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Recap:	Reasoning	Over	Time

▪ Markov	models


▪ Hidden	Markov	models
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Recap:	Forward	Algo	-	Passage	of	Time

▪ Assume	we	have	current	belief	P(X	|	evidence	to	date)


▪ Then,	after	one	time	step	passes:


▪ Basic	idea:	beliefs	get	“pushed”	through	the	transitions

▪ With	the	“B”	notation,	we	have	to	be	careful	about	what	time	step	t	the	belief	is	about,	and	what	evidence	it	

includes

X2X1

▪ Or	compactly:



Recap:	Forward	Algo	-	Passage	of	Time

▪ As	time	passes,	uncertainty	“accumulates”

T	=	1 T	=	2 T	=	5

(Transition	model:	ghosts	usually	go	clockwise)



Recap:	Forward	Algo	-	Observation
▪ Assume	we	have	current	belief	P(X	|	previous	evidence):


▪ Then,	after	evidence	comes	in:


▪ Or,	compactly:

E1

X1

▪ Basic	idea:	beliefs	“reweighted”	
by	likelihood	of	evidence


▪ Unlike	passage	of	time,	we	have	
to	renormalize




Recap:	Forward	Algo	-	Observation

▪ As	we	get	observations,	beliefs	get	reweighted,	uncertainty	“decreases”

Before	observation After	observation



Recap:	The	Forward	Algorithm
▪ We	are	given	evidence	at	each	time	and	want	to	know


▪ We	can	derive	the	following	updates
We	can	normalize	as	we	go	if	we	
want	to	have	P(x|e)	at	each	time	
step,	or	just	once	at	the	end…



Recap:	Online	Filtering	w/	Forward	Algo
 

Elapse	time:	compute	P(	Xt	|	e1:t-1	) 
 
 
 
Observe:	compute	P(	Xt	|	e1:t	)
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Particle	Filtering



Particle	Filtering
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▪ Filtering:	approximate	solution


▪ Sometimes	|X|	is	too	big	to	use	exact	inference

▪ |X|	may	be	too	big	to	even	store	B(X)

▪ E.g.	X	is	continuous


▪ Solution:	approximate	inference

▪ Track	samples	of	X,	not	all	values

▪ Samples	are	called	particles

▪ Time	per	step	is	linear	in	the	number	of	samples

▪ But:	number	needed	may	be	large

▪ In	memory:	list	of	particles,	not	states


▪ This	is	how	robot	localization	works	in	practice


▪ Particle	is	just	new	name	for	sample



Representation:	Particles

▪ Our	representation	of	P(X)	is	now	a	list	of	N	particles	(samples)

▪ Generally,	N	<<	|X|		(…but	not	in	project	5)

▪ Storing	map	from	X	to	counts	would	defeat	the	point


▪ P(x)	approximated	by	number	of	particles	with	value	x

▪ So,	many	x	may	have	P(x)	=	0!	

▪ More	particles,	more	accuracy


▪ For	now,	all	particles	have	a	weight	of	1


▪ Particle	filtering	uses	three	repeated	steps:		

▪ Elapse	time	and	observe	(similar	to	exact	filtering)	and	resample
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Example:	Elapse	Time
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Particle	Filtering:	Elapse	Time

▪ Each	particle	is	moved	by	sampling	its	next	
position	from	the	transition	model


▪ Sample	frequencies	reflect	the	transition	probabilities


▪ Here,	most	samples	move	clockwise,	but	some	move	in	
another	direction	or	stay	in	place


▪ This	captures	the	passage	of	time

▪ If	enough	samples,	close	to	exact	values	before	and	

after	(consistent)
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Example:	Observe
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Example:	Observe

Belief over possible ghost

positions before observation

+

Observation and evidence

likelihoods p(e | X)

0.5 0.4

0.30.4

0.3 0.2

0.3

0.2

0.1

New belief after

observation

+

0.4

0.1



▪ Slightly	trickier:


▪ Don’t	sample	observation,	fix	it


▪ Similar	to	likelihood	weighting,	downweight	
samples	based	on	the	evidence


▪ As	before,	the	probabilities	don’t	sum	to	one,	since	
all	have	been	downweighted

Particle	Filtering:	Observe
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Particle	Filtering:	Resample

▪ Rather	than	tracking	weighted	samples,	we	
resample


▪ N	times,	we	choose	from	our	weighted	sample	
distribution	(i.e.	draw	with	replacement)


▪ This	essentially	renormalizes	the	distribution


▪ Now	the	update	is	complete	for	this	time	step,	
continue	with	the	next	one
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Recap:	Particle	Filtering
▪ Particles:	track	samples	of	states	rather	than	an	explicit	distribution
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Elapse Weight Resample
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Moderate	Number	of	Particles



One	Particle



Huge	Number	of	Particles



Exercises:	Particle	Filters

Random numbers: [0.22, 0.05]

Random numbers: [0.33, 0.20]

Random numbers: [0.84, 0.54]



Robot	Localization

▪ In	robot	localization:

▪ We	know	the	map,	but	not	the	robot’s	position

▪ Observations	may	be	vectors	of	range	finder	readings

▪ State	space	and	readings	are	typically	continuous	(works	

basically	like	a	very	fine	grid)	and	so	we	cannot	store	B(X)

▪ Particle	filtering	is	a	main	technique



Particle	Filter	Localization	(Laser)



Robot	Mapping

▪ SLAM:	Simultaneous	Localization	And	Mapping

▪ We	do	not	know	the	map	or	our	location

▪ State	consists	of	position	AND	map!

▪ Main	techniques:	Kalman	filtering	(Gaussian	HMMs)	

and	particle	methods

DP-SLAM,	Ron	Parr



Particle	Filter	SLAM	–	Video	1



Particle	Filter	SLAM	–	Video	2



Dynamic	Bayes	Nets



Dynamic	Bayes	Nets	(DBNs)
▪ We	want	to	track	multiple	variables	over	time,	using	multiple	

sources	of	evidence


▪ Idea:	Repeat	a	fixed	Bayes	net	structure	at	each	time


▪ Variables	from	time	t	can	condition	on	those	from	t-1


▪ Dynamic	Bayes	nets	are	a	generalization	of	HMMs
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Exact	Inference	in	DBNs

▪ Variable	elimination	applies	to	dynamic	Bayes	nets


▪ Procedure:	“unroll”	the	network	for	T	time	steps,	then	eliminate	variables	until	P(XT|e1:T)	is	computed


▪ Online	belief	updates:	Eliminate	all	variables	from	the	previous	time	step;	store	factors	for	current	
time	only
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DBN	Particle	Filters

▪ A	particle	is	a	complete	sample	for	a	time	step


▪ Initialize:	Generate	prior	samples	for	the	t=1	Bayes	net


▪ Example	particle:	G1
a	=	(3,3)	G1

b	=	(5,3)	


▪ Elapse	time:	Sample	a	successor	for	each	particle	


▪ Example	successor:	G2
a	=	(2,3)	G2

b	=	(6,3)


▪ Observe:	Weight	each	entire	sample	by	the	likelihood	of	the	evidence	conditioned	on	the	sample


▪ Likelihood:	P(E1a	|G1
a	)	*	P(E1b	|G1

b	)	


▪ Resample:	Select	samples	(tuples	of	values)	in	proportion	to	their	likelihood	(weight)



Next	Time:	Value	of	Information


