CS 343: Artificial Intelligence

Search

Profs. Peter Stone and Yuke Zhu

The University of Texas at Austin

[These slides are based on slides created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Good morning colleagues!

Past due:

= Python tutorial

* 3 reading responses: Al100 report; Chapters 1,2; Chapter 3
HW1: Search

= Due Monday 2/8 at 11:59 pm

P1: Search

= Due Wednesday 2/10 at 11:59 pm

= Pair work allowed

Readings: Constraint Satisfaction and Local Search

= NOT just Chapter 4
= Due Monday 2/1 at 9:30 am

Programming Assignment 1

= P1:Search

= Due Wednesday 2/10 at 11:59 pm
= Pair work allowed

Textbook and other Resources

Take your cue from how detailed things are

= |Important: heuristics for A* search; the concept of memory-bounded search

= Just high-level ideas: IDA*, learning to search better

Pseudocode can be useful

= |f something’s not clear, ask!
Your reading responses were great!

Monitor the class resources page

= Links to more complete slide decks and lecture videos

Agents that Plan

Reflex Agents

= Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

= (Can a reflex agent be rational?

Video of Demo Reflex — Success

|8 Pydey - Echipse

@ consale

File

<terminated > (

it Newgate

File Edit Nawvigste Search Project Run Window

B-ORQ- = >
@ 1 search demo maze
@ 2 search — greedy bad
& 3 sesrch — greedy good
& 4 search demo empty
@ 5search demo umaze
@ 6 search — plan sow
& 7 search - plan
@ 8 search - refiex optina

& 9search - refies loop
& 1st class — pacrman
Run A
Run Corfiqurationt

Organce favorses

Searcn

Documents and Settmge\Dan O i<

Search Project

B-ORQ- = >
@ 1 search demo maze
@ 2 search — greedy bad
& 3 sesrch — greedy good
@ 4 search demo ety
@ 5search demo umaze
@ 6 search — plan sow
& 7 search - plan tast
@ 8 search - refiex optina

& 9search - refies loop
& 1st class — pacrman
Run A
Run Corfiqurationt

Organce favorses

Help

i werkspace pacrman_old\mazewodd\demo\demo py

& Pydev |57 Tesm

11:21 AM

h 2012

& Pydev |57 Tesm

Pydey - Ecipae
File Edit Navigate Search Project Run Window Help
- $-OpQ- BFf~ G- H-5- >
K l?-gmr demo maze
2 cearch - greedy bad
3 sesrch -- greedy good
4 search demo ety
S search demo umaze
6 search — plan sow

7 search

8 cearch refier optima

9 search - refiex loop

TXEILIELL

18t class - pacraan

Run As .
Run Corfiquratens

Organize Favoeaes

Searcn

CADocuments and Seftings Dan D fcapres werkspace’ pacrman_old\mazewedd\demo\ demo.py

search demo meze
2 search — greedy bad
3 sesrch - grees; good

4 search demo ety

6 search — plan dow
7 search - plar

8 cearch refier optima

[]

&

L

&

& 5search domo umaze
&

&

e

& 9 search - refiex loop

& 1ot class — pacraan

Kun As ’
Run Corfiguratcn:

Organize Favoeaes

Planning Agents

= Planning agents:
= Ask “what if”

= Decisions based on (hypothesized) consequences
of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal vs. complete planning
= Planning vs. replanning
= Planning vs. learning

Search Problems

= A search problem consists of:

e 1. 1 [T 1.1

= A successor function
(with actions, costs) "N"'}v u
\

A start state and a goal test

“E”, 1.0
= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search and Models

= Search operates over models of the
world

= The agent doesn’t actually try all
the plans out in the real world!

= Planning is all “in simulation”

= Your search is only as good as
your models...

= This week:
= Discrete

= Deterministic

= Fully observable

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
* Food count: 30
* Ghost positions: 12
» Agent facing: NSEW

= How many
= World states?
120x(239)x(122)x4 (> 74 trillion!)
States for pathing?
120
States for eat-all-dots?
120x(239) (> 128 billion)

Quiz: Safe Passage

= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?
= (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations

= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only
once!

We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny search graph for a tiny search
problem

Search Trees

! This is now / start

10— — 10 E—

u ! Possible futures

= Asearch tree:
= A “what if” tree of plans and their outcomes
= The start state is the root node
= Children correspond to successors
= Nodes show states, but correspond to PLANS that achieve those states
= For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in the
search tree is an
entire PATH in the
state space graph.

We construct both
on demand — and we
construct as little as
possible.

-~

Search Tree

~

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Important: Lots of repeated structure in the search tree!

So why would we ever use a search tree?

1) Cannot store “closed list” (previously visited nodes)
2) Graph happens to be a tree, so no reason to store closed list

Searching with a Search Tree

Arad

CArad > CFagaras> COradea (@micu Vi

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

* Important ideas:
= Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \

-~

/ "
/ {
/ {
/ 1}
Iy 1}
§ {
Iy \
/ \

f L
R i
; 1 \ 1
) ' § 1
; 1 \)
) ' § 1
4 1))

| [

Search Tree

y I
!)
/ '
/ '
/ '
/ '
Y '
£ '
4 ,
/)

~

0: "v
i 1)
£ \
£ "
F "
A [
M [|
L [
. .‘ 1
)) [
- \ | 1
\) [
M \

i
|
1
{ !
I\ 1
f i
[
/ /

Graph Search

Idea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?

The Main Search Algorithms

= Uninformed Search:
= Breadth First Search (BFS)
= Depth First Search (DFS)
= Uniform Cost Search (UCS) ~ [Dijkstra’s Algorithm]

= Informed Search:
= Greedy Search ~ [Best First Search]
= A* Search

= Test your understanding!

