
Q5. [6 pts] Kernels and Feature Transforms
A kernel function K(x, z) is a function that conceptually denotes the similarity between two instances x and z in a
transformed space. More specifically, for a feature transform x→ φ(x), the kernel function is K(x, z) = φ(x) · φ(z).
The beauty of algorithms using kernel functions is that we never actually need to explicitly specify this feature
transform φ(x) but only the values K(x, z) for pairs (x, z). In this problem, we will explore some kernel functions
and their feature transforms. For this problem the input vectors are assumed to be 2 dimensional (i.e. x = (x1, x2)).
Remember that x · z = x1z1 + x2z2.

(a) For each of the kernel functions below, mark the corresponding feature transform: (mark a single option only
for each question)

(i) [1 pt] K(x, z) = 1 + x · z
φ(x) = (x1, x2)

φ(x) = (1, x1, x2)

φ(x) = (1, x21, x
2
2)

φ(x) = (x21, x
2
2)

φ(x) = (x21, x
2
2,
√

2x1x2)

φ(x) = (1, x21, x
2
2,
√

2x1x2)

(ii) [1 pt] K(x, z) = (x · z)2

φ(x) = (x21, x
2
2)

φ(x) = (1, x21, x
2
2)

φ(x) = (1, x21, x
2
2,
√

2x1x2)

φ(x) = (x21, x
2
2,
√

2x1x2)

φ(x) = (1, x1, x2, x
2
1, x

2
2,
√

2x1x2)

φ(x) = (x1, x2, x
2
1, x

2
2,
√

2x1x2)

(iii) [1 pt] K(x, z) = (1 + x · z)2

φ(x) = (1, x21, x
2
2)

φ(x) = (1, x21, x
2
2,
√

2x1x2)

φ(x) = (1, x21, x
2
2, x1, x2,

√
2x1x2)

φ(x) = (1, x21, x
2
2,
√

2x1,
√

2x2,
√

2x1x2)

φ(x) = (1, x1, x2,
√

2x1x2)

φ(x) = (1, x1x2, x
2
1x

2
2)

(b) Multiple kernels can be combined to produce new kernel functions. For example K(x, z) = K1(x, z) +K2(x, z)
is a valid kernel function. For the questions below, kernel K1 has the associated feature transform φ1 and
similarly K2 has the feature transform φ2. Mark the feature transform associated with K for the expressions
given below.

Note: The operator [∗, ∗] denotes concatenation of the two arguments. For example, [x, z] = (x1, x2, z1, z2).

(i) [1 pt] K(x, z) = aK1(x, z), for some scalar a > 0

φ(x) = φ1(x)

φ(x) = [a, φ1(x)]

φ(x) = aφ1(x)

φ(x) =
√
aφ1(x)

φ(x) = φ1(x) + a

φ(x) = a2φ1(x)

(ii) [1 pt] K(x, z) = aK1(x, z) + bK2(x, z), for scalars a, b > 0

φ(x) = aφ1(x) + bφ2(x)

φ(x) =
√
aφ1(x) +

√
bφ2(x)

φ(x) = a2φ1(x) + b2φ2(x)

φ(x) = [aφ1(x), bφ2(x)]

φ(x) = [
√
aφ1(x),

√
bφ2(x)]

φ(x) = [a2φ1(x), b2φ2(x)]

(c) [1 pt] Suppose you are given the choice between using the normal perceptron algorithm, which directly works
with φ(x), and the dual (kernelized) perceptron algorithm, which does not explictly compute φ(x) but instead
works with the kernel function K. Keeping space and time complexities in consideration, when would you
prefer using the kernelized perceptron algorithm over the normal perceptron algorithm.

Note: Here N denotes the total number of training samples and d is the dimensionality of φ(x).

d >> N # d << N # Always # Never

10

Q10. [8 pts] Clustering

In this question, we will do k-means clustering to cluster
the points A,B . . . F (indicated by ×’s in the figure on the
right) into 2 clusters. The current cluster centers are P
and Q (indicated by the � in the diagram on the right).
Recall that k-means requires a distance function. Given 2
points, A = (A1, A2) and B = (B1, B2), we use the follow-
ing distance function d(A,B) that you saw from class,

d (A,B) = (A1 −B1)2 + (A2 −B2)2

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

 A(0, 0)

 B(−1, 2)

 C(−2, 1)

 D(−1, −2)

 E(3, 3)

 F(1, 1)

 P(−3, 0)

 Q(2, 2)

(a) [2 pts] Update assignment step: Select all points that get assigned to the cluster with center at P :

© A © B © C © D © E © F © No point gets assigned to cluster P

(b) [2 pts] Update cluster center step: What does cluster center P get updated to?

Changing the distance function: While k-means used Euclidean distance in class, we can extend it to other
distance functions, where the assignment and update phases still iteratively minimize the total (non-Euclidian)
distance. Here, consider the Manhattan distance:

d′ (A,B) = |A1 −B1|+ |A2 −B2|

We again start from the original locations for P and Q as shown in the figure, and do the update assignment step
and the update cluster center step using Manhattan distance as the distance function:

(c) [2 pts] Update assignment step: Select all points that get assigned to the cluster with center at P , under
this new distance function d′(A,B).

© A © B © C © D © E © F © No point gets assigned to cluster P

(d) [2 pts] Update cluster center step: What does cluster center P get updated to, under this new distance
function d′(A,B)?

20

Q5. [6 pts] Kernels and Feature Transforms
A kernel function K(x, z) is a function that conceptually denotes the similarity between two instances x and z in a
transformed space. More specifically, for a feature transform x→ φ(x), the kernel function is K(x, z) = φ(x) · φ(z).
The beauty of algorithms using kernel functions is that we never actually need to explicitly specify this feature
transform φ(x) but only the values K(x, z) for pairs (x, z). In this problem, we will explore some kernel functions
and their feature transforms. For this problem the input vectors are assumed to be 2 dimensional (i.e. x = (x1, x2)).
Remember that x · z = x1z1 + x2z2.

(a) For each of the kernel functions below, mark the corresponding feature transform: (mark a single option only
for each question)

(i) [1 pt] K(x, z) = 1 + x · z
φ(x) = (x1, x2)

 φ(x) = (1, x1, x2)

φ(x) = (1, x21, x
2
2)

φ(x) = (x21, x
2
2)

φ(x) = (x21, x
2
2,
√

2x1x2)

φ(x) = (1, x21, x
2
2,
√

2x1x2)

(ii) [1 pt] K(x, z) = (x · z)2

φ(x) = (x21, x
2
2)

φ(x) = (1, x21, x
2
2)

φ(x) = (1, x21, x
2
2,
√

2x1x2)

 φ(x) = (x21, x
2
2,
√

2x1x2)

φ(x) = (1, x1, x2, x
2
1, x

2
2,
√

2x1x2)

φ(x) = (x1, x2, x
2
1, x

2
2,
√

2x1x2)

(iii) [1 pt] K(x, z) = (1 + x · z)2

φ(x) = (1, x21, x
2
2)

φ(x) = (1, x21, x
2
2,
√

2x1x2)

φ(x) = (1, x21, x
2
2, x1, x2,

√
2x1x2)

 φ(x) = (1, x21, x
2
2,
√

2x1,
√

2x2,
√

2x1x2)

φ(x) = (1, x1, x2,
√

2x1x2)

φ(x) = (1, x1x2, x
2
1x

2
2)

For all the above questions, write out K(x, z) and find a φ(x) such that K(x, z) = φ(x) · φ(z). For example in (iii)
K(x, z) = (1 + x1z1 + x2z2)2 = 1 + x21z

2
1 + x22z

2
2 + 2(x1z1 + x2z2 + x1x2z1z2) = (1, x21, x

2
2,
√

2x1,
√

2x2,
√

2x1x2) ·
(1, z21 , z

2
2 ,
√

2z1,
√

2z2,
√

2z1z2)

(b) Multiple kernels can be combined to produce new kernel functions. For example K(x, z) = K1(x, z) +K2(x, z)
is a valid kernel function. For the questions below, kernel K1 has the associated feature transform φ1 and
similarly K2 has the feature transform φ2. Mark the feature transform associated with K for the expressions
given below.

Note: The operator [∗, ∗] denotes concatenation of the two arguments. For example, [x, z] = (x1, x2, z1, z2).

(i) [1 pt] K(x, z) = aK1(x, z), for some scalar a > 0

φ(x) = φ1(x)

φ(x) = [a, φ1(x)]

φ(x) = aφ1(x)

 φ(x) =
√
aφ1(x)

φ(x) = φ1(x) + a

φ(x) = a2φ1(x)

(ii) [1 pt] K(x, z) = aK1(x, z) + bK2(x, z), for scalars a, b > 0

φ(x) = aφ1(x) + bφ2(x)

φ(x) =
√
aφ1(x) +

√
bφ2(x)

φ(x) = a2φ1(x) + b2φ2(x)

φ(x) = [aφ1(x), bφ2(x)]

 φ(x) = [
√
aφ1(x),

√
bφ2(x)]

φ(x) = [a2φ1(x), b2φ2(x)]

For (ii) we need a φ s.t. φ(x) ·φ(z) = aφ1(x) ·φ1(z) + bφ2(x) ·φ2(z) = [
√
aφ1(x),

√
bφ2(x)] · [

√
aφ1(z),

√
bφ2(z)]. Thus

we have φ(x) = [
√
aφ1(x),

√
bφ2(x)]

(c) [1 pt] Suppose you are given the choice between using the normal perceptron algorithm, which directly works
with φ(x), and the dual (kernelized) perceptron algorithm, which does not explictly compute φ(x) but instead
works with the kernel function K. Keeping space and time complexities in consideration, when would you
prefer using the kernelized perceptron algorithm over the normal perceptron algorithm.

Note: Here N denotes the total number of training samples and d is the dimensionality of φ(x).

14

 d >> N # d << N # Always # Never

For this question, the rationale was when we use a Kernel function, we typically store a Kernel matrix K with
Kij = φ(xi) · φ(xj) where xi and xj are the ith and jth training instances. This results in an N ×N matrix. If we
were to use the transformed d-dimensional feature representation, we would have to store Nd values instead of N2

values in the Kernel matrix. Thus space-wise, we would prefer kernels when d >> N .

Looking at time complexity, (at test time), if we use kernels (e.g. the kernelized perceptron) we need to compute∑N
i=1 αi,yK(x′, xi) for a test sample x′. Assuming the kernel function computation takes O(1) time, we need to do

N such computations. In case of using φ(x), we have the precomputed weight vector as w =
∑
αi,yφ(xi) which

is d-dimensional and the computation of w.φ(x′) takes d O(1) computations. So again we would prefer kernels if
d >> N .

15

Q10. [8 pts] Clustering

In this question, we will do k-means clustering to cluster
the points A,B . . . F (indicated by ×’s in the figure on the
right) into 2 clusters. The current cluster centers are P
and Q (indicated by the � in the diagram on the right).
Recall that k-means requires a distance function. Given 2
points, A = (A1, A2) and B = (B1, B2), we use the follow-
ing distance function d(A,B) that you saw from class,

d (A,B) = (A1 −B1)2 + (A2 −B2)2

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

 A(0, 0)

 B(−1, 2)

 C(−2, 1)

 D(−1, −2)

 E(3, 3)

 F(1, 1)

 P(−3, 0)

 Q(2, 2)

(a) [2 pts] Update assignment step: Select all points that get assigned to the cluster with center at P :

© A B C D © E © F © No point gets assigned to cluster P

(b) [2 pts] Update cluster center step: What does cluster center P get updated to?
The cluster center gets updated to the point, P ′ which minimizes, d(P ′, B) +d(P ′, C) +d(P ′, D), which in this
case turns out to be the centroid of the points, hence the new cluster center is(

−1− 2− 1

3
,

2 + 1− 2

3

)
=

(
−4

3
,

+1

3

)

Changing the distance function: While k-means used Euclidean distance in class, we can extend it to other
distance functions, where the assignment and update phases still iteratively minimize the total (non-Euclidian)
distance. Here, consider the Manhattan distance:

d′ (A,B) = |A1 −B1|+ |A2 −B2|

We again start from the original locations for P and Q as shown in the figure, and do the update assignment step
and the update cluster center step using Manhattan distance as the distance function:

(c) [2 pts] Update assignment step: Select all points that get assigned to the cluster with center at P , under
this new distance function d′(A,B).

 A © B C D © E © F © No point gets assigned to cluster P

(d) [2 pts] Update cluster center step: What does cluster center P get updated to, under this new distance
function d′(A,B)?

The cluster center gets updated to the point, P ′ which minimizes, d′(P ′, A) + d′(P ′, C) + d′(P ′, D), which in
this case turns out to be the point with X-coordinate as the median of the X-coordinate of the points in the
cluster and the Y-coordinate as the median of the Y-coordinate of the points in the cluster. Hence the new
cluster center is

(−1, 0)

23

