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Hidden Markov Models, Particle Filtering, and VPI



Good morning colleagues!
▪ Past due:

▪ HW1-5: Search, CSPs, Games, MDP, RL
▪ 7 reading responses:  AI100 report; 8 Textbook readings
▪ P0,1,2: tutorial, Search, Multiagent
▪ Midterm  

▪ Upcoming EdX Homeworks
▪ HW6: Bayes Nets – due Monday 4/5 at 11:59 pm
▪ HW7: Sampling, HMMs, Particle Filters, and VPI – due Monday 4/12 at 11:59 pm 

▪ Upcoming programming projects
▪ P3: RL – due Wednesday 3/31 at 11:59pm
▪ P4: Bayes Nets – due Wednesday 4/14 at 11:59pm
▪ P5: Particle Filters – due Wednesday 4/21 at 11:59pm

▪ Readings: Naive Bayes and Perceptrons – Due Monday 4/5 at 9:30am
▪ Contest:  Capture the flag

▪ Qualification due 4/28 (required);  Finals 5/3 (extra credit)



Real HMM Examples

▪ Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)
▪ States are specific positions in specific words (so, tens of thousands)

▪ Machine translation HMMs:
▪ Observations are words (tens of thousands)
▪ States are translation options

▪ Robot tracking:
▪ Observations are range readings (continuous)
▪ States are positions on a map (continuous)



Filtering / Monitoring

▪ Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

▪ We start with B1(X) in an initial setting, usually uniform

▪ As time passes, or we get observations, we update B(X)

▪ The Kalman filter was invented in the 60’s and first implemented 
as a method of trajectory estimation for the Apollo program



Example: Robot Localization

t=0

Sensor model: can read in which directions there is a wall, never more than 1 
mistake

Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1

Lighter grey: was possible to get the reading, but less likely b/c required 
1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference: Base Cases

E1

X1

X2X1



Passage of Time

▪ Assume we have current belief P(X | evidence to date)

▪ Then, after one time step passes:

▪ Basic idea: beliefs get “pushed” through the transitions
▪ With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it 

includes

X2X1

▪ Or compactly:



Example: Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Observation

▪ Assume we have current belief P(X | previous evidence):

▪ Then, after evidence comes in:

▪ Or, compactly:

E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence

▪ Unlike passage of time, we have 
to renormalize



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Putting it All Together: The Forward Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…



Online Belief Updates

▪ Every time step, we start with current P(X | evidence)

▪ We update for time:

▪ We update for evidence:

▪ The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store B(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)
▪ Generally, N << |X|  (…but not in project 4)
▪ Storing map from X to counts would defeat the point

▪ P(x) approximated by number of particles with value x
▪ So, many x may have P(x) = 0! 
▪ More particles, more accuracy

▪ For now, all particles have a weight of 1

▪ Particle filtering uses three repeated steps:  
▪ Elapse time and observe (similar to exact filtering) and resample

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model

▪ Sample frequencies reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in 
another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before and 

after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight 
samples based on the evidence

▪ As before, the probabilities don’t sum to one, 
since all have been downweighted

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample

▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

▪ This essentially renormalizes the distribution

▪ Now the update is complete for this time step, 
continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Recap: Particle Filtering

▪Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

     Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Robot Localization

▪ In robot localization:
▪ We know the map, but not the robot’s position
▪ Observations may be vectors of range finder readings
▪ State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)
▪ Particle filtering is a main technique



Robot Mapping

▪ SLAM: Simultaneous Localization And Mapping
▪ We do not know the map or our location
▪ State consists of position AND map!
▪ Main techniques: Kalman filtering (Gaussian HMMs) 

and particle methods

DP-SLAM, Ron Parr



Dynamic Bayes Nets (DBNs)

▪ We want to track multiple variables over time, using multiple 
sources of evidence

▪ Idea: Repeat a fixed Bayes net structure at each time

▪ Variables from time t can condition on those from t-1

▪ Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets

▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is computed

▪ Online belief updates: Eliminate all variables from the previous time step; store factors for current 
time only

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
b

t =1 t =2 t =3

G3
b



DBN Particle Filters

▪ A particle is a complete sample for a time step

▪ Initialize: Generate prior samples for the t=1 Bayes net

▪ Example particle: G1
a = (3,3) G1

b = (5,3) 

▪ Elapse time: Sample a successor for each particle 

▪ Example successor: G2
a = (2,3) G2

b = (6,3)

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample

▪ Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

▪ Resample: Select samples (tuples of values) in proportion to their likelihood (weight)



Decision Networks

Weather

Umbrella

 U

W P(W)

sun 0.7

rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70



Decisions as Outcome Trees

▪ Almost exactly like expectimax / MDPs
▪ What’s changed?

U(t,s)

Weather | {} Weather | {}

take
leave

{}

su
n

U(t,r)

rain

U(l,s) U(l,r)

rainsu
nWeather

Umbrella

U



Example: Decision Networks

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take



Decisions as Outcome Trees

U(t,s)

W | {b} W | {b}

take
leave

su
n

U(t,r)

rain

U(l,s) U(l,r)

rainsu
n

{b}

W
eather

Forecast
=bad

Um
brella

U



Value of Information

▪ Idea: compute value of acquiring evidence
▪ Can be done directly from decision network

▪ Example: buying oil drilling rights
▪ Two blocks A and B, exactly one has oil, worth k
▪ You can drill in one location
▪ Prior probabilities 0.5 each, & mutually exclusive
▪ Drilling in either A or B has EU = k/2, MEU = k/2

▪ Question: what’s the value of information of O?
▪ Value of knowing which of A or B has oil
▪ Value is expected gain in MEU from new info
▪ Survey may say “oil in a” or “oil in b,” prob 0.5 each
▪ If we know OilLoc, MEU is k (either way)
▪ Gain in MEU from knowing OilLoc?
▪ VPI(OilLoc) = k/2
▪ Fair price of information: k/2

OilLoc

DrillLoc

U

D O U

a a k

a b 0

b a 0

b b k

O P

a 1/2

b 1/2



VPI Example: Weather

Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution

W P(W)

sun 0.7

rain 0.3

W P(W|F=bad)

sun 0.34

rain 0.66

W P(W|F=good)

sun 0.95

rain 0.05



VPI Properties

▪ Nonnegative

▪ Nonadditive 
Typically (but not always):

▪ Order-independent



Quick VPI Questions

▪ The soup of the day is either clam chowder or 
split pea, but you wouldn’t order either one.  
What’s the value of knowing which it is?

▪ There are two kinds of plastic forks at a 
picnic.  One kind is slightly sturdier.  What’s 
the value of knowing which?

▪ You’re playing the lottery.  The prize will be $0 
or $100.  You can play any number between 1 
and 100 (chance of winning is 1%).  What is 
the value of knowing the winning number?



Test Your Understanding

▪Decision Networks and Value of Perfect Information 

▪Practice problem in breakout rooms

▪Work for a couple of minutes independently, but then quickly start 
comparing progress – even if you’re not done yet.



Most Likely Explanation



HMMs: MLE Queries

▪ HMMs defined by
▪ States X
▪ Observations E
▪ Initial distribution:
▪ Transitions:
▪ Emissions:

▪ New query: most likely explanation:

▪ New method: the Viterbi algorithm

▪ Question: Why not just apply filtering and predict most 
likely value of each variable separately?

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



State Trellis

▪ State trellis: graph of states and transitions over time

▪ Each arc represents some transition
▪ Each arc has weight
▪ Each path is a sequence of states
▪ The product of weights on a path is that sequence’s probability along with the evidence
▪ Forward algorithm computes sums of all paths to each node, Viterbi computes best paths
▪ Exponentially many paths, but dynamic programming can find best path in linear time!

sun

rain

sun

rain

sun

rain

sun

rain



Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)


