CS343 Artificial Intelligence

Profs: Peter Stone and Yuke Zhu

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

 Wednesday May 12th, 2pm-5pm (or some 3-hour window close to then)

- Wednesday May 12th, 2pm-5pm (or some 3-hour window close to then)
- Same rules as midterm (open book and notes, but don't search internet for answers)

- Wednesday May 12th, 2pm-5pm (or some 3-hour window close to then)
- Same rules as midterm (open book and notes, but don't search internet for answers)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning

- Wednesday May 12th, 2pm-5pm (or some 3-hour window close to then)
- Same rules as midterm (open book and notes, but don't search internet for answers)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm

- Wednesday May 12th, 2pm-5pm (or some 3-hour window close to then)
- Same rules as midterm (open book and notes, but don't search internet for answers)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1.5 hours

- Wednesday May 12th, 2pm-5pm (or some 3-hour window close to then)
- Same rules as midterm (open book and notes, but don't search internet for answers)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1.5 hours
- Samples Berkeley exams

Planning Recap

Graphplan

Is AI all about the data?

Which programming assignments used data files?

Your Questions

 Vijay Vuyyuru: Is it useless to study the brain separately from the body since both interact?

Your Questions

- Vijay Vuyyuru: Is it useless to study the brain separately from the body since both interact?
- Theodore Venter: Is there anyone taking the idea of perceptrons and deep learning to the next level by using biological components? And if not, has anyone tried designing separate neuron-like circuits to create a real artificial brain?

 Nitin Jain: Is Al automation a good thing or bad thing and how heavily should this be considered when working on further Al advancements?

- Nitin Jain: Is Al automation a good thing or bad thing and how heavily should this be considered when working on further Al advancements?
- Are there some types of research we shouldn't do?

- Nitin Jain: Is Al automation a good thing or bad thing and how heavily should this be considered when working on further Al advancements?
- Are there some types of research we shouldn't do?
- If an AI technology runs amok, who is responsible?

 Ethan Lao: What are the newest changes in Al that were discovered after the textbook?

- Ethan Lao: What are the newest changes in AI that were discovered after the textbook?
- Joseph Jiang: If humans have made strides in AI that would be considered impossible just a decade ago, is there real merit as to the definite limitations of AI?

- Ethan Lao: What are the newest changes in AI that were discovered after the textbook?
- Joseph Jiang: If humans have made strides in Al that would be considered impossible just a decade ago, is there real merit as to the definite limitations of Al?
- Can computers perfectly simulate a human's decisionmaking (weak AI)?
- When will Al reach human-level intelligence?

Some Current Al Research

Building General-Purpose Robot Autonomy

Yuke Zhu

May 4, 2021

UT-Austin Robot Perception and Learning Lab

Traditional Form of Robot Automation

Structured Environments

Fixed Set of Tasks

Pre-programmed Procedures

General-Purpose Robot Autonomy: Our North Star Goal

Natural Environments

Ever-Changing Tasks

Human Involvement

Robot Autonomy as a "Pixels-to-Torques" Problem

Policy $\pi:\mathcal{O} \to \mathcal{A}$ torque

Robot Autonomy as a "Pixels-to-Torques" Problem

"End-to-End Deep Learning Magic"

Robot Autonomy as a "Pixels-to-Torques" Problem

Rubik's Cube Manipulation (OpenAl; 2019)

Sensorimotor behaviors **emerge** from end-to-end deep reinforcement learning (60% success rate).

Robot played with the Rubik's Cube for an equivalent of **10,000 years** in simulated training.

"There is no ladder to the moon"

My take on robot autonomy: The master algorithm requires a grand unification of Al methodologies

Al methodologies you have learned in CS 343

probabilistic inference

symbolic reasoning

planning

reinforcement learning

Deep Affordance Foresight:

Planning Through What Can Be Done in the Future

Xu et al. ICRA 2021

What is Affordance?

Affordances are potential for actions successes that the environment affords to the agent. (Gibson, 1977)

[Gibson 1979; Kirklik 1993; Zaff 1995; Stoytchev 2015; Amant 1999; Bousmalis 2018; Detry 2011; Zhu et al. 2017; Mahler 2017; Nagarajan 2020; Ugur 2007; Dang 2020; Fang 2018; Song 2010; Zeng 2018; Abel 2014; Abel 2015; Cruz 2016; Khetarpal 2020; Ardon 2020; Mandikal 2020]

Classical definition of affordance is not suitable for planning

Classical definition of affordance is not suitable for planning

Classical affordance: whether an action is feasible

No way to choose actions with respect to a long-horizon task goal

Classical definition of affordance is not suitable for planning

Classical affordance: whether an action is feasible

Our new affordance: will an action make future actions feasible?

Choose actions that enable the subsequent steps in the task plan

Skill Affordances

Parameterized skill plan grasp(θ) \longrightarrow hook(θ) \longrightarrow grasp(θ) \longrightarrow • • •

Affordance function:

$$\mathcal{A}_{\pi, heta}(s)$$

Whether state S is in the affordance set of (π, θ)

Verifying that a plan is executable with affordances

Parameterized skill plan grasp(θ) \longrightarrow hook(θ) \longrightarrow grasp(θ) \longrightarrow • •

How likely is this plan executable by the robot? The plan is executable if every skill in the plan is afforded.

state distribution skill affordance set transition function

Probability that a plan is executable:

$$C_{plan}(\{(\pi_i, \theta_i)\}_{i=1}^N) = \sum_{s \in S} Z_{N-1}(s) \mathcal{A}_{\pi_N, \theta_N}(s)$$
 affordance likely

state distribution

$$Z_{N-1}(s)\mathcal{A}_{\pi_N,\theta_N}(s)$$

affordance likelihood

Learning to Plan with Deep Affordance Foresight (DAF)

Plan executable likelihood: $\hat{C}_{plan} = \prod a_i$

$$\hat{C}_{plan} = \prod_{i}^{N} a_i$$

Results: Tool-Use

Sample Rollouts: Tool-Use + Stacking

Xu et al. "Deep Affordance Foresight" ICRA 2021

Rollouts: Kitchen (Coffee)

PlaNet

Deep Affordance Foresight: Summary

- Mapping skills to action symbols (skill affordance) from raw observations (NN)
- Reason about skill symbolic plans with probabilistic methods of success likelihood (PI)
- Model-based reinforcement learning learned from trial and error (RL)

