CS 343: Artificial Intelligence

Bayes Nets: Sampling

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Bayes Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

Traffic Domain

$$\begin{pmatrix} R \\ \downarrow \\ T \\ \downarrow \\ L \end{pmatrix}$$

$$P(L) = ?$$

 $= \sum_{t} \sum_{r} P(L|t)P(r)P(t|r)$ Join on r Join on t Eliminate r

Inference by Enumeration

Eliminate t

Variable Elimination

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Variable Elimination Efficiency

- Interleave joining and marginalizing, instead of fully joining all at once (i.e. enumeration)
- d^k entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes net (NP-hard)

Approximate Inference: Sampling

Sampling

- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting samples can be faster than computing the right answer (e.g. with variable elimination)

Sampling

- Sampling from given distribution
 - Step 1: Get sample *u* from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample *u* into an outcome for the given distribution by having each outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

• Example

 $\begin{array}{l} 0 \leq u < 0.6, \rightarrow C = red \\ 0.6 \leq u < 0.7, \rightarrow C = green \\ 0.7 \leq u < 1, \rightarrow C = blue \end{array}$

- If random() returns u = 0.83, then our sample is C = blue
- E.g, after sampling 8 times:

Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

- For i=1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
- Return (x₁, x₂, ..., x_n)

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

• Let the number of samples of a particular event be $N_{PS}(x_1 \dots x_n)$ and the total number of samples of all events be N.

• Then
$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n)/N$$

= $S_{PS}(x_1, \dots, x_n)$
= $P(x_1 \dots x_n)$

I.e., the sampling procedure is consistent

Example

- We'll get a bunch of samples from the BN:
 - +c, -s, +r, +w
 - +c, +s, +r, +w
 - -c, +s, +r, -w
 - -c, -s, +r, +w
 - +c, -s, -r, +w
- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about P(C | +w)? P(C | +r, +w)? P(C | -r, -w)?
 - Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

Rejection Sampling

- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go
- Let's say we want P(C | +s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

+c,-s,+r,+w
+c, +s, +r, +w
-c, +s, +r, -w
+ c, -s, +r, +w
- C, -S, -r, +w

Rejection Sampling

- IN: evidence instantiation
- For i=1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | blue)

pyramid,	green
pyramid,	-red
sphere,	blue
cube,	-red
sphere,	green

- Idea: fix evidence variables and sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight by probability of evidence given parents

IN: evidence instantiation w = 1.0 for i=1, 2, ..., n • if X_i is an evidence variable • X_i = observation x_i for X_i Set w = w * P(x_i | Parents(X_i)) else Sample x_i from P(X_i | Parents(X_i)) return (x₁, x₂, ..., x_n), w FIXED 0

Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

• Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - Our samples will reflect the state of the world suggested by the evidence
 - No need for rejection!

- Likelihood weighting doesn't solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (not more likely to get a value matching the evidence)
 - Can cause many very small weights —> inefficient!
- We would like to consider evidence when we sample every variable
 - → Gibbs sampling

Gibbs Sampling

Gibbs Sampling Example: P(S | +r)

• Step 1: Fix evidence

■ R = +r

- Step 2: Initialize other variables
 - Randomly

- Step 3: Repeat the following:
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)

Gibbs Sampling

- How is this better than sampling from the full joint?
 - In a Bayes Net, sampling a variable given all the other variables (e.g. P(R|S,C,W)) is usually much easier than sampling from the full joint distribution
 - Only requires one join on the variable to be sampled (in this case, a join on R)

Further Reading on Gibbs Sampling*

- Gibbs sampling produces sample from the query distribution P(Q | e) in limit of re-sampling infinitely often
- Gibbs sampling is a special case of more general methods called Markov chain Monte Carlo (MCMC) methods
 - Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs sampling is a special case of Metropolis-Hastings)
- You may read about Monte Carlo methods they're just sampling

Markov Chain Monte Carlo*

- Idea: instead of sampling from scratch, create samples that are each like the last one.
- Procedure: resample one variable at a time, conditioned on all the rest, but keep evidence fixed. E.g., for P(b|c):

- Properties: Now samples are not independent (in fact they're nearly identical), but sample averages are still consistent estimators!
- What's the point: both upstream and downstream variables condition on evidence.

Bayes Net Sampling Summary

Prior Sampling P(Q)

Rejection Sampling P(Q | e)

Likelihood Weighting P(Q | e)

Gibbs Sampling P(Q | e)