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Announcements

▪ Past	Dues	
▪ HW1-4:	Search,	CSPs,	Games,	MDPs	
▪ 8	reading	responses:	AI100	report;	7	Textbook	readings	
▪ P0,1,	2:	tutorial,	Search,	Games	

▪ Upcoming	EdX	Homeworks	
▪ HW5:	RL	–	due	Monday	3/22	at	11:59	pm	
▪ HW6:	Bayes	Nets	–	due	Monday	4/5	at	11:59	pm	

▪ Upcoming	Programming	Projects	
▪ P3:	RL	–	due	Wednesday	3/31	at	11:59pm	

▪ Midterm	Exam	
▪ Thursday	3/25	or	so	(Materials	up	to	this	week)



CS343	Outline

▪ We’re	done	with	Part	I:	Search	and	Planning!	

▪ We’ve	seen	how	AI	methods	can	solve	
problems	in:	
▪ Search	
▪ Constraint	Satisfaction	Problems	
▪ Games	
▪ Markov	Decision	Problems	
▪ Reinforcement	Learning	

▪ Next	up:	Uncertainty	and	Learning!



CS343	Outline

▪ We’re	done	with	Part	I:	Search	and	Planning!	

▪ Part	II:	Probabilistic	Reasoning	
▪ Diagnosis	
▪ Speech	recognition	
▪ Tracking	objects	
▪ Robot	mapping	
▪ Genetics	
▪ Error	correcting	codes	
▪ …	lots	more!	

▪ Part	III:	Machine	Learning



Probability	Recap

▪ Conditional	probability	

▪ Product	rule	

▪ Chain	rule		

▪ X,	Y	independent	if	and	only	if:	

▪ X	and	Y	are	conditionally	independent	given	Z	if	and	only	if:



Probabilistic	Models

▪ Models	describe	how	(a	portion	of)	the	world	works	

▪ Models	are	always	simplifications	
▪ May	not	account	for	every	variable	
▪ May	not	account	for	all	interactions	between	variables	
▪ “All	models	are	wrong;	but	some	are	useful.”	

					–	George	E.	P.	Box	

▪ What	do	we	do	with	probabilistic	models?	
▪ We	(or	our	agents)	need	to	reason	about	unknown	

variables,	given	evidence	
▪ Example:	explanation	(diagnostic	reasoning)	
▪ Example:	prediction	(causal	reasoning)	
▪ Example:	value	of	information



Probabilistic	Models

▪ A	probabilistic	model	is	a	joint	distribution	
over	a	set	of	random	variables	

▪ Probabilistic	models:	
▪ (Random)	variables	with	domains		
▪ Assignments	are	called	outcomes	
▪ Joint	distributions:	say	whether	assignments	

(outcomes)	are	likely	
▪ Normalized:	sum	to	1.0	
▪ Ideally:	only	certain	variables	directly	interact	

▪ Constraint	satisfaction	problems:	
▪ Variables	with	domains	
▪ Constraints:	state	whether	assignments	are	

possible	
▪ Ideally:	only	certain	variables	directly	interact
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Bayes	Nets:	Big	Picture

▪ Two	problems	with	using	full	joint	distribution	tables	as	
our	probabilistic	models:	
▪ Unless	there	are	only	a	few	variables,	the	joint	is	WAY	too	big	

to	represent	explicitly	
▪ Hard	to	learn	(estimate)	anything	empirically	about	more	than	

a	few	variables	at	a	time	

▪ Bayes	nets:	a	technique	for	describing	complex	joint	
distributions	(models)	using	simple,	local	distributions	
(conditional	probabilities)	
▪ More	properly	called	graphical	models	
▪ We	describe	how	variables	locally	interact	
▪ Local	interactions	chain	together	to	give	global,	indirect	

interactions	
▪ For	about	10	min,	we’ll	be	vague	about	how	these	interactions	

are	specified



Example	Bayes	Net:	Insurance



Example	Bayes	Net:	Diagnosis



Graphical	Model	Notation

▪ Nodes:	variables	(with	domains)	
▪ Can	be	assigned	(observed)	or	unassigned	

(unobserved)	

▪ Arcs:	interactions	
▪ Similar	to	CSP	constraints	
▪ Indicate	“direct	influence”	between	variables	
▪ Formally:	encode	conditional	independence	

(more	later)	

▪ For	now:	imagine	that	arrows	mean	direct	
causation	(in	general,	they	don’t!)



Example:	Alarm	Network

▪ Variables	
▪ B:	Burglary	
▪ A:	Alarm	goes	off	
▪ M:	Mary	calls	
▪ J:	John	calls	
▪ E:	Earthquake!

B

A

M J

E



Bayes	Net	Semantics



Bayes	Net	Semantics

▪ A	set	of	nodes,	one	per	variable	X	

▪ A	directed,	acyclic	graph	

▪ A	conditional	distribution	for	each	node	

▪ A	collection	of	distributions	over	X,	one	for	each	
combination	of	parents’	values	

▪ CPT:	conditional	probability	table	
▪ Description	of	a	noisy	“causal”	process

A1

X

An

A	Bayes	net	=	Topology	(graph)	+	Local	Conditional	Probabilities



Probabilities	in	BNs

▪ Bayes	nets	implicitly	encode	joint	distributions	

▪ As	a	product	of	local	conditional	distributions	
▪ To	see	what	probability	a	BN	gives	to	a	full	assignment,	multiply	all	the	

relevant	conditionals	together:	

▪ Example:



Probabilities	in	BNs

▪ Why	are	we	guaranteed	that	setting	

				results	in	a	proper	joint	distribution?			

▪ Chain	rule	(valid	for	all	distributions):		

▪ Assume	conditional	independences:		

	     à Consequence:	

▪ Not	every	BN	can	represent	every	joint	distribution	

▪ The	topology	enforces	certain	conditional	independencies



Example:	Alarm	Network

Burglary Earthqk

Alarm

John	
calls

Mary	
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

P(+b, -e, +a, -j, +m) = ?



Example:	Alarm	Network
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Example:	Traffic

▪ Causal	direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example:	Reverse	Traffic

▪ Reverse	causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Causality?

▪ When	Bayes	nets	reflect	the	true	causal	patterns:	
▪ Often	simpler	(nodes	have	fewer	parents)	
▪ Often	easier	to	think	about	
▪ Often	easier	to	elicit	from	experts	

▪ BNs	need	not	actually	be	causal	
▪ Sometimes	no	causal	net	exists	over	the	domain	(especially	

if	variables	are	missing)	
▪ E.g.	consider	the	variables	Traffic	and	Roof	Drips	
▪ End	up	with	arrows	that	reflect	correlation,	not	causation	

▪ What	do	the	arrows	really	mean?	
▪ Topology	may	happen	to	encode	causal	structure	
▪ Topology	really	encodes	conditional	independence



Bayes	Nets

▪ So	far:	how	a	Bayes	net	encodes	a	joint	
distribution	

▪ Next:	how	to	answer	queries	about	that	
distribution	
▪ Today:		

▪ First	assembled	BNs	using	an	intuitive	notion	of	conditional	
independence	as	causality	

▪ Then	saw	that	key	property	is	conditional	independence	
▪ Main	goal:	answer	queries	about	conditional	

independence	and	influence		

▪ Thursday:	how	to	answer	numerical	queries	
(inference)



Size	of	a	Bayes	Net

▪ How	big	is	a	joint	distribution	over	N	
Boolean	variables?	

• 2N	

▪ How	big	is	an	N-node	net	if	nodes	
have	up	to	k	parents?	

• O(N	*	2k+1)

▪ Both	give	you	the	power	to	calculate	

▪ BNs:	Huge	space	savings!	
▪ Also	easier	to	elicit	local	CPTs	
▪ Also	faster	to	answer	queries	(coming)	 	



Bayes	Nets:	Assumptions

▪ Assumptions	we	are	required	to	make	to	define	the	Bayes	
net	when	given	the	graph:	

▪ Beyond	above	“chain	rule	à Bayes	net”	conditional	
independence	assumptions:		

▪ Often	additional	conditional	independences	

▪ They	can	be	inferred	from	the	graph	structure	

▪ Important	for	modeling:	understand	assumptions	made	
when	choosing	a	Bayes	net	graph



Example

▪ Conditional	independence	assumptions	directly	from	simplifications	in	chain	rule:	

▪ Additional	implied	conditional	independence	assumptions?

X Y Z W

p(x, y, z, w) = p(x)p(y|x)p(z|x, y)p(w|x, y, z)
p(x, y, z, w) = p(x)p(y|x)p(z|y)p(w|z)

Standard chain rule:

Bayes net:

Since: z y x | y w y x, y | zand (cond. indep. given parents) 

w y x | y

p(w|x, y) p(w, x, y)
p(x, y)

P
z p(x)p(y|x)p(z|y)p(w|z)

p(x)p(y|x)

X

z

p(z|y)p(w|z)
X

z

p(z|y)p(w|z, y)

X

z

p(z,w|y) p(w|y)

= = = =

= =



Independence	in	a	BN

▪ Important	question	about	a	BN:	
▪ Are	two	nodes	independent	given	certain	evidence?	
▪ If	yes,	can	prove	using	algebra	(tedious	in	general)	
▪ If	no,	can	prove	with	a	counter	example	
▪ Example:	

▪ Question:	are	X	and	Z	necessarily	independent?	
▪ Answer:	no.		Example:	low	pressure	causes	rain,	which	causes	traffic.	
▪ X	can	influence	Z,	Z	can	influence	X	(via	Y)	
▪ Addendum:	they	could	be	independent:	how?

X Y Z



Bayes	Nets

▪ Representation	

▪ Conditional	Independences	

▪ Probabilistic	Inference	
▪ Enumeration	(exact,	exponential	complexity)	
▪ Variable	elimination	(exact,	worst-case	
	 	 exponential	complexity,	often	better)	
▪ Probabilistic	inference	is	NP-complete	
▪ Sampling	(approximate)	

▪ Learning	Bayes’	Nets	from	Data


