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Tuesday	In-Class	Exercises



D-separation:	Outline



D-separation:	Outline

▪ Study	independence	properties	for	triples	

▪ Analyze	complex	cases	in	terms	of	member	triples	

▪ D-separation:	a	condition	/	algorithm	for	answering	such	
queries



Causal	Chains

▪ This	configuration	is	a	“causal	chain”

X:	Low	pressure							Y:	Rain																Z:	Traffic

▪ Guaranteed	X	independent	of	Z	?			No!	
▪ One	example	set	of	CPTs	for	which	X	is	not	

independent	of	Z	is	sufficient	to	show	this	
independence	is	not	guaranteed.	

▪ Example:	
▪ Low	pressure	causes	rain	causes	traffic,	
				high	pressure	causes	no	rain	causes	no		
				traffic	

▪ In	numbers:	
		
				P(	+y	|	+x	)	=	1,	P(	-y	|	-	x	)	=	1,	
				P(	+z	|	+y	)	=	1,	P(	-z	|	-y	)	=	1	



Causal	Chains

▪ This	configuration	is	a	“causal	chain” ▪ Guaranteed	X	independent	of	Z	given	Y?	

▪ Evidence	along	the	chain	“blocks”			the	
influence

Yes!

X:	Low	pressure							Y:	Rain																Z:	Traffic



Common	Cause

▪ This	configuration	is	a	“common	cause” ▪ Guaranteed	X	independent	of	Z	?			No!	
▪ One	example	set	of	CPTs	for	which	X	is	not	

independent	of	Z	is	sufficient	to	show	this	
independence	is	not	guaranteed.	

▪ Example:	
▪ Project	due	causes	both	forums	busy		
					and	lab	full		

▪ In	numbers:	
		
					P(	+x	|	+y	)	=	1,	P(	-x	|	-y	)	=	1,	
						P(	+z	|	+y	)	=	1,	P(	-z	|	-y	)	=	1	

Y:	Project	
due

X:	Forums	
busy Z:	Lab	full



Common	Cause

▪ This	configuration	is	a	“common	cause” ▪ Guaranteed	X	and	Z	independent	given	Y?	

▪ Observing	the	cause	blocks	influence	
between	effects.	

Yes!

Y:	Project	
due

X:	Forums	
busy Z:	Lab	full



Common	Effect

▪ Last	configuration:	two	causes	of	one	
effect	(v-structures)

Z:	Traffic

▪ Are	X	and	Y	independent?	
▪ Yes:	the	ballgame	and	the	rain	cause	traffic,	but	they	

are	not	correlated	
▪ Still	need	to	prove	they	must	be	(try	it!)	

▪ Are	X	and	Y	independent	given	Z?	

▪ No:	seeing	traffic	puts	the	rain	and	the	ballgame	in	
competition	as	explanation.	

▪ This	is	backwards	from	the	other	cases	
▪ Observing	an	effect	activates	influence	between	

possible	causes.	

X:	Raining Y:	Ballgame



The	General	Case



The	General	Case

▪ General	question:	in	a	given	BN,	are	two	variables	independent	
(given	evidence)?	

▪ Solution:	analyze	the	graph	

▪ Any	complex	example	can	be	broken	
				into	repetitions	of	the	three	canonical	cases



Active	/	Inactive	Paths

▪ Question:	Are	X	and	Y	conditionally	independent	given	
evidence	variables	{Z}?	
▪ Yes,	if	X	and	Y	“d-separated”	by	Z	
▪ Consider	all	(undirected)	paths	from	X	to	Y	

▪ No	active	paths	=	conditional	independence!	

▪ A	path	is	active	if	each	triple	is	active:	
▪ Causal	chain	A	→ B	→ C	where	B	is	unobserved	(either	direction)	
▪ Common	cause	A	← B	→ C	where	B	is	unobserved	
▪ Common	effect	(aka	v-structure)	
	 A	→ B	← C	where	B	or	one	of	its	descendants	is	observed	
	 	

▪ All	it	takes	to	block	a	path	is	a	single	inactive	segment	

	

Active	Triples Inactive	Triples



▪ Query:	 	

▪ Check	all	(undirected!)	paths	between								and		

▪ If	one	or	more	active,	then	independence	not	guaranteed	

				

▪ Otherwise	(i.e.	if	all	paths	are	inactive),	
				then	independence	is	guaranteed

D-Separation

?



Example

Yes
R

T

B

T’

Not	guaranteed

Not	guaranteed



Example

▪ Variables:	
▪ R:	Raining	
▪ T:	Traffic	
▪ D:	Roof	drips	
▪ S:	I’m	sad	

▪ Questions:

T

S

D

R

Not	guaranteed

Yes

Not	guaranteed



Tuesday	In-Class	Exercises



Structure	Implications

▪ Given	a	Bayes	net	structure,	can	run	d-
separation	algorithm	to	build	a	complete	list	of	
conditional	independences	that	are	necessarily	
true	of	the	form	

▪ This	list	determines	the	set	of	probability	
distributions	that	can	be	represented	



Computing	All	Independences
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None!



X
Y

Z

Topology	Limits	Distributions

▪ Given	some	graph	topology	
G,	only	certain	joint	
distributions	can	be	encoded	

▪ The	graph	structure	
guarantees	certain	
(conditional)	independences	

▪ (There	might	be	more	
independence)	

▪ Adding	arcs	increases	the	set	
of	distributions,	but	has	
several	costs	

▪ Full	conditioning	can	encode	
any	distribution

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z



Bayes	Nets	Representation	Summary

▪ Bayes	nets	compactly	encode	joint	distributions	

▪ Guaranteed	independencies	of	distributions	can	be	deduced	
from	BN	graph	structure	

▪ D-separation	gives	precise	conditional	independence	
guarantees	from	graph	alone	

▪ A	Bayes	net’s	joint	distribution	may	have	further	
(conditional)	independence	that	is	not	detectable	until	you	
inspect	its	specific	distribution



▪ Examples:	
▪ Posterior	probability	

▪ Most	likely	explanation:

Inference

▪ Inference:	calculating	some	useful	
quantity	from	a	joint	probability	
distribution



Inference	by	Enumeration
▪ General	case:	

▪ Evidence	variables:		
▪ Query*	variable:	
▪ Hidden	variables:

All	variables

*	Works	fine	with	
multiple	query	
variables,	too

▪ We	want:	

▪ Step	1:	Select	the	
entries	consistent	with	
the	evidence

▪ Step	2:	Sum	out	H	to	get	joint	of	
Query	and	evidence

▪ Step	3:	Normalize	



Inference	by	Enumeration

▪ P(W)?	
p(W=sun)   =   0.3 + 0.1 + 0.1 + 0.15   =   0.65 
p(W=rain)   =   0.05 + 0.05 + 0.05 + 0.2   =   0.35 

▪ P(W	|	winter)?	
p(W=sun , winter)   =   0.1 + 0.15   =   0.25 
p(W=rain , winter)   =   0.05 + 0.2   =   0.25 
p(W=sun | winter)   =   0.25 / (0.25 + 0.25)   =   0.5 
p(W=rain | winter)   =   0.25 / (0.25 + 0.25)   =   0.5 
  

▪ P(W	|	winter,	hot)?	
p(W=sun , winter, hot)   =   0.1 
p(W=rain , winter, hot)   =   0.05 
p(W=sun | winter, hot)   =   0.1 / (0.1 + 0.05)   =   2/3 
p(W=rain | winter, hot)   =   0.05 / (0.1 + 0.05)   =   1/3

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



▪ Obvious	problems:	
▪ Worst-case	time	complexity	O(dn)		
▪ Space	complexity	O(dn)	to	store	the	joint	distribution	

▪ What	about	continuous	distributions?

Inference	by	Enumeration



Inference	by	Enumeration	vs.	Variable	Elimination
▪ Why	is	inference	by	enumeration	so	slow?	

▪ You	join	up	the	whole	joint	distribution	before	
you	sum	out	the	hidden	variables

▪ Idea:	interleave	joining	and	marginalizing!	
▪ Called	“Variable	Elimination”	
▪ Still	NP-hard,	but	usually	much	faster	than	

inference	by	enumeration	

▪ First	we’ll	need	some	new	notation:	factors	



Factor	Zoo



Factor	Zoo	I

▪ Joint	distribution:	P(X,Y)	
▪ Entries	P(x,y)	for	all	x,	y	
▪ Sums	to	1	

▪ Selected	joint:	P(x,Y)	
▪ A	slice	of	the	joint	distribution	
▪ Entries	P(x,y)	for	fixed	x,	all	y	
▪ Sums	to	P(x)	

▪ Number	of	capitals	=	
dimensionality	of	the	table

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

cold sun 0.2

cold rain 0.3



Factor	Zoo	II

▪ Single	conditional:	P(Y	|	x)	
▪ Entries	P(y	|	x)	for	fixed	x,	all	y	
▪ Sums	to	1	

▪ Family	of	conditionals:		
	 P(Y	|	X)	

▪ Multiple	conditionals	
▪ Entries	P(y	|	x)	for	all	x,	y	
▪ Sums	to	|X|

T W P

hot sun 0.8

hot rain 0.2

cold sun 0.4

cold rain 0.6

T W P

cold sun 0.4

cold rain 0.6



Factor	Zoo	III

▪ Specified	family:	P(	y	|	X	)	
▪ Entries	P(y	|	x)	for	fixed	y,	
	 but	for	all	x	
▪ Sums	to	…	who	knows!

T W P

hot rain 0.2

cold rain 0.6



Operation	1:	Join	Factors

▪ First	basic	operation:	joining	factors	
▪ Combining	factors:	

▪ Get	all	factors	over	the	joining	variable	
▪ Build	a	new	factor	over	the	union	of	the	variables	involved	

▪ Example:	Join	on	R	

▪ Computation	for	each	entry:	pointwise	products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

T

R

R,T



Operation	2:	Eliminate

▪ Second	basic	operation:	marginalization	

▪ Take	a	factor	and	sum	out	a	variable	

▪ Shrinks	a	factor	to	a	smaller	one	
▪ A	projection	operation	

▪ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Inference	by	Enumeration:	Procedural	Outline

▪ Track	objects	called	factors	
▪ Initial	factors	are	local	CPTs	(one	per	node)	

▪ Any	known	values	are	selected	
▪ E.g.	if	we	know																		,									then	the	initial	factors	are:	

▪ Procedure:	Join	all	factors,	then	eliminate	all	hidden	variables

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



Thus	Far:	Multiple	Join,	Multiple	Eliminate	(=	Inference	by	Enumeration)



Marginalizing	Early	(=	Variable	Elimination)



Traffic	Domain

▪ Inference	by	EnumerationT

L

R

▪ Variable	Elimination	

Join	on	rJoin	on	r

Join	on	t

Join	on	t

Eliminate	r

Eliminate	t

Eliminate	r

Eliminate	t



General	Variable	Elimination

▪ Query:	

▪ Start	with	initial	factors:	
▪ Local	CPTs	(but	instantiated	by	evidence)	

▪ While	there	are	still	hidden	variables	(not	Q	
or	evidence):	
▪ Pick	a	hidden	variable	H	
▪ Join	all	factors	mentioning	H	
▪ Eliminate	(sum	out)	H	

▪ Join	all	remaining	factors	and	normalize



Variable	Elimination	Ordering

▪ For	the	query	P(Xn	|	y1,…,yn)	work	through	the	following	two	different	orderings:	Z,	X1,	
…,	Xn-1	and	X1,	…,	Xn-1,	Z.		What	is	the	size	of	the	maximum	factor	generated	for	each	of	
the	orderings?	

▪ Answer:	2n+1	versus	22	(assuming	binary)	

▪ In	general:	the	ordering	can	greatly	affect	efficiency.		

…

…



VE:	Computational	and	Space	Complexity

▪ All	we	are	doing	is	changing	the	ordering	of	the	variables	that	are	eliminated…	

▪ …but	it	can	(sometimes)	reduce	storage	and	complexity	to	linear	w.r.t.	number	of	
variables!	

▪ The	computational	and	space	complexity	of	variable	elimination	is	determined	by	the	
largest	factor	

▪ The	elimination	ordering	can	greatly	affect	the	size	of	the	largest	factor.			
▪ E.g.,	previous	slide’s	example	2n	vs.	2	

▪ Does	there	always	exist	an	ordering	that	only	results	in	small	factors?	
▪ No!



Worst	Case	Complexity?
▪ CSP:			

▪ If	we	can	answer	P(z)	equal	to	zero	or	not,	we	answered	whether	the	3-SAT	problem	has	a	solution.	

▪ Hence	inference	in	Bayes	nets	is	NP-hard.		No	known	efficient	probabilistic	inference	in	general.

…

…



Bayes	Nets

▪ Representation	

▪ Conditional	Independences	

▪ Probabilistic	Inference	

▪ Enumeration	(exact,	exponential	complexity)	

▪ Variable	elimination	(exact,	worst-case	
exponential	complexity,	often	better)	

▪ Inference	is	NP-complete	

▪ Sampling	(approximate)	

▪ Learning	Bayes	Nets	from	Data


