
CS 343: Artificial Intelligence
Reinforcement Learning II

Profs. Peter Stone and Yuke Zhu, The University of Texas at Austin
[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

▪ Past due:
▪ HW1-3: Search, CSPs, Games
▪ 7 reading responses: AI100 report; 6 Textbook readings
▪ P0,1, 2: tutorial, Search, Games

▪ Upcoming EdX Homeworks
▪ HW4: MDPs - due Monday 3/8 at 11:59 pm
▪ HW5: RL – due Monday 3/22 at 11:59 pm
▪ HW6: Bayes Nets – due Monday 4/5 at 11:59 pm

▪ Upcoming programming projects
▪ P3: RL – due Wednesday 3/31 at 11:59pm

▪ Readings: Bayes Nets – Due Monday 3/8 at 9:30am
▪ Midterm – end of week after spring break (3/25 or so)

▪ Material up through and including Bayes Nets

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

▪ However, if we want to turn values into a (new) policy, we’re sunk:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Active Reinforcement Learning

▪ Full reinforcement learning: optimal policies (like value iteration)
▪ You don’t know the transitions T(s,a,s’)
▪ You don’t know the rewards R(s,a,s’)
▪ You choose the actions now
▪ Goal: learn the optimal policy / values

▪ In this case:
▪ Learner makes choices!
▪ Fundamental tradeoff: exploration vs. exploitation
▪ This is NOT offline planning! You actually take actions in the world and find

out what happens…

Detour: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values
▪ Start with V0(s) = 0, which we know is right
▪ Given Vk, calculate the depth k+1 values for all states:

▪ But Q-values are more useful, so compute them instead
▪ Start with Q0(s,a) = 0, which we know is right
▪ Given Qk

Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go
▪ Receive a sample (s,a,s’,r)
▪ Consider your old estimate:
▪ Consider your new sample estimate:

▪

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even if you’re
acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:
▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

… but not decrease it too quickly

Basically, in the limit, it doesn’t matter how you select actions (!)

Test Your Understanding

▪MDPs and RL

▪Q-learning:

▪Sarsa: ??

▪Practice problem in breakout rooms

▪Work for a couple of minutes independently, but then quickly start
comparing progress – even if you’re not done yet.

Exploration vs. Exploitation

How to Explore?

▪Several schemes for forcing exploration
▪Simplest: random actions (e-greedy)

▪Every time step, flip a coin
▪With (small) probability e, act randomly
▪With (large) probability 1-e, act on current policy

▪Problems with random actions?
▪You do eventually explore the space, but keep

thrashing around once learning is done
▪One solution: lower e over time
▪Another solution: exploration functions

Exploration Functions

▪ When to explore?
▪ Random actions: explore a fixed amount
▪ Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

▪ Exploration function
Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

Softmax Exploration

▪ Base exploration on estimated action goodness
▪ A “soft” version of e-greedy

▪ Choose better actions exponentially more often

▪ Temperature parameter controls preference strength

▪ Can decrease temperature over time for greedier selection

▪ Good initialization / outcome ordering still affects
efficiency, but can’t permanently ruin exploration

Regret

▪ Even if you learn the optimal policy, you
still make mistakes along the way!

▪ Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

▪ Minimizing regret goes beyond learning to
be optimal – it requires optimally learning
to be optimal

▪ Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret (usually)

Some of Your Questions
▪ Difference between MDPs and RL
▪ Q-learning vs. SARSA

 What makes Q-learning “off-policy”?
▪ Model-based vs. Model-free – which is better?
▪ Passive learning vs. active learning – when would you use each?

 TD vs. Q-learning
▪ When should the agent stop learning?
▪ How does RL relate to “machine learning” and “deep learning”? (Vishal Tak)
▪ How do you know when your model is accurate enough to start using it? (Aditya Gupta)
▪ After learning in one environment, does an RL agent work in another? (Rudraksh Garg)
▪ Are there methods between Monte Carlo and TD that update after arbitrary steps? (Conrad Li)
▪ Is RL possible without rewards? (Ramya Prasad)
▪ Do the algorithms still work if there’s more than one agent? (Michael Rodriguez-Labarca)
▪ How much has RL progressed since the book was written 10 years ago? (Ethan Houston)

 Was more powerful computing necessary for these advances? (Dale Kang)

Approximate Q-Learning

Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values

▪ In realistic situations, we cannot possibly learn about
every single state!
▪ Too many states to visit them all in training
▪ Too many states to hold the q-tables in memory
▪ States may even be continuous, not discrete

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from

experience
▪ Generalize that experience to new, similar situations
▪ This is a fundamental idea in machine learning, and we’ll see

it over and over again

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

▪ Solution: describe a state using a vector of features
(properties)
▪ Features are functions from states to real numbers (often

0/1) that capture important properties of the state
▪ Example features:

▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were activated:

lower the value of all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Policy Search

Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V / Q best
▪ E.g. your evaluation functions from project 2 were probably horrible estimates of future rewards, but

they still produced good decisions
▪ Q-learning’s priority: get Q-values close (modeling)
▪ Action selection priority: get ordering or “shape” of Q-values right (prediction)
▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies that maximize rewards, not the values that predict them

▪ Policy search: start with an ok solution then fine-tune by hill climbing on feature weights

Policy Search

▪ Simplest policy search:
▪ Start with an initial linear value function or Q-function

▪Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:
▪How do we tell the policy got better?

▪Need to run many sample episodes!

▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change multiple
parameters…

Conclusion

▪ We’re done with Part I: Search and Planning!

▪ We’ve seen how AI methods can solve
problems in:
▪ Search
▪ Constraint Satisfaction Problems
▪ Games
▪ Markov Decision Problems
▪ Reinforcement Learning

▪ Next up: Part II: Uncertainty and Learning!

