CS 343: Artificial Intelligence

Hidden Markov Models, Particle Filtering, and VPI

Profs. Peter Stone and Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

- Past due:
 - HW1-5: Search, CSPs, Games, MDP, RL
 - 7 reading responses: AI100 report; 8 Textbook readings
 - P0,1,2: tutorial, Search, Multiagent
 - Midterm
- Upcoming EdX Homeworks
 - HW6: Bayes Nets due Monday 4/5 at 11:59 pm
 - HW7: Sampling, HMMs, Particle Filters, and VPI due Monday 4/12 at 11:59 pm
- Upcoming programming projects
 - P3: RL due Wednesday 3/31 at 11:59pm
 - P4: Bayes Nets due Wednesday 4/14 at 11:59pm
 - P5: Particle Filters due Wednesday 4/21 at 11:59pm
- Readings: Naive Bayes and Perceptrons Due Monday 4/5 at 9:30am
- Contest: Capture the flag
 - Qualification due 4/28 (required); Finals 5/3 (extra credit)

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution
 B_t(X) = P_t(X_t | e₁, ..., e_t) (the belief state) over time
- We start with B₁(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

1

Inference: Base Cases

Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t})P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t)P(x_t|e_{1:t})$

• Or compactly:

 $B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 0.76 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

As time passes, uncertainty "accumulates"

T = 1

T = 2

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

Then, after evidence comes in:

$$\frac{P(X_{t+1}|e_{1:t+1})}{\propto_{X_{t+1}}} = \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})}$$

 $= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

 $B(X) \propto P(e|X)B'(X)$

Putting it All Together: The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

 $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

The forward algorithm does both at once (and doesn't normalize)

Example: Weather HMM

R_{t}	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0	
0.0	0.0	0.2	
0.0	0.2	0.5	

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X| (...but not in project 4)</p>
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1
- Particle filtering uses three repeated steps:
 - Elapse time and observe (similar to exact filtering) and resample

Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- Sample frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place

- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:

(3,3) (2,3) (3,3) (3,2)

(3,3) (3,2) (1,2) (3,3) (3,3)

(2,3)

Particles:

(3,2) (2,3)

(3,2) (3,1) (3,3) (3,2)

(1,3)

(2,3)

(3,2)

(2.2)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

As before, the probabilities don't sum to one, since all have been downweighted

Particles:	
(3,2)	
(2,3)	
(3,2)	
(3,1)	
(3,3)	
(3,2)	
(1,3)	
(2,3)	
(3,2)	

(2,2)

Ø

ø

O

ø

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This essentially renormalizes the distribution
- Now the update is complete for this time step, continue with the next one

Particle	s:
(3,2)	w=.9
(2,3)	w=.2
(3,2)	w=.9
(3,1)	w=.4
(3,3)	w=.4
(3,2)	w=.9
(1,3)	w=.1
(2,3)	w=.2
(3,2)	w=.9
(2.2)	w=.4

(New) Particles:

(3,2)

(2,2)

(3,2)

(2,3)

(3,3)(3,2)

(1,3) (2,3) (3,2) (3,2)

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

		Elapse			Weight			Resample			
						• •	•				
						•					
				•			•				
Particl	es:		Particle	s:		Particles:			(Nev	v) Partic	es:
(3,3)		(3,2)			(3,2) w=.9	9		(3	,2)	
(2,3)		(2,3)			(2,3) w=.2	2		(2	,2)	
(3,3)		(3,2)			(3,2) w=.9	9		(3	,2)	
(3,2)		(3,1)			(3,1) w=.4	4		(2	,3)	
(3,3)		(3,3)			(3,3) w=.4	4		(3	,3)	
(3,2)		(3,2)			(3,2) w=.9	9		(3	,2)	
(1,2)		(1,3)			(1,3) w=.:	1		(1	,3)	
(3,3)		(2,3)			(2,3) w=.2	2		(2	,3)	
(3,3)		(3,2)			(3,2) w=.9	9		(3	,2)	
(2,3)		(2,2)			(2,2) w=.4	4		(3	,2)	

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Robot Mapping

SLAM: Simultaneous Localization And Mapping

- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
 - Variables from time t can condition on those from t-1 t =3 t =1 t =2 \mathbf{G}_{1}^{a} \mathbf{G}_{2}^{a} \mathbf{G}_{q}^{a} $\mathbf{G}_1^{\mathbf{b}}$ $\mathbf{G}_{2}^{\ \mathbf{b}}$ \mathbf{G}_{3}^{b} \mathbf{E}_{1}^{b} \mathbf{E}_{2}^{b} \mathbf{E}_{3}^{b} \mathbf{E}_{1}^{a} \mathbf{E}_{2}^{a} \mathbf{E}_{3}^{a}

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: **G**₁^a = (3,3) **G**₁^b = (5,3)
- Elapse time: Sample a successor for each particle
 - Example successor: $\mathbf{G}_{2}^{a} = (2,3) \mathbf{G}_{2}^{b} = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 Likelihood: P(E₁^a | G₁^a) * P(E₁^b | G₁^b)
- **Resample:** Select samples (tuples of values) in proportion to their likelihood (weight)

Decision Networks

Decisions as Outcome Trees

Example: Decision Networks

Decisions as Outcome Trees

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b," prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2

VPI Example: Weather

MEU with no evidence

$$\mathrm{MEU}(\phi) = \max_{a} \mathrm{EU}(a) = 70$$

MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

MEU if forecast is good

$$\label{eq:metric} \begin{split} \mathrm{MEU}(F=\mathrm{good}) &= \max_a \mathrm{EU}(a|\mathrm{good}) = 95 \\ \text{Forecast distribution} \end{split}$$

$$\begin{array}{c|cccc}
F & P(F) \\
\hline good & 0.59 \\
\hline bad & 0.41
\end{array} & 0.59 \cdot (95) + 0.41 \cdot (53) - 70 \\
\hline 77.8 - 70 = 7.8
\end{array}$$

$$\begin{array}{c|ccccc}
VPI(E'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) - \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{MEU}(e,e')\right) + \mathsf{MEU}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e,e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e,e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e,e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e,e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e,e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e,e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e,e'|e) \mathsf{ME}(e,e')\right) + \mathsf{ME}(e,e') \\
\hline P(e'|e) = \left(\sum_{e'} P(e,e'|e) \mathsf{ME}(e,e')\right) +$$

А	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

W	P(W)
sun	0.7
rain	0.3

Q **O**

VPI Properties

Nonnegative

 $\forall E', e : \mathsf{VPI}(E'|e) \ge 0$

Nonadditive

Typically (but not always):

 $\operatorname{VPI}(E_j, E_k|e) \neq \operatorname{VPI}(E_j|e) + \operatorname{VPI}(E_k|e)$

Order-independent

 $VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$ $= VPI(E_k|e) + VPI(E_j|e, E_k)$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Test Your Understanding

- Decision Networks and Value of Perfect Information
- Practice problem in breakout rooms
- Work for a couple of minutes independently, but then quickly start comparing progress – even if you're not done yet.

Most Likely Explanation

HMMs: MLE Queries

HMMs defined by

- States X
- Observations E
- Initial distribution:
- Transitions:
- Emissions:

New query: most likely explanation:

$$\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$$

- New method: the Viterbi algorithm
- Question: Why not just apply filtering and predict most likely value of each variable separately?

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of all paths to each node, Viterbi computes best paths
- Exponentially many paths, but dynamic programming can find best path in linear time!

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

 $f_t[x_t] = P(x_t, e_{1:t})$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

Viterbi Algorithm (Max)

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$