CS 343: Artaficial Intelligence

Reinforcement Learning |l

Profs. Peter Stone and Yuke Zhu, The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

Past due:

" HW1-3: Search, CSPs, Games

" 7 reading responses: Al100 report; 6 Textbook readings

" PO,1, 2: tutorial, Search, Games
Upcoming EdX Homeworks

" HW4: MDPs - due Monday 3/8 at 11:59 pm

" HWS5: RL - due Monday 3/22 at 11:59 pm

" HWAG: Bayes Nets - due Monday 4/5 at 11:59 pm
Upcoming programming projects

" P3:RL - due Wednesday 3/31 at 11:59pm
Readings: Bayes Nets - Due Monday 3/8 at 9:30am
Midterm - end of week after spring break (3/25 or so)

" Material up through and including Bayes Nets

The Story So Far: MDPs and RL

Known MDP: Offline Solution

a ,)
Goal Technique
Compute V*, Q*, t* Value / policy iteration
\ Evaluate a fixed policy & Policy evaluation /
Unknown MDP: Model-Based Unknown MDP: Model-Free
4 ,) 4 ,)
Goal Technique Goal Technique
Compute V*, Q*, t* VI/PIl on approx. MDP Compute V*, Q*, t* Q-learning

Evaluate a fixed policy & PE on approx. MDP Evaluate a fixed policy t Value Learning
N\ J \§ J

Example: Temporal Difference Learning

States

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

IS I S 5 I e i S A

V7 (s) + (1 — a)V™(s) + o |R(s,7(s),5") + 4V (s

Problems with TD Value Learning

" TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

" However, if we want to turn values into a (new) policy, we're sunk:
w(s) = argmaxQ(s,a)
a

ClBa) = ZT(S, a,s) {R(s, a,s') + ’}/V(S,)}

" |dea: learn Q-values, not values

" Makes action selection model-free too!

Active Reinforcement Learning

" Full reinforcement learning: optimal policies (like value iteration)
" You don't know the transitions T(s,a,s’)
" You don’t know the rewards R(s,a,s’)
" You choose the actions now
" Goal: learn the optimal policy / values

" In this case:
" Learner makes choices!
" Fundamental tradeoff: exploration vs. exploitation

" This is NOT offline planning! You actually take actions in the world and find
out what happens...

Detour: Q-Value Iteration

" Value iteration: find successive (depth-limited) values
" Start with V(s) = 0, which we know is right
" Given V,, calculate the depth k+1 values for all states:

Viet1(s) < mC?XZT(S, a,s’) {R(s,a, s + W/Vk(sl)}

" But Q-values are more useful, so compute them instead
" Start with Q,(s,a) = 0, which we know is right
" Given Q

Qk’—l—l(sa CL) — Z T(S: a, S/) [R(Sa a, S/) + maa,X Qk(sla a,)

S

Q-Learning

" Q-Learning: sample-based Q-value iteration
Qrt1(s,a) = S T(s,a,8) |R(s,a,5) +7 max Qu(s/,)|
/ a

" Learn Q(s,a) values as you go
" Receive a sample (s,a,s’,r)
" Consider your old estimate: Q(s,a)
" Consider your new sample estimate:

sample = R(s,a,s’) +~ max Q(s', a")

a

Q(s,a) — (1 —a)Q(s,a) + (a) [sample]

Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even if you're
acting suboptimally!

" This is called off-policy learning

" Caveats:
" You have to explore enough
" You have to eventually make the learning rate
small enough

+ ... but not decrease it too quickly

+ Basically, in the limit, it doesn’t matter how you select actions (!)

Test Your Understanding

" MDPs and RL
" Q-learning:

Q(s,a) «— (1 —a)Q(s,a) + () |r +ymaxQ(s’,a)
" Sarsa: 7?7 ’

" Practice problem in breakout rooms

" Work for a couple of minutes independently, but then quickly start
comparing progress - even if you're not done yet.

Exploration vs. Exploitation

ﬁ’h‘fi

TiL

G

-@’

7

How to Explore?

" Several schemes for forcing exploration

" Simplest: random actions (e-greedy)
" Every time step, flip a coin
" With (small) probability €, act randomly
" With (large) probability 1-¢, act on current policy

" Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

" One solution: lower ¢ over time
" Another solution: exploration functions

Exploration Functions

" When to explore?
® Random actions: explore a fixed amount

" Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

" Exploration function

+ Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) =u—+ k/n

Regular Q-Update: Q(s,a) < R(s,a,s") +~ L Q(s',d)

Modified Q-Update: Q(s,a) <« R(s,a,s") +vmaxf(62(s a'),N(s',a))

+ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Softmax Exploration

" Base exploration on estimated action goodness
" A “soft” version of e-greedy
" Choose better actions exponentially more often
" Temperature parameter controls preference strength
" Can decrease temperature over time for greedier selection

" Good initialization / outcome ordering still affects
efficiency, but can’t permanently ruin exploration

cQ(s,a)/7
plals) = sor—aran

Regret

" Even if you learn the optimal policy, you
still make mistakes along the way!

" Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

" Minimizing regret goes beyond learning to
be optimal - it requires optimally learning
to be optimal

" Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret (usually)

Some of Your Questions

Difference between MDPs and RL
Q-learning vs. SARSA
* What makes Q-learning “off-policy”?
Model-based vs. Model-free - which is better?
Passive learning vs. active learning - when would you use each?
* TD vs. Q-learning
When should the agent stop learning?
How does RL relate to “machine learning” and “deep learning”? (Vishal Tak)
How do you know when your model is accurate enough to start using it? (Aditya Gupta)
After learning in one environment, does an RL agent work in another? (Rudraksh Garg)
Are there methods between Monte Carlo and TD that update after arbitrary steps? (Conrad Li)
Is RL possible without rewards? (Ramya Prasad)
Do the algorithms still work if there’s more than one agent? (Michael Rodriguez-Labarca)
How much has RL progressed since the book was written 10 years ago? (Ethan Houston)
* Was more powerful computing necessary for these advances? (Dale Kang)

Approximate Q-Learning

Generalizing Across States

" Basic Q-Learning keeps a table of all g-values

" In realistic situations, we cannot possibly learn about
every single state!
" Too many states to visit them all in training
" Too many states to hold the g-tables in memory
" States may even be continuous, not discrete

" Instead, we want to generalize:

" Learn about some small number of training states from
experience

" Generalize that experience to new, similar situations

" This is a fundamental idea in machine learning, and we’ll see
it over and over again

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Feature-Based Representations

" Solution: describe a state using a vector of features
(properties)
" Features are functions from states to real numbers (often
0/1) that capture important properties of the state
" Example features:
" Distance to closest ghost

Distance to closest dot
Number of ghosts
1 / (dist to dot)?
Is Pacman in a tunnel? (0/1)

Is it the exact state on this slide?

" Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

" Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) = wi1f1(s) +wafa(s) + ... +wnfn(s)
Q(Sa a’) — wlfl(sa a’>+w2f2(87 CL)—I— s -‘|‘wnfn(37 a)

" Advantage: our experience is summed up in a few powerful numbers

" Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

| QUs,0) = wifi(s @) bwafals,)+ Aunfals,a)

" Q-learning with linear Q-functions:

transition = (s, a,r,s’)
difference = [7" + v max Q(s',a)| —Q(s,a)
a

Q(s,a) +— Q(s,a) + a [difference] Exact Q's

w; «+— w; + « [difference] f;(s,a) Approximate Q's

" Intuitive interpretation:
" Adjust weights of active features

" E.g., if something unexpectedly bad happens, blame the features that were activated:
lower the value of all states with that state’s features

" Formal justification: online least squares

Example:

Q(s,a) = 4.0fpor(

Q-Pacman

S, a) — 1'OfGST(Sa Cl)

fDOT(S, NORTH) = 0.5

fasT(s, NORTH) = 1.0

) 4

a = NORTH /
r = —500

/ -

O(s, NORTH) = +1
r + v max Q(s’,a’) = —500
a

0

[difference — —501 >

wWpoT < 4.0 —|— 8 [—501] 0.5
wast — —1.0 + a[-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsr(s,a)

Policy Search

Policy Search

" Problem: often the feature-based policies that work well (win games, maximize utilities)

aren’t the ones that approximate V / Q best
" E.g. your evaluation functions from project 2 were probably horrible estimates of future rewards, but
they still produced good decisions

" Q-learning’s priority: get Q-values close (modeling)
" Action selection priority: get ordering or “shape” of Q-values right (prediction)
" We'll see this distinction between modeling and prediction again later in the course

" Solution: learn policies that maximize rewards, not the values that predict them

" Policy search: start with an ok solution then fine-tune by hill climbing on feature weights

Policy Search

" Simplest policy search:
" Start with an initial linear value function or Q-function
" Nudge each feature weight up and down and see if your policy is better than before

" Problems:
" How do we tell the policy got better?
" Need to run many sample episodes!
" If there are a lot of features, this can be impractical

" Better methods exploit lookahead structure, sample wisely, change multiple
parameters...

Conclusion

" We're done with Part I: Search and Planning!

" We've seen how Al methods can solve
problems in:
" Search
Constraint Satisfaction Problems
Games
Markov Decision Problems
Reinforcement Learning

" Next up: Part II: Uncertainty and Learning!

