
CS	343:	Artificial	Intelligence	
Markov	Decision	Processes

Profs.	Peter	Stone	and	Yuke	Zhu,	The	University	of	Texas	at	Austin	
[These	slides	based	on	those	of	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Announcements

▪ Homework	3:	Games	
▪ Due	3/1	at	11:59	pm.	

▪ Programming	Project	2:	Multi-Agent	Pacman	
▪ Due	3/3	at	11:59	pm.	

▪ Homework	4:	MDPs	
▪ Due	3/8	at	11:59	pm.	

▪ Assignment	Grading	
▪ To	be	released	by	the	end	of	this	week	

▪ Midterm	Exam	
▪ Details	will	follow

Example:	Grid	World
▪ A	maze-like	problem	

▪ The	agent	lives	in	a	grid	
▪ Walls	block	the	agent’s	path	

▪ Noisy	movement:	actions	do	not	always	go	as	planned	
▪ 80%	of	the	time,	the	action	has	the	intended	effect	

(if	there	is	no	wall	there)	
▪ 20%	of	the	time	an	adjacent	action	occurs	instead.		Ex:	North	

has	10%	chance	of	East	and	10%	chance	of	West	
▪ If	there	is	a	wall	in	the	direction	the	agent	would	have	been	

taken,	the	agent	stays	put	

▪ The	agent	receives	rewards	each	time	step	
▪ Small	“living”	reward	each	step	(can	be	negative)	
▪ Big	rewards	come	at	the	end	(good	or	bad)	

▪ Goal:	maximize	sum	of	rewards

Grid	World	Actions
Deterministic	Grid	World Stochastic	Grid	World

Markov	Decision	Processes

▪ An	MDP	is	defined	by:	
▪ A	set	of	states	s	∈ S	
▪ A	set	of	actions	a	∈ A	
▪ A	transition	function	T(s,	a,	s’)	

▪ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)	
▪ Also	called	the	model	or	the	dynamics	

▪ A	reward	function	R(s,	a,	s’)		
▪ Sometimes	just	R(s)	or	R(s’)	

▪ A	start	state	
▪ Maybe	a	terminal	state	

▪ MDPs	are	non-deterministic	search	problems	
▪ One	way	to	solve	them	is	with	expectimax	search	
▪ …but	with	modification	to	allow	rewards	along	the	way	
▪ We’ll	have	a	new,	more	efficient	tool	soon

What	is	Markov	about	MDPs?

▪ “Markov”	generally	means	that	given	the	present	state,	the	future	and	the	
past	are	independent	

▪ For	Markov	decision	processes,	“Markov”	means	action	outcomes	depend	
only	on	the	current	state	

▪ This	is	just	like	search,	where	the	successor	function	could	only	depend	on	
the	current	state	(not	the	history)

Andrey	Markov	
(1856-1922)	

Policies

Optimal	policy	when	R(s,	a,	s’)	=	-0.03	
for	all	non-terminals	s

▪ In	deterministic	single-agent	search	problems,	we	
wanted	an	optimal	plan,	or	sequence	of	actions,	
from	start	to	a	goal	

▪ For	MDPs,	we	want	an	optimal	policy	π*:	S	→	A	
▪ A	policy	π gives	an	action	for	each	state	
▪ An	optimal	policy	is	one	that	maximizes	expected	utility	

if	followed	
▪ An	explicit	policy	defines	a	reflex	agent	

▪ Expectimax	didn’t	compute	entire	policies	
▪ It	computed	the	action	for	a	single	state	only

Example:	Racing
▪ A	robot	car	wants	to	travel	far,	quickly	
▪ Three	states:	Cool,	Warm,	Overheated	
▪ Two	actions:	Slow,	Fast	
▪ Going	faster	gets	double	reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5	

0.5	

0.5	

0.5	

1.0	

1.0	

+1	

+1	

+1	

+2	

+2	

-10

Racing	Search	Tree

MDP	Search	Trees
▪ Each	MDP	state	projects	an	expectimax-like	search	tree

a

s

s’

s,	a

(s,a,s’)	called	a	transition	

T(s,a,s’)	=	P(s’|s,a)	

R(s,a,s’)

s,a,s’

s	is	a	state

(s,	a)	is	a	q-
state

Utilities	of	Sequences

▪ What	preferences	should	an	agent	have	over	reward	sequences?	

▪ More	or	less?	

▪ Now	or	later?

[1,	2,	2] [2,	3,	4]	or

[0,	0,	1] [1,	0,	0]	or

Discounting

▪ It’s	reasonable	to	maximize	the	sum	of	rewards	
▪ It’s	also	reasonable	to	prefer	rewards	now	to	rewards	later	
▪ One	solution:	values	of	rewards	decay	exponentially

Worth	Now Worth	Next	Step Worth	In	Two	Steps

Discounting

▪ How	to	discount?	
▪ Each	time	we	descend	a	level,	we	

multiply	in	the	discount	once	

▪ Why	discount?	
▪ Sooner	rewards	probably	do	have	

higher	utility	than	later	rewards	
▪ Also	helps	our	algorithms	converge	

▪ Example:	discount	of	0.5	
▪ U([1,2,3])	=	1*1	+	0.5*2	+	0.25*3	
▪ U([1,2,3])	<	U([3,2,1])

Infinite	Utilities?!

▪ Problem:	What	if	the	game	lasts	forever?		Do	we	get	infinite	rewards?	

▪ Solutions:	

▪ Discounting:	use	0	<	γ <	1	
▪ Smaller	γ means	smaller	“horizon”	–	shorter	term	focus	

▪ Finite	horizon:	(similar	to	depth-limited	search)	
▪ Terminate	episodes	after	a	fixed	T	steps	(e.g.	life)	
▪ Gives	nonstationary	policies	(π depends	on	time	left)

▪ Absorbing	state:	guarantee	that	for	every	policy,	a	terminal	state	will	eventually	
be	reached	(like	“overheated”	for	racing)

Recap:	Defining	MDPs

▪ Markov	decision	processes:	
▪ Set	of	states	S	
▪ Start	state	s0	
▪ Set	of	actions	A	
▪ Transitions	P(s’|s,a)	(or	T(s,a,s’))	
▪ Rewards	R(s,a,s’)	(and	discount	γ)	

▪ MDP	quantities	so	far:	
▪ Policy	=	Choice	of	action	for	each	state	
▪ Utility	=	sum	of	(discounted)	rewards

a

s

s,	a

s,a,s’
s’

Optimal	Quantities

▪ The	value	(utility)	of	a	state	s:	
V*(s)	=	expected	utility	starting	in	s	and	
acting	optimally	

▪ The	value	(utility)	of	a	q-state	(s,a):	
Q*(s,a)	=	expected	utility	starting	out	
having	taken	action	a	from	state	s	and	
(thereafter)	acting	optimally	

▪ The	optimal	policy:	
π*(s)	=	optimal	action	from	state	s

a

s

s’

s,	a

(s,a,s’)	is	a		
transition

s,a,s’

s	is	a	
state

(s,	a)	is	a	q-
state

Optimal	Quantities

▪ The	value	(utility)	of	a	state	s:	
V*(s)	=	expected	utility	starting	in	s	and	acting	optimally	

▪ The	value	(utility)	of	a	q-state	(s,a):	
Q*(s,a)	=	expected	utility	starting	out	having	taken	action	a	

from	state	s	and	(thereafter)	acting	optimally	

▪ The	optimal	policy:	
π*(s)	=	optimal	action	from	state	s

a

s

s, a

s,a,s’
s’

Values	of	States

▪ Fundamental	operation:	compute	the	(expectimax)	value	of	a	state	
▪ Expected	utility	under	optimal	action	
▪ Average	sum	of	(discounted)	rewards	
▪ This	is	just	what	expectimax	computed!	

▪ Recursive	definition	of	(optimal)	value:

a

s

s, a

s,a,s’
s’

The	Bellman	Equations

▪ Definition	of	“optimal	utility”	via	expectimax	recurrence	gives	a	simple	
one-step	lookahead	relationship	amongst	optimal	utility	values	

▪ These	are	the	Bellman	equations,	and	they	characterize	optimal	
values	in	a	way	we’ll	use	over	and	over	
	

a

s

s,	a

s,a,s’
s’

Time-Limited	Values

▪ Key	idea:	time-limited	values	

▪ Define	Vk(s)	to	be	the	optimal	value	of	s	if	the	game	ends	in	
k	more	time	steps	
▪ Equivalently,	it’s	what	a	depth-k	expectimax	would	give	from	s

Value	Iteration

▪ Start	with	V0(s)	=	0:	no	time	steps	left	means	an	expected	reward	sum	of	zero	

▪ Given	vector	of	Vk(s)	values,	do	one	step	of	expectimax	from	each	state:	

▪ Repeat	until	convergence	

▪ Complexity	of	each	iteration:	O(S2A)	

▪ Theorem:	will	converge	to	unique	optimal	values	
▪ Basic	idea:	approximations	get	refined	towards	optimal	values	
▪ Policy	may	converge	long	before	values	do

a

Vk+1(s)

s,	a

s,a,s’

Vk(s’)

Example:	Value	Iteration

		0												0											0

		2												1											0

		3.5								2.5								0

Assume	no	discount!

Gridworld	Values	V*

Gridworld:	Q*

CS	343:	Artificial	Intelligence	
Markov	Decision	Processes	II

Profs.	Peter	Stone	and	Yuke	Zhu	—	The	University	of	Texas	at	Austin	
[These	slides	based	on	those	of	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Value	Iteration

▪ Bellman	equations	characterize	the	optimal	values:	

▪ Value	iteration	computes	them:	

▪ Value	iteration	is	just	a	fixed	point	solution	method	
▪ …	though	the	Vk	vectors	are	also	interpretable	as	time-limited	values

a

V(s)

s,	a

s,a,s’

V(s’)

Fixed	Policies

▪ Expectimax	trees	max	over	all	actions	to	compute	the	optimal	values	

▪ If	we	fixed	some	policy	π(s),	then	the	tree	would	be	simpler	–	only	one	action	per	state	
▪ …	though	the	tree’s	value	would	depend	on	which	policy	we	fixed

a

s

s,	a

s,a,s’
s’

π(s)

s

s,	π(s)

s, π(s),s’
s’

Do	the	optimal	action Do	what	π	says	to	do

Utilities	for	a	Fixed	Policy

▪ Another	basic	operation:	compute	the	utility	of	a	state	s	under	a	
fixed	(generally	non-optimal)	policy	

▪ Define	the	utility	of	a	state	s,	under	a	fixed	policy	π:	
Vπ(s)	=	expected	total	discounted	rewards	starting	in	s	and	following	π	

▪ Recursive	relation	(one-step	look-ahead	/	Bellman	equation):

π(s)

s

s,	π(s)

s, π(s),s’
s’

Utilities	for	a	Fixed	Policy

▪ Another	basic	operation:	compute	the	utility	of	a	state	s	under	a	
fixed	(generally	non-optimal)	policy	

▪ Define	the	utility	of	a	state	s,	under	a	fixed	policy	π:	
Vπ(s)	=	expected	total	discounted	rewards	starting	in	s	and	following	π	

▪ Recursive	relation	(one-step	look-ahead	/	Bellman	equation):

π(s)

s

s,	π(s)

s, π(s),s’
s’

Compare:

Example:	Policy	Evaluation

Always	Go	Right Always	Go	Forward

Example:	Policy	Evaluation

Always	Go	Right Always	Go	Forward

Policy	Evaluation

▪ How	do	we	calculate	the	V’s	for	a	fixed	policy	π?	

▪ Idea	1:	Turn	recursive	Bellman	equations	into	updates	
	 (like	value	iteration)	

▪ Efficiency:	O(S2)	per	iteration	

▪ Idea	2:	Without	the	maxes,	the	Bellman	equations	are	just	a	linear	system	
▪ Solve	with	Matlab	(or	your	favorite	linear	system	solver)

π(s)

s

s,	π(s)

s, π(s),s’
s’

Computing	Actions	from	Values

▪ Let’s	imagine	we	have	the	optimal	values	V*(s)	

▪ How	should	we	act?	
▪ It’s	not	obvious!	

▪ We	need	to	do	a	mini-expectimax	(one	step)	

▪ This	is	called	policy	extraction,	since	it	gets	the	policy	implied	by	the	values

Computing	Actions	from	Q-Values

▪ Let’s	imagine	we	have	the	optimal	q-values:	

▪ How	should	we	act?	
▪ Completely	trivial	to	decide!	

▪ Important	lesson:	actions	are	easier	to	select	from	q-values	than	values!	
▪ In	fact,	you	don’t	even	need	a	model!

Problems	with	Value	Iteration

▪ Value	iteration	repeats	the	Bellman	updates:	

▪ Problem	1:	It’s	slow	–	O(S2A)	per	iteration	

▪ Problem	2:	The	“max”	at	each	state	rarely	changes	

▪ Problem	3:	The	policy	often	converges	long	before	the	values

a

s

s,	a

s,a,s’
s’

Policy	Iteration

▪ Alternative	approach	for	optimal	values:	
▪ Step	1:	Policy	evaluation:	calculate	utilities	for	some	fixed	policy	(not	optimal	
utilities!)	until	convergence	

▪ Step	2:	Policy	improvement:	update	policy	using	one-step	look-ahead	with	resulting	
converged	(but	not	optimal!)	utilities	as	future	values	

▪ Repeat	steps	until	policy	converges	

▪ This	is	policy	iteration	
▪ It’s	still	optimal!	
▪ Can	converge	(much)	faster	under	some	conditions

Policy	Iteration

▪ Evaluation:	For	fixed	current	policy	π,	find	values	with	policy	evaluation:	
▪ Iterate	until	values	converge:	

▪ Improvement:	For	fixed	values,	get	a	better	policy	using	policy	extraction	
▪ One-step	look-ahead:

k=0

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=1

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=2

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=3

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=4

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=5

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=6

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=7

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=8

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=9

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=10

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=11

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=12

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

k=100

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0

Comparison

▪ Both	value	iteration	and	policy	iteration	compute	the	same	thing	(all	optimal	values)	

▪ In	value	iteration:	
▪ Every	iteration	updates	both	the	values	and	(implicitly)	the	policy	
▪ We	don’t	track	the	policy,	but	taking	the	max	over	actions	implicitly	recomputes	it	

▪ In	policy	iteration:	
▪ We	do	several	passes	that	update	utilities	with	fixed	policy	(each	pass	is	fast	because	we	

consider	only	one	action,	not	all	of	them)	
▪ After	the	policy	is	evaluated,	a	new	policy	is	chosen	(slow	like	a	value	iteration	pass)	
▪ The	new	policy	will	be	better	(or	we’re	done)	

▪ Both	are	dynamic	programs	for	solving	MDPs

Summary:	MDP	Algorithms

▪ So	you	want	to….	
▪ Compute	optimal	values:	use	value	iteration	or	policy	iteration	
▪ Compute	values	for	a	particular	policy:	use	policy	evaluation	
▪ Turn	your	values	into	a	policy:	use	policy	extraction	(one-step	lookahead)	

▪ These	all	look	the	same!	
▪ They	basically	are	–	they	are	all	variations	of	Bellman	updates	
▪ They	all	use	one-step	lookahead	expectimax	fragments	
▪ They	differ	only	in	whether	we	plug	in	a	fixed	policy	or	max	over	actions

Double	Bandits

Double-Bandit	MDP

▪ Actions:	Blue,	Red	
▪ States:	Win,	Lose

No	discount	
100	time	steps	

Both	states	have	
the	same	value

W L
$1	

1.0

$1	

1.0

0.25		 $0

0.75		
$2

0.75		 $2

0.25		
$0

Offline	Planning

▪ Solving	MDPs	is	offline	planning	
▪ You	determine	all	quantities	through	computation	
▪ You	need	to	know	the	details	of	the	MDP	
▪ You	do	not	actually	play	the	game!

Play	Red

Play	Blue

Value

No	discount	
100	time	steps	

Both	states	have	
the	same	value

150

100

W L
$1	

1.0

$1	

1.0

0.25		 $0

0.75		
$2

0.75		 $2

0.25		
$0

Online	Planning

▪ Rules	changed!		Red’s	win	chance	is	different.

Next	Time:	Reinforcement	Learning!

