CS 343: Artificial Intelligence

Bayes Nets: Independence

Prof. Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Announcements

= No reading response this or next week!

= Midterm this Thursday (Friday)

= Covers materials from Homework 1-4 (lectures from
start to today)

= Will be released on Gradescope



Probability Recap

Conditional probability P(zly) = Pjgfz?,f)y)

Yy
Product rule P(z.y) = P(zly)P(y)
Chain rule

P(X1,Xo,...Xn)

P(X1)P(X2|X1)P(X3]X1,X2)...

n
— H P(Xi|X17°"7Xi—1)
=il

X, Y independent if and only if: Ve,y : P(x,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:
Vz,y,z 1 P(z,ylz) = P(z|z)P(y|z) X1Y|Z



Bayes Nets

= A Bayes’ netis an
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:

= |nference: given a fixed BN, whatis P(X | €)?

= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?



Bayes Net Semantics

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values:

P(X|aqy...an)
= Bayes’ nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(:Cl, L% s wn) = H P(CE”DBI’GFIT:S(XZ'))
=1




Example: Alarm Network

B P(B)
+b | 0.001
-b | 0.999
A J P(J|A) °
+a | 4 0.9
+a - 0.1
-a +j 0.05
-a -] 0.95
| N —
P(+b, —e,4+a,—j,+m) =

). ‘4
p 4
= > \/

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+a | +m 0.7
+3a -m 0.3
-a +m 0.01
-a -m 0.99

B | E| A | PA|BE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999




Example: Alarm Network

B | P(B) E | P(E) wi [l
+b | 0.001 +e | 0.002 o
b | 0.999 e | 0.998 b
Al J | PUIA) ° Al M | PM|A)
+a | + 0.9 +a | +m 0.7 5 £l A PIAIB/E)
va| 4 | 01 ta | -m | 03 thitel*ta] 0%
a | 4 | 005 a | +m | 001 thite|la| 00
a | - | 095 a | -m | 099 thlel*t| 04
+b | -e -a 0.06
. -b | +e | +a 0.29
| | _ S
P( ! ba 67 |CL, ]7_|_m) — b | +te | -a 0.71
P(+D)P(~€)P(+a] +b, ~¢) P(~j| + ) P(+m] + a) = [ ¢ | =2 oon
-b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Size of a Bayes Net

How big is a joint distribution over N
Boolean variables?

= 2N

How big is an N-node net if nodes
have up to k parents?

= O(N * 2k+1)

Both give you the power to calculate

p(X17X27 o e Xn)

BNs: Huge space savings!

Also easier to elicit local CPTs

Also faster to answer queries (coming)



Bayes Nets

JRepresentation

= Conditional Independences
= Probabilistic Inference

= Learning Bayes Nets from Data



Conditional Independence

X and Y are independent if
Vz,y P(z,y) = P(z)P(y) ---—~ X1Y

X and Y are conditionally independent given Z

Vz,y,2 P(z,y|z) = P(z|2)P(ylz) —--= X 1Y|[Z

(Conditional) independence is a property of a distribution

Example: Alarm 1L Fire|Smoke




Bayes Nets: Assumptions

Assumptions we are required to make to define the Bayes
net when given the graph:

P(xi|lxy- - x;1) = P(z;|parents(X;))

Beyond above “chain rule > Bayes net” conditional
independence assumptions:

= Often additional conditional independences

= They can be inferred from the graph structure

Important for modeling: understand assumptions made
when choosing a Bayes net graph



Example

CO—(D—(—)

= Conditional independence assumptions directly from simplifications in chain rule:
Standard chainrle:  p(z, y, 2, w) = p(z)p(ylz)p(zle, y)p(wlz,y, 2)

Bayes net: p(z,y, z,w) = p(z)p(y|z)p(z|y)p(w|2)
Since: Z 1 x| yand wl x,y | z (cond. indep. given parents)

= Additional implied conditional independence assumptions? w L x|y

_ pw,x,y) _ 2.z PX)p(yIx)p(zly) p(wlz) _ p(zly)p(wlz) =
plutn,y) = B0 - SPEPRE e = ), 2. PP

= > pwh) = pwly)



Independence in a BN

= Important question about a BN:

= Are two nodes independent given certain evidence?
If yes, can prove using algebra (tedious in general)
If no, can prove with a counter example

-0-C

Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X caninfluence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?






D-separation: Outline

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
gueries



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independentofZ? No!

One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

Example:

= Low pressure causes rain causes traffic,

high pressure causes no rain causes no
X: Low pressure  Y: Rain Z: Traffic traffic

= |n numbers:
P(x,y,z) = P(z)P(y|z)P(z|y)
P(+y [ +x)=1,P(-y|-x)=1,
P(+z | +y)=1,P(-z|-y)=1



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

pas { 01 ] _ P(z,y,2)

Il o Yo N PGl y) = =5

A B> _ P@)P(ylr)P(zly)
08 @ ~ P@P)

X: Low pressure  Y: Rain Z: Traffic — P(Z|y)

)

o

N\

Yes!
P(x,y,z) = P(x)P(yl|z)P(z|y)

= Evidence along the chain “blocks” the
influence



Common Cause

= This configuration is a “common cause” = Guaranteed X independentofZ? No!
Y: Project ' ‘;;°J‘°t = One example set of CPTs for which X is not
due L = independent of Z is sufficient to show this

independence is not guaranteed.
= Example:

= Project due causes both forums busy
and lab full

X: Forums
busy

= |n numbers:

P(z,y,z) = P(y)P(z|y) P(z|y) Plez ]+



Common Cause

* This configuration is a “common cause = Guaranteed X and Z independent given Y?

Y: Project Praject p
due Due’ P(z|z,y) = (z,y, 2)
P(z,y)
_ PQ)P(z|y) P(z]y)
P(y)P(x|y)
= P(z|y)
X: Forums
busy Yes!

= Observing the cause blocks influence
P(z,y,z) = P(y)P(z|y) P(z|y) between effects.



Last configuration: two causes of one

effect (v-structures)

X: Raining

Z: Traffic

Y: Ballgame

Common Effect

= Are Xand Y independent?

= Yes: the ballgame and the rain cause traffic, but they
are not correlated

= Still need to prove they must be (try it!)

= Are XandY independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases



The General Case




The General Case

General question: in a given BN, are two variables independent
(given evidence)?

Solution: analyze the graph

Any complex example can be broken
into repetitions of the three canonical cases



Reachability

= Recipe: shade evidence nodes, look for @
paths in the resulting graph

= Attempt 1: if two nodes are connected R e
by an undirected path not blocked by a
shaded observed node, they are not

conditionally independent
= |Influence can “flow” between them, unblocked e 0

= Almost works, but not quite
= Where does it break?

= Answer: the v-structure at T doesn’t count as
a link in a path unless “active” via being
observed as evidence




Active / Inactive Paths

= Question: Are X and Y conditionally independent given Active Triples Inactive Triples
evidence variables {Z}?
= Yes, if Xand Y “d-separated” by Z O_.O_.O
= Consider all (undirected) paths from Xto Y
= No active paths = conditional independence!

= A pathis active if each triple is active:

= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A <« B — C where B is unobserved
= Common effect (aka v-structure)

A — B < C where B or one of its descendants is observed

= All it takes to block a path is a single inactive segment

{9 §



D-Separation

= Query: Xi il Xj|{Xk1, 7an} ?

* Check all (undirected!) paths between X;and X

= |f one or more active, then independence not guaranteed
X jﬂ\ Xj |{X/€1 5 £y an}

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X; 1L XiH{ Xkyy ooy Xk, }




1
!

Example

Yes

Not guaranteed

Not guaranteed



LIT\T
L1 B
L1 B|T

L1l BT’

Example

Yes

Yes

Not guaranteed

Not guaranteed

LUB|T,R VYes




Example

= Variables:
= R: Raining
= T: Traffic
= D: Roof drips
= S: I’'m sad

= Questions:

T1 D Not guaranteed
T'1 DR Yes
T1 D|\R,S Notguaranteed




Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X; AL XA {Xpy, ooy X, )

= This list determines the set of probability
distributions that can be represented




Computing All Independences

XUZ|Y
CoMPUTE ALL THE & ‘
\ NDEPENDE NCES/

S‘ E XUZ|Y

2 ; XU Z
f E None!




Topology Limits Distributions

(X LY, X1 ZY U Z,

(X1 Z|Y)
XULZ|Y,XULY|ZYlZ|X)

Given some graph topology
G, only certain joint

distributions can be encoded ®

® @

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the set {}
of distributions, but has
several costs

Full conditioning can encode
any distribution

5P P
5P P
PP PeRP



Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can be deduced
from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= A Bayes net’s joint distribution may have further (conditional)
independence that is not detectable until you inspect its
specific distribution



Bayes Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
= Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data



Exercises

Independence

Based only on the structure of the Bayes’ Net given right,
indicate whether the following conditional independence
assertions are either 1) guaranteed to be true, 2) guaranteed
to be false, or 3) cannot be determined by the structure alone.
Hint:
e themeaningof A L B|C, DisAand B are independent
(L) of each other conditioned on (|) C and D
e Two properties about independence are in Fig 14.4
(Page 518) in the textbook.

i. ULV

i. ULV|W
i. ULZ|wW
iv. ULZ|X W
v. V1Z|X




Exercises

Independence

Based only on the structure of the Bayes’ Net given right,
indicate whether the following conditional independence
assertions are either 1) guaranteed to be true, 2) guaranteed
to be false, or 3) cannot be determined by the structure
alone.

Hint: the meaning of A L B | C, D is A and B are independent
(L) of each other other conditioned on (|) C and D

. ULV guaranteed to be true
i. ULV|W cannot be determined
i. ULlLZ|W cannot be determined

iv. ULZ|X W guaranteed to be true
v. VL1LZ|X guaranteed to be true

W




Have a great Spring Break!




