
CS 343: Artificial Intelligence

Search

Profs. Peter Stone and Yuke Zhu

The University of Texas at Austin
[These slides are based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

▪ Past due:
▪ Python tutorial
▪ 3 reading responses: AI100 report; Chapters 1,2; Chapter 3

▪ HW1: Search
▪ Due Monday 2/8 at 11:59 pm

▪ P1: Search
▪ Due Wednesday 2/10 at 11:59 pm
▪ Pair work allowed

▪ Readings: Constraint Satisfaction and Local Search

▪ NOT just Chapter 4

▪ Due Monday 2/1 at 9:30 am

Programming Assignment 1

▪ P1: Search
▪ Due Wednesday 2/10 at 11:59 pm
▪ Pair work allowed

Textbook and other Resources

▪ Take your cue from how detailed things are

▪ Important: heuristics for A* search; the concept of memory-bounded search

▪ Just high-level ideas: IDA*, learning to search better

▪ Pseudocode can be useful

▪ If something’s not clear, ask!

▪ Your reading responses were great!

▪ Monitor the class resources page

▪ Links to more complete slide decks and lecture videos

Agents that Plan

Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and

maybe memory)
▪ May have memory or a model of the world’s

current state
▪ Do not consider the future consequences of

their actions
▪ Consider how the world IS

▪ Can a reflex agent be rational?

Video of Demo Reflex — Success

Planning Agents

▪ Planning agents:
▪ Ask “what if”
▪ Decisions based on (hypothesized) consequences

of actions
▪ Must have a model of how the world evolves in

response to actions
▪ Must formulate a goal (test)
▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning
▪ Planning vs. replanning
▪ Planning vs. learning

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
(with actions, costs)

A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search and Models

▪ Search operates over models of the
world
▪ The agent doesn’t actually try all

the plans out in the real world!
▪ Planning is all “in simulation”
▪ Your search is only as good as

your models…

▪ This week:

▪ Discrete

▪ Deterministic

▪ Fully observable

What’s in a State Space?

▪ Problem: Pathing
▪ States: (x,y) location
▪ Actions: NSEW
▪ Successor: update location

only
▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}
▪ Actions: NSEW
▪ Successor: update location

and possibly a dot boolean
▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW

▪ How many
▪ World states?

120x(230)x(122)x4 (> 74 trillion!)
States for pathing?

120
States for eat-all-dots?

120x(230) (> 128 billion)

Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared
▪ What does the state space have to specify?

▪ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

S

G

d

b

p q

c

e

h

a

f

r

Tiny search graph for a tiny search
problem

▪ State space graph: A mathematical
representation of a search problem

▪ Nodes are (abstracted) world configurations
▪ Arcs represent successors (action results)
▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes
▪ The start state is the root node
▪ Children correspond to successors
▪ Nodes show states, but correspond to PLANS that achieve those states
▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and we
construct as little as

possible.

Each NODE in in the
search tree is an

entire PATH in the
state space graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

So why would we ever use a search tree?

1) Cannot store “closed list” (previously visited nodes)
2) Graph happens to be a tree, so no reason to store closed list

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)
▪ Maintain a fringe of partial plans under consideration
▪ Try to expand as few tree nodes as possible

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

▪ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

▪ Idea: never expand a state twice

▪ How to implement:
▪ Tree search + set of expanded states (“closed set”)
▪ Expand the search tree node-by-node, but…
▪ Before expanding a node, check to make sure its state has never been

expanded before
▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness? Why/why not?

▪ How about optimality?

The Main Search Algorithms

▪ Uninformed Search:
▪ Breadth First Search (BFS)
▪ Depth First Search (DFS)
▪ Uniform Cost Search (UCS) ~ [Dijkstra’s Algorithm]

▪ Informed Search:
▪ Greedy Search ~ [Best First Search]
▪ A* Search

▪ Test your understanding!

