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Good morning colleagues!

Past due:

= Python tutorial

* 3 reading responses: Al100 report; Chapters 1,2; Chapter 3
HW1: Search

= Due Monday 2/8 at 11:59 pm

P1: Search

= Due Wednesday 2/10 at 11:59 pm

= Pair work allowed

Readings: Constraint Satisfaction and Local Search

= NOT just Chapter 4
= Due Monday 2/1 at 9:30 am



Programming Assignment 1

= P1:Search

= Due Wednesday 2/10 at 11:59 pm
= Pair work allowed



Textbook and other Resources

Take your cue from how detailed things are

= |Important: heuristics for A* search; the concept of memory-bounded search

= Just high-level ideas: IDA*, learning to search better

Pseudocode can be useful

= |f something’s not clear, ask!
Your reading responses were great!

Monitor the class resources page

= Links to more complete slide decks and lecture videos



Agents that Plan




Reflex Agents

= Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

= (Can a reflex agent be rational?




Video of Demo Reflex — Success
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Planning Agents

= Planning agents:
= Ask “what if”

= Decisions based on (hypothesized) consequences
of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal vs. complete planning
= Planning vs. replanning
= Planning vs. learning




Search Problems

= A search problem consists of:

e 1. 1 [T 1.1

= A successor function
(with actions, costs) "N"'}v u
\

A start state and a goal test

“E”, 1.0
= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state



Search and Models

= Search operates over models of the
world

= The agent doesn’t actually try all
the plans out in the real world!

= Planning is all “in simulation”

= Your search is only as good as
your models...

= This week:
= Discrete

= Deterministic

= Fully observable



What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false



State Space Sizes?

= World state:
= Agent positions: 120
* Food count: 30
* Ghost positions: 12
» Agent facing: NSEW

= How many
= World states?
120x(239)x(122)x4 (> 74 trillion!)
States for pathing?
120
States for eat-all-dots?
120x(239) (> 128 billion)




Quiz: Safe Passage

= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?
= (agent position, dot booleans, power pellet booleans, remaining scared time)



State Space Graphs and Search Trees



State Space Graphs

State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations

= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only
once!

We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny search graph for a tiny search
problem



Search Trees

! This is now / start

10— — 10 E—

u ! Possible futures

= Asearch tree:
= A “what if” tree of plans and their outcomes
= The start state is the root node
= Children correspond to successors
= Nodes show states, but correspond to PLANS that achieve those states
= For most problems, we can never actually build the whole tree



State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in the
search tree is an
entire PATH in the
state space graph.

We construct both
on demand — and we
construct as little as
possible.

-~

Search Tree

~




Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Important: Lots of repeated structure in the search tree!

So why would we ever use a search tree?

1) Cannot store “closed list” (previously visited nodes)
2) Graph happens to be a tree, so no reason to store closed list



Searching with a Search Tree

Arad

CArad > CFagaras> COradea  (@micu Vi

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible



General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

* Important ideas:
= Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?




Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.
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Graph Search

Idea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?



The Main Search Algorithms

= Uninformed Search:
= Breadth First Search (BFS)
= Depth First Search (DFS)
= Uniform Cost Search (UCS) ~ [Dijkstra’s Algorithm]

= Informed Search:
= Greedy Search ~ [Best First Search]
= A* Search

= Test your understanding!



