CS 343: Artaficial Intelligence
Hidden Markov Models, Particle Filtering, and VPI

Profs. Peter Stone and Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

Past due:

" HW1-5: Search, CSPs, Games, MDP, RL

" 7 reading responses: Al100 report; 8 Textbook readings

" PO,1,2: tutorial, Search, Multiagent

" Midterm
Upcoming EdX Homeworks

" HWoSé6: Bayes Nets - due Monday 4/5 at 11:59 pm

" HW7: Sampling, HMMs, Particle Filters, and VPI - due Monday 4/12 at 11:59 pm
Upcoming programming projects

" P3:RL - due Wednesday 3/31 at 11:59pm

" P4: Bayes Nets - due Wednesday 4/14 at 11:59pm

" P5: Particle Filters - due Wednesday 4/21 at 11:59pm
Readings: Naive Bayes and Perceptrons - Due Monday 4/5 at 9:30am
Contest: Capture the flag

" Qualification due 4/28 (required); Finals 5/3 (extra credit)

Real HMM Examples

" Speech recognition HMMs:
" Observations are acoustic signals (continuous valued)
" States are specific positions in specific words (so, tens of thousands)

" Machine translation HMMs:

" Observations are words (tens of thousands)
" States are translation options

" Robot tracking:
" Observations are range readings (continuous)
" States are positions on a map (continuous)

Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the distribution
B.(X) =P,X, | e, ...,) (the belief state) over time

We start with B, (X) in an initial setting, usually uniform

As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first implemented
as a method of trajectory estimation for the Apollo program

Example: Robot Localization

Example from
Michael Pfeiffer

«’H
v
B
Prob 0 1
t=0
Sensor model: can read in which directions there is a wall, never more than 1
mistake

Motion model: may not execute action with small prob.

Example: Robot Localization

B 000
Prob 0 1

t=1
Lighter grey: was possible to get the reading, but less likely b/c required
1 mistake

Example: Robot Localization

Prob 0 1

t=2

Example: Robot Localization

Prob 0 1

t=3

Example: Robot Localization

Prob 0 1

Example: Robot Localization

Prob 0 1

Inference: Base Cases

P(X1le1)

P(x1le1) = P(x1,e1)/P(e1)
o<y, P(z1,e1)

= P(x1)P(e1|z1)

A ©O-®

P(X5)

P(zp) =) P(z1,z2)

= > P(z1)P(z2|z1)

Passage of Time

" Assume we have current belief P(X | evidence to date) @ @
B(X:) = P(Xtle1:)

" Then, after one time step passes:

P(Xt+1|€1:t) = ZP(XtH,ZUt!el:t)

i ZP(XtH\CUt,61;t)P(a:t\elzt) " Or compactly:
3 (X RO¢
B ZP(Xt+1’$t)P(xt‘€1:t) t+1) Z |z¢) B

" Basic idea: beliefs get “pushed” through the transitions

" With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it
includes

1)

Example: Passage of Time

" As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

m
mu
m

ﬂ

T=5

Observation

" Assume we have current belief P(X | previous evidence):
/
B (Xiy1) = P(Xyy1ler)

" Then, after evidence comes in:

P(Xip1lerir1) = P(Xey1,erv1lert)/Plesrilers)
XX 11 P(Xt+176t—|—1|61:t)

— P(€t+1 elztaXt—l—l)P(Xt—l-1|€1!t)
— P(et—l—l Xt_|_1)P(Xt—|—1|61:t)

" Basic idea: beliefs “reweighted”

by likelihood of evidence
BX) coe i Ple e B (¢ " Unlike passage of time, we have
to renormalize

" Or, compactly:

Example: Observation

" As we get observations, beliefs get reweighted, uncertainty “decreases”

uu
<0.01 <0.01{<0.01/|<0.01 <0.01|<0.01 | <0.01{|<0.01(<0.01|<0.01

Before observation After observation

B(X) «x P(e|X)B'(X)

Putting it All Together: The Forward Algorithm

" We are given evidence at each time and want to know

Bi(X) = P(Xile1:t)

" We can derive the following updates W - ;
€ Can normalize as we go It we

want to have P(x|e) at each time

P(mt|€lit) o< P(wt,e1:1) ‘ step, or just once at the end...

= > P(xt_1,x¢,€1:t)

Ti—1

= N P(xy_1,e1:4-1)P(xtlei_1) P(et|xt)

Lt—1

= P(etlat) Y, P(wi|lw—1)P(xi—1,e1:4—1)

Lt—1

Online Belief Updates

Every time step, we start with current P(X | evidence)
We update for time:

P(ztlert—1) = Y P(zi—1le1:t—1) - P(we|ze—1) @_’@

Lt—1

We update for evidence: @

P($t|€1:t) XX P(ﬂftyel:t—l) ‘ P(€t|37t)

The forward algorithm does both at once (and doesn’t normalize)

Example: Weather HMM f ((l

B’(+r,) =0.5 B'(+r) = 0.627
B(r) =0.5 B’(-r) = 0.373
// f/' /// “‘
) - v _— v
B(+r) = 0.5 B(+r) = 0.818 B(+r) = 0.883
B(-r) =0.5 B(-r) =0.182 B(-r) =0.117
o Rain, Rain, T ROJRG[PRAIR) [RO U] PUIR)
+r +r 0.7 +r +u 0.9
+r -r 0.3 +r -u 0.1

v Y
Umbrella, Umbrella, -r +r 0.3 -r | +u 0.2
-r -r 0.7 -r -u 0.8

Particle Filtering

Particle Filtering

Filtering: approximate solution

Sometimes | X]| is too big to use exact inference
" |X| may be too big to even store B(X)
" E.g. Xis continuous

Solution: approximate inference
" Track samples of X, not all values
" Samples are called particles
" Time per step is linear in the number of samples
" But: number needed may be large
" In memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample

00 | 0.1 | 00

0.0 | 00 | 0.2

00 | 02 | 05
O

(Y

oo | o%

Representation: Particles

Our representation of P(X) is now a list of N particles (samples)
" Generally, N << |X]| (...but not in project 4)

" Storing map from X to counts would defeat the point ®

P(x) approximated by number of particles with value x
" So, many x may have P(x) = 0!

Particles:

" More particles, more accuracy

)
w

N
RN DMNOD WL

For now, all particles have a weight of 1

Particle filtering uses three repeated steps:
" Elapse time and observe (similar to exact filtering) and resample

NowPRrooooN

Particle Filtering: Elapse Time

" Each particle is moved by sampling its next Darticles. .
position from the transition model P o .0:\
(3,3)
/ / (3.2 o o |
x' = sample(P(X"'|x)) 33 ®
(1,2)
(3,3)
. o . (3,3)
" Sample frequencies reflect the transition probabilities (2.3)
" Here, most samples move clockwise, but some move in rtclon
another direction or stay in place (32)
(2,3) ® | [®
(3,2) ®| o Io
(3,1)
(3.3 . io
" This captures the passage of time o 0
" If enough samples, close to exact values before and gg; ®
after (consistent) (2,2)

Particle Filtering: Observe

Particles:

" Slightly trickier: 3.2)

" Don’t sample observation, fix it

" Similar to likelihood weighting, downweight

samples based on the evidence
w(x) = P(e|x

B(X) < P(e|X)B'(X)

3
i
N°)

" As before, the probabilities don’t sum to one,

since all have been downweighted

£z

NN W W RN W RN
NONR VDN

Particle Filtering: Resample

Rather than tracking weighted samples, we
resample

N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

This essentially renormalizes the distribution

Now the update is complete for this time step,
continue with the next one

Particles:

(3,2) w=.9

5335353
No oo o

Recap: Particle Filtering

" Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
) .‘. \.\ o ¢ o) Q@ @
@ @ © @
@ ® @ @) ®) ...
@ @ :
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)

Robot Localization

" In robot localization:

" We know the map, but not the robot’s position
" Observations may be vectors of range finder readings

" State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

" Particle filtering is a main technique

DIRECTORY

Cin

Robot Mapping

" SLAM: Simultaneous Localization And Mapping
" We do not know the map or our location
® State consists of position AND map!

" Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

DP-SLAM, Ron Parr

Dynamic Bayes Nets (DBNs)

" We want to track multiple variables over time, using multiple (G: D

sources of evidence

" |dea: Repeat a fixed Bayes net structure at each time

" Variables from time t can condition on those from t-1
t=1 t=2 t=3

G1a » G.° > (_;3a ------------------- >

2
G1b //%1/ > G3b Ao
B @O ©E

" Dynamic Bayes nets are a generalization of HMMs

Exact Inference in DBNSs

" Variable elimination applies to dynamic Bayes nets

" Procedure: “unroll” the network for T time steps, then eliminate variables until P(X_|e,) is computed

t=1 t=2 t=3
o~y | [
/ //
Glb > sz l >

" Online belief updates: Eliminate all variables from the previous time step; store factors for current
time only

DBN Particle Filters

" A particle is a complete sample for a time step

" Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G,;2= (3,3) G,*= (5,3)

" Elapse time: Sample a successor for each particle
= Example successor: G,2=(2,3) G,P= (6,3)

" Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
= lLikelihood: P(E,2 |G,?) * P(E,* |G,")

" Resample: Select samples (tuples of values) in proportion to their likelihood (weight)

Decision Networks

Umbrella = leave

U(leave) z P(w)U (leave, w) Umbrella

:0.7-100—|—0.3—0:70

Umbrella = take @

EU(take) P(w)U (take, w)
Z A W U(AW)
=0.7-2040.3-70 = 35 W | PW) leave | sun 100
sun 0.7 leave rain 0
rain 0.3 take sun 20
Optimal decision = leave take rain 70

MEU(g) = max EU(a) = 70

Umbrella

Decisions as Outcome Trees

® Almost exactly like expectimax / MDPs
" What's changed?

Example: Decision Networks

A W U(AW)
Umbrella = leave
Umbrella leave | sun 100
EU(leave|bad) = ZP(w\bad)U(leave, w) leave | rain 0
w take sun 20
—0.34-100+0.66-0=34 take | rain 70
Umbrella = take
Weather
EU(take|bad) = Z P(w|bad)U (take, w) W | P(W|F=bad)
w sun 0.34
=0.34-20+0.66 - 70 = 53 rain 0.66

. N Forecast
Optimal decision = take

MEU(F = bad) = max EU(a|bad) = 53

Decisions as Outcome Trees

Value of Information

Idea: compute value of acquiring evidence D
® Can be done directly from decision network

)

DrillLoc a
Example: buying oil drilling rights 0 a
® Two blocks A and B, exactly one has oil, worth k 0] P

® You can drill in one location @
® Prior probabilities 0.5 each, & mutually exclusive a| 1/2 b | b
O
(]

Q

o
~| o] o] x| C

® Drilling in either A or B has EU =k/2, MEU = k/2 b| 1/2

Question: what's the value of information of O?
® Value of knowing which of A or B has oil
Value is expected gain in MEU from new info
Survey may say “oil in a” or “oil in b,” prob 0.5 each
If we know OilLoc, MEU is k (either way)
Gain in MEU from knowing OilLoc?
VPI(QilLoc) = k/2
Fair price of information: k/2

VPI Example: Weather

MEU with no evidence Umbrella

MEU(g) = maxEU(a) = 70

leave | sun 100

leave | rain 0
take sun 20
take rain 70

MEU if forecast is bad Weather

MEU(F = bad) = max EU(a|bad) = 53 W | P(W|F=bad)
@ sun 0.34 W P(W)
MEU if forecast is good Y rain 0.66 —
MEU(F' = good) = max EU(a|good) = 95 @ W | P(W|F=good) rain | 0.3
Forecast distribution o o
rain 0.05
F P(F)
—od | 059 ﬁ> 0.59 - (95) 4+ 0.41 - (53) — 70
bad | 0.41 778 —70=17.8

VPI(E'|e) = (Z P(e’e)I\/IEU(e,e’)) — MEU(e)

&

VPI Properties

" Nonnegative

VE' e : VPI(E'le) > 0

" Nonadditive
Typically (but not always):

VPI(E;, Eyle) # VPL(Ej|e) + VPI(E}|e)

" Order-independent

VPI(E;, Eile) = VPI(Ej|e) + VPI(Ee, E;) @ ?)
= VPI(Eyle) + VPI(Ejle, E},) - o

Quick VPI Questions

" The soup of the day is either clam chowder or
split pea, but you wouldn’t order either one.
What'’s the value of knowing which it is?

" There are two kinds of plastic forks at a
picnic. One kind is slightly sturdier. What'’s
the value of knowing which?

" You're playing the lottery. The prize will be $0
or $100. You can play any number between 1
and 100 (chance of winning is 1%). What is
the value of knowing the winning number?

Test Your Understanding

" Decision Networks and Value of Perfect Information

" Practice problem in breakout rooms

" Work for a couple of minutes independently, but then quickly start
comparing progress - even if you're not done yet.

Most Likely Explanation

P 9 |
= a P

.J-l‘\

HMMs: MLE Queries

" HMMs defined by
" States X
" Observations E
" Initial distribution:

®" Transitions: T
®" Emissions: P(X]|X_1)
P(E|X)

" New query: most likely explanation:
arg max P(z1:¢le1:¢)
X1:¢t
" New method: the Viterbi algorithm

" Question: Why not just apply filtering and predict most
likely value of each variable separately?

sun

> sun

State Trellis

=<

rain

> sun

State trellis: graph of states and transitions over time

=

X1

» rain

> sun

=

X2

» rain

* rain

XN

Each arc represents some transition x;_1 — x;

Each arc has weight p (|2, 1) P(et|zs)

Each path is a sequence of states

The product of weights on a path is that sequence’s probability along with the evidence
Forward algorithm computes sums of all paths to each node, Viterbi computes best paths
Exponentially many paths, but dynamic programming can find best path in linear time!

Forward / Viterbi Algorithms

sun > sun > sun > sun
rain X rain >< rain >< rain
X, X5 .. e
Forward Algorithm (Sum) Viterbi Algorithm (Max)
flxe] = P(x, e1:4) my|ze] = max P(x1:4—1,Tt,€1:¢)
= Pedlz) 3 Platlz-1)fi1lz1] = P(edle) max P(eder1)my1le 1]

L—1

