

@—V@ P(X4) <0.5, 0.5> Prior on X,

) 4 P(X1 | E{ = umbrella <0.82,0.18> Observe

@ P(Xs | By = umbrella)  <0.63,0.37>  Elapse time
) <0.88,0.12>  Observe

P(Xs5 | E1 = umb, E5 = umb



Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes |X]| is too big to use exact inference
= |X]| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles
= Time per step is linear in the number of samples
= But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample

0.0 0.1 0.0
0.0 0.0 0.2
0.0 0.2 0.5
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Representation: Particles

Our representation of P(X) is now a list of N particles (samples)
= Generally, N << |X]| (...but not in project 5)

= Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x

= S0, many x may have P(x) = 0!

= More particles, more accuracy

For now, all particles have a weight of 1

Particle filtering uses three repeated steps:

Elapse time and observe (similar to exact filtering) and resample

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Belief over possible

Example: Elapse Time

Elapse Time

?

Policy: ghosts always move up u
(or stay in place if already at top)

New belief at

ghost positions at time t time t+1



Belief over possible

Example: Elapse Time

Elapse Time

—_—

Policy: ghosts always move up
(or stay in place if already at top)

ghost positions at time t

New belief at
time t+1




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

= Sample frequencies reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

= This captures the passage of time

= If enough samples, close to exact values before and
after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)
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Belief over possible ghost
positions before observation

Example: Observe

s | 03
0.4 0.3 0.2
0.3 0.2 0.1

Observation and evidence
likelihoods p(e | X)

— 7

New belief after
observation



Belief over possible ghost
positions before observation

Example: Observe

0.4
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e

s | 03
0.4 0.3 0.2
0.3 0.2 0.1

Observation and evidence
likelihoods p(e | X)

New belief after
observation

0.1



Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)

B(X) < P(e|X)B'(X)

As before, the probabilities don’t sum to one, since
all have been downweighted

Particles:

£ sz z5¢5
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Particle Filtering: Resample

Rather than tracking weighted samples, we
resample

N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

This essentially renormalizes the distribution

Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Recap: Particle Filtering

s Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
) ... e ) ) ° )
) o0 \.\ () ) @ @ @
@ @ e @
-
@ ¢ ® % ® | ¢%
o 5 °
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)

(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)



Moderate Number of Particles

= Pydev - Eclipse
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One Particle

= Pydev - Eclipse
74 ghostbusters
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Huge Number of Particles

= Pydev - Eclipse

1(71 ghostbusters . . > > - L= |_i\-?-_r [ | Pydev | Y Team
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Exercises: Particle Filters

2 Particle Filtering

Let’s use Particle Filtering to estimate the distribution of P(W2|0O; = A, O, = B). Here’s the HMM again:

@ @ W | Wirr | P(Weg1|Ws) Wi | O; | P(O:Wy)
Wy | P(W1) 0 0 0.4 0 A 0.9
0 0.3 0 1 0.6 0 B 0.1
1 0.7 1 0 0.8 1 A 0.5
@ @ 1 1 0.2 1 B 0.5
We start with two particles representing our distribution for Wj.
P1 . W1 = 0
P2 : W1 =1
1. Observe: Compute the weight of the two particles after evidence O = A. 4. Observe: Compute the weight of the two particles after evidence O, = B.
2. Resample: Using the random numbers, resample P; and P, based on the weights. 5. Resample: Using the random numbers, resample P; and P, based on the weights.
Random numbers: [0.22, 0.05] Random numbers: [0.84, 0.54]
3. Elapse Time: Now let’s compute the elapse time particle update. Sample P; and P, from applying the 6. What is our estimated distribution for P(W,|0; = A, O, = B)?

time update.

Random numbers: [0.33, 0.20]



Robot Localization

= |n robot localization:

= We know the map, but not the robot’s position

= Observations may be vectors of range finder readings DI\RECTORY

G

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique
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Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs) i —
and particle methods
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Particle Filter SLAM — Video 1



Particle Filter SLAM — Video 2



Dynamic Bayes Nets




Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using multiple (
sources of evidence %

= |dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

= Dynamic Bayes nets are a generalization of HMMs




Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets

|I)

= Procedure: “unroll” the network for T time steps, then eliminate variables until P(X;|e, ;) is computed

t=1 t=2 t=3

= Online belief updates: Eliminate all variables from the previous time step; store factors for current
time only



DBN Particle Filters

= A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
« Example particle: G,2=(3,3) G,b=(5,3)

Elapse time: Sample a successor for each particle

« Example successor: G,2=(2,3) G,b=(6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
= Likelihood: P(E;2 |G,2) * P(E,P |G,b)

Resample: Select samples (tuples of values) in proportion to their likelihood (weight)



Next Time: Value of Information



