
CS 343: Artificial Intelligence

Reinforcement Learning

Profs. Peter Stone and Yuke Zhu

The University of Texas at Austin
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

▪ Past due:
▪ HW1-3: Search, CSPs, Games
▪ 7 reading responses: AI100 report; 6 Textbook readings
▪ P0,1: tutorial, Search

▪ Upcoming EdX Homeworks
▪ HW4: MDPs - due Monday 3/8 at 11:59 pm
▪ HW5: RL – due Monday 3/22 at 11:59 pm
▪ HW6: Bayes Nets – due Monday 4/5 at 11:59 pm

▪ Upcoming programming projects
▪ P2: Games – due Wednesday 3/3 at 11:59pm
▪ P3: RL – due Wednesday 3/31 at 11:59pm

▪ Readings: Bayes Nets – Due Monday 3/8 at 9:30am
▪ Midterm – end of week after spring break (3/25 or so)

▪ Material up through and including Bayes Nets

Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards
▪ Agent’s utility is defined by the reward function
▪ Must (learn to) act so as to maximize expected rewards
▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training
[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Kohl and Stone, ICRA 2004]

Some of Your Questions
▪ Difference between MDPs and RL
▪ Q-learning vs. SARSA

 What makes Q-learning “off-policy”?
▪ Model-based vs. Model-free – which is better?
▪ Passive learning vs. active learning – when would you use each?

 TD vs. Q-learning
▪ When should the agent stop learning?
▪ How does RL relate to “machine learning” and “deep learning”? (Vishal Tak)
▪ How do you know when your model is accurate enough to start using it? (Aditya Gupta)
▪ After learning in one environment, does an RL agent work in another? (Rudraksh Garg)
▪ Are there methods between Monte Carlo and TD that update after arbitrary steps? (Conrad Li)
▪ Is RL possible without rewards? (Ramya Prasad)
▪ Do the algorithms still work if there’s more than one agent? (Michael Rodriguez-Labarca)
▪ How much has RL progressed since the book was written 10 years ago? (Ethan Houston)

 Was more powerful computing necessary for these advances? (Dale Kang)

Reinforcement Learning

▪ Still assume a Markov decision process (MDP):
▪ A set of states s Î S

▪ A set of actions (per state) A
▪ A model T(s,a,s’)
▪ A reward function R(s,a,s’)

▪ Still looking for a policy p(s)

▪ New twist: don’t know T or R
▪ I.e. we don’t know which states are good or what the actions do
▪

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Test Your Understanding

▪MDPs and RL

▪Practice problem in breakout rooms
▪Work for a couple of minutes independently, but then quickly start

comparing progress – even if you’re not done yet.

Model-Based Learning

▪ Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

▪ Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

▪ Step 2: Solve the learned MDP
▪

Example: Expected Age

Goal: Compute expected age of CS 343 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Passive Reinforcement Learning

▪ Simplified task: policy evaluation
▪ Input: a fixed policy p(s)
▪ You don’t know the transitions T(s,a,s’)
▪ You don’t know the rewards R(s,a,s’)
▪ Goal: learn the state values

▪ In this case:
▪ Learner is “along for the ride”
▪ No choice about what actions to take
▪ Just execute the policy and learn from experience
▪ This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

▪ Goal: Compute values for each state under p

▪ Idea: Average together observed sample values
▪ Act according to p
▪ Every time you visit a state, write down what the sum of

discounted rewards turned out to be
▪ Average those samples

▪ This is called direct evaluation

Example: Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation

▪ What’s good about direct evaluation?
▪ It’s easy to understand
▪ It doesn’t require any knowledge of T, R
▪ It eventually computes the correct average values,

using just sample transitions

▪ What bad about it?
▪ It wastes information about state connections
▪ Each state must be learned separately
▪

Output Values

 A

 B C D

 E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

▪ Simplified Bellman updates calculate V for a fixed policy:
▪ Each round, replace V with a one-step-look-ahead layer over V

▪ This approach fully exploited the connections between the states
▪ Unfortunately, we need T and R to do it!

▪ Key question: how can we do this update to V without knowing T and R?
▪

p(s)

s

s, p(s)

s, p(s),s’

s’

Sample-Based Policy Evaluation?

▪ We want to improve our estimate of V by computing these averages:

▪ Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s, p(s)

s1's2' s3'

s, p(s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)
▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
Policy still fixed, still doing evaluation!

p(s)

s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

▪ Exponential moving average
▪ The running interpolation update:

▪ Makes recent samples more important:

▪ Forgets about the past (distant past values were wrong anyway)

▪

