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Hidden Markov Models



Good morning colleagues!

▪ Congratulations on getting past the midterm!
▪ Try not to focus on grades – focus on keeping up and learning
▪ Some context...



Good morning colleagues!
▪ Past due:

▪ HW1-5: Search, CSPs, Games, MDP, RL
▪ 7 reading responses:  AI100 report; 8 Textbook readings
▪ P0,1,2: tutorial, Search, Multiagent
▪ Midterm  

▪ Upcoming EdX Homeworks
▪ HW6: Bayes Nets – due Monday 4/5 at 11:59 pm
▪ HW7: Sampling, HMMs, Particle Filters, and VPI – due Monday 4/12 at 11:59 pm 

▪ Upcoming programming projects
▪ P3: RL – due Wednesday 3/31 at 11:59pm
▪ P4: Bayes Nets – due Wednesday 4/14 at 11:59pm
▪ P5: Particle Filters – due Wednesday 4/21 at 11:59pm

▪ Readings: Naive Bayes and Perceptrons – Due Monday 4/5 at 9:30am
▪ Contest:  Capture the flag

▪ Qualification due 4/28 (required);  Finals 5/3 (extra credit)



Reasoning over Time or Space

▪ Often, we want to reason about a sequence of observations

▪ Speech recognition

▪ Robot localization

▪ User attention

▪ Medical monitoring

▪ Need to introduce time (or space) into our models



Markov Models

▪ Value of X at a given time is called the state

▪ Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

▪ Stationarity assumption: transition probabilities the same at all times
▪ Same as MDP transition model, but no choice of action

X2X1 X3 X4



Joint Distribution of a Markov Model

▪ Joint distribution:

▪ More generally:

X2X1 X3 X4



Implied Conditional Independencies

▪We assumed:                                 and

▪Do we also have?  
▪Yes! D-Separation

▪Or, Proof:

X2X1 X3 X4



Example Markov Chain: Weather

▪ States: X = {rain, sun}
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Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ CPT P(Xt | Xt-1):



Example Markov Chain: Weather

▪ Initial distribution: 0.6 sun / 0.4 rain

▪What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

= 0.9 * 0.6 + 0.3 * 0.4   =   0.66



Mini-Forward Algorithm

▪ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

Recursion



Example Run of Mini-Forward Algorithm

▪ From initial observation of sun

From initial observation of rain

From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)

…



▪ Stationary distribution:
▪ The distribution we end up with is called 

the stationary distribution           of the 
chain

▪ It satisfies

Stationary Distributions

▪ For most chains:
▪ Influence of the initial distribution gets 

less and less over time.
▪ The distribution we end up in is 

independent of the initial distribution



Example: Stationary Distributions

▪ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:

Remember:

Also:



Hidden Markov Models

▪ Markov chains not so useful for most agents
▪ Need observations to update your beliefs

▪ Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X
▪ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

▪An HMM is defined by:
▪Initial distribution:
▪Transitions:
▪Emissions:



Test Your Understanding

▪Hidden Markov Models

▪Practice problem in breakout rooms
▪Work for a couple of minutes independently, but then quickly start 

comparing progress – even if you’re not done yet.



Joint Distribution of an HMM

▪ Joint distribution:

▪ More generally:

X5X2

E1

X1 X3

E2 E3 E5



Implied Conditional Independencies

▪Many implied conditional independencies, e.g.,

▪To prove them
▪ Approach 1: follow similar (algebraic) approach to what we did for Markov models

▪ Approach 2: D-Separation

X2

E1

X1 X3

E2 E3



Some of Your Questions

▪ Normalization when calculating probabilities
▪ Markov Model/Chain vs. Markov Decision Process (MDP) vs. Hidden Markov Model (HMM)?
▪ Filtering vs. Smoothing (vs. Prediction vs. Most Likely Explanation vs. Learning)?
▪ Bayes Net vs. Dynamic Bayes Net  (DBN)     (vs. HMM)?
▪ Is the Markov assumption reasonable?
▪ How are state variables chosen? (Philip Zeng)

● Should we limit the number?  Can you test if one is useful? (Colette Montminy)
▪ Since Markov Models depend on Bayesian principles can there be cycles in the graphs? (Lilia Li)
▪ Real-world applications of HMMs?



Real HMM Examples

▪ Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)
▪ States are specific positions in specific words (so, tens of thousands)

▪ Machine translation HMMs:
▪ Observations are words (tens of thousands)
▪ States are translation options

▪ Robot tracking:
▪ Observations are range readings (continuous)
▪ States are positions on a map (continuous)


