
CS 343: Artificial Intelligence

Adversarial Search

Profs. Peter Stone and Yuke Zhu
The University of Texas at Austin

[These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

▪ Past due:
▪HW1 - Search
▪5 reading responses: AI100 report; 4 Textbook readings

▪ Upcoming EdX Homeworks
▪ HW2: CSPs - due Monday 2/15 at 11:59 pm
▪ HW3: Games – due Monday 2/22 at 11:59pm

▪ Upcoming programming projects
▪ P1: Search - due Wednesday 2/10 at 11:59 pm
▪ P2: Games – due Wednesday 2/24 at 11:59pm

▪ Readings: Markov Decision Processes

▪ NOT just the usual textbook

▪ Due Monday 2/15 at 9:30 am

Game Playing State-of-the-Art

▪ Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign of
human champion Marion Tinsley using complete 8-
piece endgame. 2007: Checkers solved!

▪ Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods for
extending some lines of search up to 40 ply. Current
programs are even better, if less historic.

▪ Go: 2016: AlphaGo, created by Google DeepMind
beat 9-dan professional Go player Lee Sedol 4-1 on a
full sized 19 x 19 board. AlphaGo combined Monte
Carlo Tree Search with deep neural networks,
improving via reinforcement learning through self-
play.

▪ OpenAI Five (DOTA): getting close to world-class

Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities (values on outcomes)

▪ Lets us think of a single value that one maximizes and
the other minimizes

▪ Adversarial, pure competition

▪ General Games
▪ Agents have independent utilities (values on

outcomes)
▪ Cooperation, indifference, competition, and

more are all possible
▪ More later on non-zero-sum games

▪ Many different kinds of games!

▪ Axes:
▪ Deterministic or stochastic?
▪ One, two, or more players?
▪ Zero sum?
▪ Perfect information (can you see the state)?

▪ Want algorithms for calculating a strategy (policy) which recommends a
move from each state

Types of Games

Test Your Understanding

▪Zero-sum game

▪Practice problem in breakout rooms

▪Work for a couple of minutes independently, but then quickly start
comparing progress – even if you’re not done yet.

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:

▪ Tic-tac-toe, chess, checkers

▪ One player maximizes result

▪ The other minimizes result

▪ Minimax search:

▪ A state-space search tree

▪ Players alternate turns

▪ Compute each node’s minimax value:
the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-
 value(successor))

return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 5 23 2 144 6

Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS
▪ Time: O(bm)
▪ Space: O(bm)

▪ Example: For chess, b » 35, m » 100
▪ Exact solution is completely infeasible
▪ But, do we need to explore the whole

tree?

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

Minimax vs Expectimax (Min)

End your misery!

Minimax vs Expectimax (Exp)

Hold on to hope, Pacman!

Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for non-terminal

positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ a-b reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Use iterative deepening for an anytime algorithm ? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ e.g. f1(s) = (num white queens – num black queens), etc.

Some of Your Questions

▪ Difference between utility function; evaluation function; heuristic
▪ Are there pruning methods other than alpha-beta?
▪ How does one come up with a utility function? (Lorenzo Martinez)

 Can an agent learn its own utility function? (Theodore Venter)
▪ Maximize expected utility vs. sacrificing players (Michael Rodriguez-Labarca)
▪ What should you do against non-optimal opponents? (Kelsey Zhan)
▪ CSPs vs. game trees (Daniel Kim)
▪ How do we arrive at different difficulty levels in online games? (Omar Dadabhoy)
▪ 1950s algorithms – so why so long to beat humans at chess? (Thomas Norman)
▪ Game trees possible for games more complex than chess? (Colette Montminy)

Minimax Example

12 8 5 23 2 144 6

Minimax Pruning

12 8 5 23 2 14

Alpha-Beta Pruning

▪ General configuration (MIN version)
▪ We’re computing the MIN-VALUE at some node n

▪ We’re looping over n’s children

▪ n’s estimate of the childrens’ min is dropping

▪ Who cares about n’s value? MAX

▪ Let a be the best value that MAX can get at any choice point

along the current path from the root

▪ If n becomes worse than a, MAX will avoid it, so we can stop

considering n’s other children (it’s already bad enough that it

won’t be played)

▪ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

def min-value(state , α, β):):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β):))
if v ≤ α return v
β): = min(β):, v)

return v

def max-value(state, α, β):):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β):))
if v ≥ β): return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β):: MIN’s best option on path to root

Alpha-Beta Pruning Properties

▪ This pruning has no effect on minimax value computed for the root!

▪ Values of intermediate nodes might be wrong
▪ Important: children of the root may have the wrong value
▪ So the most naïve version won’t let you do action selection

▪ Good child ordering improves effectiveness of pruning

▪ With “perfect ordering”:
▪ Time complexity drops to O(bm/2)
▪ Doubles solvable depth!
▪ Full search of, e.g. chess, is still hopeless…

▪ This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Alpha-Beta Quiz

8 4

8

Alpha-Beta Quiz 2

10 100

10

2

2

10

Next Time: Uncertainty!

