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Good morning colleagues!

▪ Past due:
▪ Python tutorial
▪ 3 reading responses:  AI100 report; Chapters 1,2; Chapter 3

▪ HW1: Search
▪ Due Monday 2/8 at 11:59 pm

▪ P1: Search 
▪ Due Wednesday 2/10 at 11:59 pm
▪ Pair work allowed

▪ Readings: Constraint Satisfaction and Local Search

▪ NOT just Chapter 4

▪ Due Monday 2/1 at 9:30 am 



Recap: Search

▪ Search problem:
▪ States (configurations of the world)
▪ Actions and costs
▪ Successor function (world dynamics)
▪ Start state and goal test

▪ Search tree:
▪ Nodes: represent plans for reaching states
▪ Plans have costs (sum of action costs)

▪ Search algorithm:
▪ Systematically builds a search tree
▪ Chooses an ordering of the fringe (unexplored nodes)
▪ Optimal: finds least-cost plans



The Main Search Algorithms

▪ Uninformed Search:
▪ Breadth First Search (BFS)
▪ Depth First Search (DFS)
▪ Uniform Cost Search (UCS)  ~  [Dijkstra’s Algorithm]

▪ Informed Search:
▪ Greedy Search ~ [Best First Search]
▪ A* Search

▪ Test your understanding!



Some of Your Questions

▪ Doesn’t backward search require backward links?  (Nayan)
▪ Any new search algorithms since the book was published?  (Wentao)
▪ Doesn’t path cost count as informed search? (Anish)
▪ Is space complexity still a concern?  (Thomas)
▪ Can an agent have multiple goals (e.g. get to location with least gas)?  What if 

they conflict?
▪ Could informed search be worse than uninformed? (Gautham)



The One Queue

▪ All these search algorithms are the 
same except for fringe strategies
▪ Conceptually, all fringes are priority 

queues (i.e. collections of nodes with 
attached priorities)

▪ Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

▪ Can even code one implementation that 
takes a variable queuing object



Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth
▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
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Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent cycles 

(more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless of 

depth or cost



Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
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Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages
▪ Run a DFS with depth limit 1.  If no solution…
▪ Run a DFS with depth limit 2.  If no solution…
▪ Run a DFS with depth limit 3.  …..

▪ Isn’t that wastefully redundant?
▪ Generally most work happens in the lowest level 

searched, so not so bad!



…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least e , then the “effective depth” 

is roughly C*/e
▪ Takes time O(bC*/e) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/e)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost is positive, 

yes!

▪ Is it optimal?
▪ Yes!  (Proof via A*)

b

C*/e “tiers”
c £ 3

c £ 2
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Uniform Cost Issues

▪ Remember: UCS explores increasing cost 
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!
Start Goal

…

c £ 3
c £ 2

c £ 1



Informed Search



Search Heuristics
▪ A heuristic is:

▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Examples: Manhattan distance, Euclidean distance for 

pathing
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Greedy Search

▪ Strategy: expand a node that you think is closest 
to a goal state
▪ Heuristic: estimate of distance to nearest goal for 

each state

▪ Best case:
▪ Best-first takes you straight to the nearest goal

▪ A common case:
▪ Suboptimal route to goal due to imperfect heuristic
▪ Does not lead to nearest goal 

▪ Worst-case: like a badly-guided DFS

…
b

…
b



▪ Uniform-cost orders by path cost, or backward cost  g(n)
▪ Greedy orders by goal proximity, or forward cost  h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

Combining UCS and Greedy
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When should A* terminate?

▪ Should we stop when we enqueue a goal?
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▪ No: only stop when we expand a goal



Is A* Optimal?

▪ What will A* do here?
▪ What went wrong?
▪ Actual bad goal cost < estimated good goal cost
▪ We need estimates to be less than actual costs!
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Idea: Admissibility

Inadmissible (pessimistic) heuristics break 
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics can still help 
to delay the evaluation of bad plans, but never 

overestimate the true costs



Admissible Heuristics
▪ A heuristic h is admissible (optimistic) if:

where               is the true cost to a nearest goal

ªExample:

ªComing up with admissible heuristics is most of what’s involved in using 
A* in practice.

15



Test Your Understanding

▪ Practice problem in breakout rooms
▪ Work for a couple of minutes independently, but then quickly start 

comparing progress – even if you’re not done yet.



Optimality of A* Tree Search



Optimality of A* Tree Search

Assume:
ª A is an optimal goal node
ª B is a suboptimal goal node
ª h is admissible

Claim:

ª A will exit the fringe before B

…



Optimality of A* Tree Search: Blocking

Proof:
ª Imagine B is on the fringe
ª Some ancestor n of A is on the 

fringe, too (maybe A!)
ª Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal



Optimality of A* Tree Search: Blocking

Proof:
ª Imagine B is on the fringe
ª Some ancestor n of A is on the 

fringe, too (maybe A!)
ª Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…



Optimality of A* Tree Search: Blocking

Proof:
ª Imagine B is on the fringe
ª Some ancestor n of A is on the fringe, 

too (maybe A!)
ª Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

ª All ancestors of A expand before B
ª A expands before B
ª A* search is optimal

…



UCS vs A* Contours

▪ Uniform-cost expands equally in all 
“directions”

▪ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal



A* Applications

▪ Video games
▪ Pathing / routing problems
▪ Resource planning problems
▪ Robot motion planning
▪ Language analysis
▪ Machine translation
▪ Speech recognition
▪ …



Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up with 
admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new actions are 
available

▪ Inadmissible heuristics are often useful too

15
366



Example: 8 Puzzle

▪ What are the states?
▪ How many states?
▪ What are the actions?
▪ How many successors from the start state?
▪ What should the costs be?

Start State Goal StateActions



8 Puzzle I

▪ Heuristic: Number of tiles misplaced
▪ Why is it admissible?
▪ h(start) =
▪ This is a relaxed-problem heuristic

8

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State



8 Puzzle II

▪ What if we had an easier 8-puzzle where 
any tile could slide any direction at any 
time, ignoring other tiles?

▪ Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State



8 Puzzle III

▪ How about using the actual cost as a heuristic?
▪ Would it be admissible?
▪ Would we save on nodes expanded?
▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node
▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually do 

more work per node to compute the heuristic itself



Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics
▪ Bottom of lattice is the zero heuristic (what 

does this give us?)
▪ Top of lattice is the exact heuristic



A* Graph Search Gone Wrong?
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Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

ª Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)  

i.e. if the true cost of an edge from A to C is X, then the h-value should not 

decrease by more than X between A and C.

▪ Consequences of consistency:

ª The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

ª A* graph search is optimal
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Optimality of A* Graph Search

▪ Sketch: consider what A* does with a 
consistent heuristic:

▪ Fact 1: In tree search, A* expands nodes in 
increasing total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach s 
optimally are expanded before nodes that 
reach s suboptimally

▪ Result: A* graph search is optimal

…

f £ 3
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f £ 1



Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics 
tend to be consistent, especially if from relaxed 
problems



A*: Summary



A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems


