## CS 343: Artificial Intelligence

### Bayes Nets: Representation & Independence



#### Profs. Peter Stone and Yuke Zhu — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

#### Announcements

- Past Dues
  - HW1-4: Search, CSPs, Games, MDPs
  - 8 reading responses: Al100 report; 7 Textbook readings
  - P0,1, 2: tutorial, Search, Games
- Upcoming EdX Homeworks
  - HW5: RL due Monday 3/22 at 11:59 pm
  - HW6: Bayes Nets due Monday 4/5 at 11:59 pm
- Upcoming Programming Projects
  - P3: RL due Wednesday 3/31 at 11:59pm
- Midterm Exam
  - Thursday 3/25 or so (Materials up to this week)

# CS343 Outline

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
  - Search
  - Constraint Satisfaction Problems
  - Games
  - Markov Decision Problems
  - Reinforcement Learning
- Next up: Uncertainty and Learning!



# CS343 Outline

- We're done with Part I: Search and Planning!
- Part II: Probabilistic Reasoning
  - Diagnosis
  - Speech recognition
  - Tracking objects
  - Robot mapping
  - Genetics
  - Error correcting codes
  - In the second second
- Part III: Machine Learning



## **Probability Recap**

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

• Product rule P(x,y) = P(x|y)P(y)

• Chain rule 
$$P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$
  
 $= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$ 

- X, Y independent if and only if:  $\forall x, y : P(x, y) = P(x)P(y) \quad X \perp \!\!\!\perp Y$
- X and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \qquad X \perp Y | Z$$

# **Probabilistic Models**

- Models describe how (a portion of) the world works
- Models are always simplifications
  - May not account for every variable
  - May not account for all interactions between variables
  - "All models are wrong; but some are useful."
     George E. P. Box



- What do we do with probabilistic models?
  - We (or our agents) need to reason about unknown variables, given evidence
  - Example: explanation (diagnostic reasoning)
  - Example: prediction (causal reasoning)
  - Example: value of information

# **Probabilistic Models**

cold

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
  - (Random) variables with domains
  - Assignments are called *outcomes*
  - Joint distributions: say whether assignments (outcomes) are likely
  - Normalized: sum to 1.0
  - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
  - Variables with domains
  - Constraints: state whether assignments are possible
  - Ideally: only certain variables directly interact

| Т    | W    | Ρ   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |

rain

0.3

Distribution over T,W

#### Constraint over T,W

| Т    | W    | Р |
|------|------|---|
| hot  | sun  | Т |
| hot  | rain | F |
| cold | sun  | F |
| cold | rain | Т |





# **Bayes Nets: Big Picture**

- Two problems with using full joint distribution tables as our probabilistic models:
  - Unless there are only a few variables, the joint is WAY too big to represent explicitly
  - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
  - More properly called graphical models
  - We describe how variables locally interact
  - Local interactions chain together to give global, indirect interactions
  - For about 10 min, we'll be vague about how these interactions are specified





#### **Example Bayes Net: Insurance**



#### **Example Bayes Net: Diagnosis**



# **Graphical Model Notation**



## Example: Alarm Network

- Variables
  - B: Burglary
  - A: Alarm goes off
  - M: Mary calls
  - J: John calls
  - E: Earthquake!





#### **Bayes Net Semantics**



# **Bayes Net Semantics**



- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
  - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$ 

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities



# **Probabilities in BNs**



- Bayes nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:



P(+cavity, +catch, -toothache)

# **Probabilities in BNs**



Why are we guaranteed that setting

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

Chain rule (valid for all distributions): 

 $\rightarrow$ 

id for all distributions): 
$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$
  
cional independences: 
$$P(x_i | x_1, \dots x_{i-1}) = P(x_i | parents(X_i))$$
  
Consequence: 
$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
  - The topology enforces certain conditional independencies

### Example: Alarm Network



![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -е | +a | 0.94     |
| +b | -е | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -е | +a | 0.001    |
| -b | -е | -a | 0.999    |

### **Example: Alarm Network**

![](_page_17_Figure_1.jpeg)

## Example: Traffic

Causal direction

![](_page_18_Picture_2.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_18_Figure_4.jpeg)

P(T,R)

| +r | +t | 3/16 |
|----|----|------|
| +r | -t | 1/16 |
| -r | +t | 6/16 |
| -r | -t | 6/16 |

## Example: Reverse Traffic

Reverse causality?

![](_page_19_Picture_2.jpeg)

![](_page_19_Figure_3.jpeg)

P(T,R)

| +r | +t | 3/16 |
|----|----|------|
| +r | -t | 1/16 |
| -r | +t | 6/16 |
| -r | -t | 6/16 |

# Causality?

#### • When Bayes nets reflect the true causal patterns:

- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts

#### BNs need not actually be causal

- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables *Traffic* and *Roof Drips*
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
  - Topology may happen to encode causal structure
  - Topology really encodes conditional independence

 $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$ 

![](_page_20_Picture_13.jpeg)

## **Bayes Nets**

- So far: how a Bayes net encodes a joint distribution
- Next: how to answer queries about that distribution
  - Today:
    - First assembled BNs using an intuitive notion of conditional independence as causality
    - Then saw that key property is conditional independence
  - Main goal: answer queries about conditional independence and influence
- Thursday: how to answer numerical queries (inference)

![](_page_21_Picture_8.jpeg)

# Size of a Bayes Net

- How big is a joint distribution over N Boolean variables?
  - 2<sup>N</sup>
- How big is an N-node net if nodes have up to k parents?
  - O(N \* 2<sup>k+1</sup>)

- Both give you the power to calculate
  - $P(X_1, X_2, \ldots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

![](_page_22_Picture_10.jpeg)

![](_page_22_Picture_11.jpeg)

### **Bayes Nets: Assumptions**

 Assumptions we are required to make to define the Bayes net when given the graph:

 $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$ 

- Beyond above "chain rule → Bayes net" conditional independence assumptions:
  - Often additional conditional independences
  - They can be inferred from the graph structure
- Important for modeling: understand assumptions made when choosing a Bayes net graph

![](_page_23_Picture_7.jpeg)

## Example

$$(x) \rightarrow (y) \rightarrow (z) \rightarrow (w)$$

• Conditional independence assumptions directly from simplifications in chain rule: Standard chain rule: p(x, y, z, w) = p(x)p(y|x)p(z|x, y)p(w|x, y, z)

Bayes net:

Since:

- p(x, y, z, w) = p(x)p(y|x)p(z|y)p(w|z)  $z \perp x \mid y \text{ and } w \perp x, y \mid z \text{ (cond. indep. given parents)}$
- Additional implied conditional independence assumptions?

$$p(w|x, y) = \frac{p(w, x, y)}{p(x, y)} = \frac{\sum_{z} p(x)p(y|x)p(z|y)p(w|z)}{p(x)p(y|x)} = \sum_{z} p(z|y)p(w|z) = \sum_{z} p(z|y)p(w|z, y)$$
$$= \sum_{z} p(z, w|y) = p(w|y)$$

## Independence in a BN

- Important question about a BN:
  - Are two nodes independent given certain evidence?
  - If yes, can prove using algebra (tedious in general)
  - If no, can prove with a counter example
  - Example:

![](_page_25_Picture_6.jpeg)

- Question: are X and Z necessarily independent?
  - Answer: no. Example: low pressure causes rain, which causes traffic.
  - X can influence Z, Z can influence X (via Y)
  - Addendum: they *could* be independent: how?

### **Bayes Nets**

- Representation
  Conditional Independences
  - Probabilistic Inference
    - Enumeration (exact, exponential complexity)
    - Variable elimination (exact, worst-case exponential complexity, often better)
    - Probabilistic inference is NP-complete
    - Sampling (approximate)
  - Learning Bayes' Nets from Data