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equivalent of cathedrals.”

Koller, ’01

“In AI . . . we have the tendency to divide a problem into
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Robot Vision

• Great progress in computer vision

− Shape modeling, object recognition, face detection. . .

• Robot vision offers new challenges

− Mobile camera, limited computation, color features

• Autonomous color learning [Sridharan & Stone, ’05]

− Learns color map based on known object locations

− Recognizes and reacts to illumination changes

− Object detection in real-time, on-board a robot

Peter Stone MAS, RL and Robotics UTAustin 20



Robot Walking: Grounded Simulation Learning

Method Velocity (cm/s) % Improve

Initial policy 19.3 0.0

1st iteration 26.3 34.6

2nd iteration 28.0 43.3
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• Introduced as AAAI Challenge Problem [AAAI’10]

− Theory: repeated games, bandits [AIJ’13]

− Experiments: pursuit, flocking [Genter & Stone, ’12]
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A Goal of AI

Robust, fully autonomous agents in the real world

What happens when we achieve this goal?

? ?

• Question: Would you rather have been born

− 50 years earlier? Or 50 years later?

• Not clear — world changing in many ways for the worse

AI can be a part of the solution
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SCALABLE MULTIAGENT DRIVING 
POLICIES FOR REDUCING TRAFFIC 
CONGESTION         (AAMAS 2021)

Jiaxun Cui, William Macke, Aastha Goyal, Harel Yedidsion, Daniel Urieli, Peter Stone

Learning Agent Research Group
The University of Texas at Austin
General Motors
Sony AI



1E. Vinitsky, A. Kreidieh, L. Le Flem, N. Kheterpal, K. Jang, C. Wu, F. Wu, R. Liaw, E. Liang, and A. M. Bayen. Benchmarks for 
reinforcement learning in mixed-autonomy traffic. In Conference on Robot Learning, pages 399–409, 2018.



Problem Setting

Develop a multiagent driving policy for Autonomous 
Vehicles(AV) in a mixed autonomy setting, and in large-
scale open road networks
- Two-lane Merging Scenario
- Uniform Inflow
- 10% AVs and 90% Human-Driven
- Uniform AV distribution

2




Traffic Network: Open & Large
 Open Network
• Short in length
• Fewer vehicles 

Large Network
• Longer in length
• More vehicles

4



Our Solution

• For open and large merge network, we propose using 
outflow as an evaluation metric given a fixed traffic inflow 
distribution

• Modular transfer a policy trained under the small network 
to the segment with a similar road structure in the large 
network  
• Centralized RL agent[1] but the learning and policy execution only 

happens in the road window 

7
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Experiment Result: Simple Merge

Simple Merge is an Open and Small Merging Network

With a fixed inflow rate and number of controllable autonomous vehicles

We obtain best outflow by using a time-step outflow as a reward



Reinforcement Learning for 
Optimization of COVID-19 

Mitigation Policies

Varun Kompella*1, Roberto Capobianco*1, 2, 
Stacy Jong3, Jonathan Browne3, Spencer Fox3, 
Lauren Meyers3, Peter Wurman1, Peter Stone1, 3

1 Sony AI
2 Sapienza University of Rome

3 The University of Texas at Austin

*Joint First Authors, varun.kompella@sony.com, roberto.capobianco@sony.com
Paper: https://arxiv.org/abs/2010.10560

Code Repo: https://github.com/SonyAI/PandemicSimulator

mailto:varun.kompella@sony.com
mailto:roberto.capobianco@sony.com
https://arxiv.org/abs/2010.10560
https://github.com/SonyAI/PandemicSimulator


Motivation

● Goals: 
○ manage the impact of COVID-19
○ explore sequential strategies/policies 

to impose and relax restrictions that 

also favor economy



Contributions

● PandemicSimulator
○ An open-source1 agent-based simulator that models community 

interactions 

○ Spread of the disease is modeled as an emergent property of people’s 

behavior

○ Models realistic effects of imperfect testing, variable spread rates among 

infected, flouting, contact tracing, etc.

○ OpenAI Gym interface to enable support for Reinforcement Learning (RL) 

libraries 

● Optimize and analyse a reopening policy learned through RL

1https://github.com/SonyAI/PandemicSimulator



Control Loop of the Simulator

PandemicSimulator

Government

regulations

observation

People Infection 
model

step 24 times
(full day)

at night, update 
location rules and 
people behaviors

testing infection 
summary

Covid 
testing

https://docs.google.com/file/d/1SNg_BoFV2cE75l-XFwDZZHDUPORqR9Lu/preview


Examples of Location Rules

● Grocery Store, Office, School, Retail Store, Hair Salon 
○ opening and closing hours

○ locked or unlocked

● Hospital
○ open at all the times

● These rules can be modified based on the Government decisions 
at any time



Examples of Person Activity Simulation

● Stochastic behaviors
○ A working person goes to an assigned office during the day

○ A child goes to an assigned school during the day

○ Each person visits each store once per week, and hair salon once per 

month in assigned time slots

○ At night, each person stays home or goes to a social-event (house party) 

twice a month

○ A person to-be-hospitalized goes to a hospital, unless when the hospital 

is full (in this case stays home)

○ Some people flout regulations



calculated based on the 
actual interactions over

the course of a day

Infection Model



Infection Probability (S -> E)

\

● Infection probability for each person is calculated based on the 
actual contacts between people in the simulator over the course 
of each day

● Each person has an infection spread rate that is sampled from a 
bounded gaussian distribution
○ For example - super spreaders have higher rates

● Incubation period of ~2.5 (probabilistic) days before becoming 
infectious (and testing positive)



Government Actions and Observations

● Discrete Stage parameters:

○ Lock a location

○ Practice good hygiene

○ Stay at home when sick

○ Wear masks

○ Social distancing

○ Quarantine

○ Max gathering size for 

high/low risk persons

● Observations:

○ Infection summary (critic)

○ Testing summary (actor)

○ Stage

\



Reinforcement Learning (RL) Experiments

\

● Small town configuration
○ 1000 persons (US population age 

distribution)
○ 300 homes
○ 4 grocery stores (30 max visitors, 5 

workers)
○ 4 retail stores (30 max visitors, 5 workers)
○ 4 hair salons (5 max visitors, 3 workers)
○ 5 offices (no visitors, 200 workers)
○ 1 school (300 students, 40 teachers)
○ 1 hospital (10 patients, 5 doctors)
○ 1 cemetery

● Rewards (costs)
○ Control infection spread

■ Negative rewards if critical 

above max capacity

○ Resist going to higher stages 
(promote reopening)
■ Negative rewards proportional 

to higher stages

○ Shaping rewards:
■ Negative rewards for stage 

changes



RL Training

© 2020 Sony AI, Confidential

● Collect data
○ Repeat:

■ Sample a regulation (stage) from the 
policy

■ Iterate simulator for 24 steps 
■ Get observation from the simulator
■ Compute reward
■ Add (observation, regulation, 

reward) to a data buffer

● Update RL agent
○ Sample a batch from the data buffer

○ Update policy and critic parameters

● RL training is carried out in two parallel processes
○ Collect data

○ Update RL agent

○ Simulation speed: 0.41 secs per day, training time: ~ half hour (300k updates, 5000 

days of data)



Baseline Comparison (Stage-0 Policy)



Baseline Comparison (Stage-4 Policy)



Learned Stochastic Policy



Analysis of Benchmark Policies

Regulations: 5 staged escalating restrictions (0 - 4)



Reward =     a (ncritical - max-capacity)       +       b stagec

Optimizing Reopening using RL



Recap

● Created an open source software 

to simulate pandemics in a 

“sim-city” like environment 

○ https://github.com/SonyAI/P

andemicSimulator 

● We calibrated our simulator using 

real-data, did sensitivity analysis, 

added contact tracing, testing, etc.

https://github.com/SonyAI/PandemicSimulator
https://github.com/SonyAI/PandemicSimulator
https://docs.google.com/file/d/1SNg_BoFV2cE75l-XFwDZZHDUPORqR9Lu/preview


What if there is vaccination in the horizon?

Vaccination framework:

● Vaccination Centers

○ A person visits the center to get a vaccination

○ Maintains local vaccination summaries

● Person Routines

○ Get on the queue to get a shot at one of vaccination centers

● CDC

○ Controls supply, eligibility, phases, etc.

○ Vaccine allocation model
■ Specifications for vaccines, rollout phases, availability chart, etc.

● Added state Information
○ Vaccination state for each person
○ Global vaccination summary 
○ Vaccination start date and supply rate



Vaccine allocation model 
References:
[1] www.nap.edu/resource/25917/FIGURE%20-%20A%20Phased%20Approach%20to%20Vaccine%20Allocation%20for%20COVID-19.pdf
[2] www.cdc.gov/vaccines/acip/meetings/downloads/slides-2020-12/slides-12-20/02-COVID-Dooling-508.pdf
[3] www.bloomberg.com/news/articles/2021-02-18/how-many-vaccine-doses-are-available-u-s-should-see-a-surge



1000 person simulation run (preliminary result)
(vaccination_start_day = 10, supply_interval=15 days)



Summary

● Learned an RL policy that optimizes a reopening strategy balancing infection 

spread and economic costs (AAAI Symp, submitted to JAIR).

○ Main insight: The best strategy is to switch gradually from complete lockdown to 

no-restrictions. It is very expensive (economically) to stop infection spread entirely, 

so longer lockdowns are sub-optimal.

● Also: “Multiagent Epidemiologic Inference through Realtime Contact 

Tracing”

○ Thursday S6: Reinforcement Learning 4



Next steps (there are many!)

● Conduct longer experiments with larger populations 
● Add more types of locations
● Higher fidelity model of schools
● Explore structured stage-policies
● Try different learning algorithms
● Post-process network results for explainability
● Finish vaccination model and run RL experiments!



Conclusions and Future Work

● Introduced an RL methodology for optimizing adaptive 
mitigation policies aimed at balancing economy and infection 
spread

● Introduced an open-source agent based simulator where 
pandemics can be generated through individual interactions in a 
community

● Future work: 
○ Explore fine-grained policies
○ Test various testing/contact tracing strategies



Next steps

● Link person’s vaccination state and infection state

● Generate infection summary plots for different 
configurations:

○ Vaccination start date

○ Regulation stage

○ Vaccination supply rate

● Run RL! 
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