Planning Problems

Want a sequence of actions to turn a start state into a goal state

Unlike generic search, states and actions have internal structure, which allows better search methods

This slide deck courtesy of Dan Klein at UC Berkeley

State Space

Representation

States described by propositions or ground predicates Sparse encoding (database semantics): all unstated literals are false

Unique names: each object has its own single symbol

Actions

```
On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
```



```
ACTION: Move(b,x,y)

PRECONDITIONS: On(b,x), Clear(b), Clear(y)

POSTCONDITIONS: On(b,y), Clear(x)

¬On(b,x), ¬Clear(y)
```

ACTION: Move(C,A,Table) PRECONDITIONS: On(C,A), Clear(C), Clear(Table) POSTCONDITIONS: On(C,Table), Clear(A) ¬On(C,A), ¬Clear(Table)

Actions

```
On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
```



```
ACTION: MoveToBlock(b,x,y)

PRECONDITIONS: On(b,x), Clear(b), Clear(y),

Block(b), Block(y), (b\neq x), (b\neq y), (x\neq y)

POSTCONDITIONS: On(b,y), Clear(x)

\negOn(b,x), \negClear(y)
```

```
ACTION: MoveToTable(b,x)

PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (b\neqx)

POSTCONDITIONS: On(b,Table), Clear(x)

\negOn(b,x)
```

Start and Goal States

Start State

Goal State

Important: goal satisfied by any state which entails goal list

[MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]

Planning Problems

Practice

Problem 10.2: "Applicable" Problem 10.3a,b: Representation Where do they come from? Could they be learned?

Kinds of Plans

Start State

Sequential Plan

MoveToTable(C,A) > Move(B,Table,C) > Move(A,Table,B)

Partial-Order Plan MoveToTable(C,A) > Move(A,Table,B)] Move(B,Table,C)

Forward Search

Applicable actions

Backward Search

$$g' = (g - ADD(a)) \cup Precond(a)$$

Heuristics: Ignore Preconditions

Relax problem by ignoring preconditions

Can drop all or just some preconditions

Can solve in closed form or with set-cover methods

Start State

Goal State

 $\begin{aligned} Action(Slide(t, s_1, s_2), \\ \texttt{PRECOND:} On(t, s_1) \land Tile(t) \land Blank(s_2) \land Adjacent(s_1, s_2) \\ \texttt{EFFECT:} On(t, s_2) \land Blank(s_1) \land \neg On(t, s_1) \land \neg Blank(s_2)) \end{aligned}$

Heuristics: No-Delete

Relax problem by not deleting falsified literals

Can't undo progress, so solve with hill-climbing (non-admissible)


```
ACTION: MoveToBlock(b,x,y)

PRECONDITIONS: On(b,x), Clear(b), Clear(y),

Block(b), Block(y), (b\neqx), (b\neqy), (x\neqy)

POSTCONDITIONS: On(b,y), Clear(x)

\negOn(b,x), \negClear(y)
```

Heuristics: Independent Goals

Planning "Tree"

Reachable State Sets

Approximate Reachable Sets

Have=F,	Have=T,
Ate=T	Ate=F

Have={T,F},	
Ate={T,F}	

(Have, Ate) not (T,T) (Have, Ate) not (F,F)

Have=T,	Have=F,	Have=T,
Ate=T	Ate=T	Ate=F

(Have,Ate) not (F,F)

Planning Graphs

Start: HaveCake

NEGATION Literals and their negations can't be true at the same time

Planning Graph

INCONSISTENT EFFECTS An effect of one negates the effect of the other

Planning Graph

Propositions monotonically increase (always carried forward by no-ops)

Actions monotonically increase (if they applied before, they still do)

Proposition mutex relationships monotonically decrease

Action mutex relationships monotonically decrease

Claim: planning graph "levels off"

After some time k all levels are identical Because it's a finite space, the set of literals cannot increase indefinitely, nor can the mutexes decrease indefinitely

Claim: if goal literal never appears, or goal literals never become non-mutex, no plan exists

- If a plan existed, it would eventually achieve all goal literals (and remove goal mutexes less obvious)
- Converse not true: goal literals all appearing non-mutex does not imply a plan exists

Heuristics: Level Costs

Planning graphs enable powerful heuristics

- Level cost of a literal is the smallest S in which it appears
- Max-level: goal cannot be realized before largest goal conjunct level cost (admissible)
- Sum-level: if subgoals are independent, goal cannot be realized faster than the sum of goal conjunct level costs (not admissible)
- Set-level: goal cannot be realized before all conjuncts are nonmutex (admissible)

Graphplan

Graphplan directly extracts plans from a planning graph Graphplan searches for layered plans (often called parallel plans) More general than totally-ordered plans, less general than partiallyordered plans

A layered plan is a sequence of **sets** of actions

actions in the same set must be compatible all sequential orderings of compatible actions gives same result

Layered Plan: (a two layer plan)

Solution Extraction: Backward Search

Search problem:

Start state: goal set at last level Actions: conflict-free ways of achieving the current goal set Terminal test: at S₀ with goal set entailed by initial planning state

Note: may need to start much deeper than the leveling-off point!

Caching, good ordering is important

Scheduling

In real planning problems, actions take time, resources

Actions have a duration (time to completion, e.g. building)
Actions can consume (or produce) resources (or both)
Resources generally limited (e.g. minerals, SCVs)

Simple case: known (partial) plan, just need to schedule

Even simpler: no resources, just ordering and duration

JOBS

[AddEngine1 < AddWheels1 < Inspect1] [AddEngine2 < AddWheels2 < Inspect2]

RESOURCES

EngineHoists (1) WheelStations (1) Inspectors (2)

ACTIONS

AddEngine1: DUR=30, USE=EngHoist(1) AddEngine2: DUR=60, USE=EngHoist(1) AddWheels1: DUR=30, USE=WStation(1) AddWheels2: DUR=15, USE=WStation(1) Inspect1: DUR=10, USE=Inspectors(1) Inspect2: DUR=10, USE=Inspectors(1)

Resource-Free Scheduling

JOBS

[AddEngine1 < AddWheels1 < Inspect1] [AddEngine2 < AddWheels2 < Inspect2]

RESOURCES

EngineHoists (1) WheelStations (1) Inspectors (2)

ACTIONS

AddEngine1: DUR=30, USE=EngHoist(1) AddEngine2: DUR=60, USE=EngHoist(1) AddWheels1: DUR=30, USE=WStation(1) AddWheels2: DUR=15, USE=WStation(1) Inspect1: DUR=10, USE=Inspectors(1) Inspect2: DUR=10, USE=Inspectors(1) How to minimize total time? Easy: schedule an action as so

Easy: schedule an action as soon as its parents are completed

ES(START) = 0 $ES(a) = \max_{b:b \prec a} ES(b) + DUR(b)$

Result:

Resource-Free Scheduling

JOBS

[AddEngine1 < AddWheels1 < Inspect1] [AddEngine2 < AddWheels2 < Inspect2]

RESOURCES

EngineHoists (1) WheelStations (1) Inspectors (2)

ACTIONS

AddEngine1: DUR=30, USE=EngHoist(1) AddEngine2: DUR=60, USE=EngHoist(1) AddWheels1: DUR=30, USE=WStation(1) AddWheels2: DUR=15, USE=WStation(1) Inspect1: DUR=10, USE=Inspectors(1) Inspect2 DUR=10, USE=Inspectors(1) Note there is always a critical path All other actions have slack Can compute slack by computing latest start times

LS(END) = ES(END)

$$LS(a) = \min_{b:a \prec b} LS(b) - DUR(a)$$

Result:

Adding Resources

For now: consider only released (non-consumed) resources View start times as variables in a CSP Before: conjunctive linear constraints

 $\forall b : b \prec a \quad ES(a) \ge ES(b) + DUR(b)$

Now: disjunctive constraints (competition)

if competing(a, b) $ES(a) \ge ES(b) + DUR(b) \lor$ $ES(b) \ge ES(a) + DUR(a)$

In general, no efficient method for solving optimally

Adding Resources

One greedy approach: min slack algorithm

- Compute ES, LS windows for all actions
- Consider actions which have all preconditions scheduled
- Pick the one with least slack
- Schedule it as early as possible
- Update ES, LS windows (recurrences now must avoid reservations)

Resource Management

Complications:

Some actions need to happen at certain times Consumption and production of resources Planning and scheduling generally interact

Prodigy

- A classical STRIPS-style planner
 - Domain Representation: objects, operators
 - Problem Representation: initial state, goal state
- Operators have preconditions and effects

Example - Blocksworld

(Arm–empty)

Operators:(Pickup x)(Putdown x y)preconds:(Clear x)preconds:(Holding x)(Arm-empty)(Clear y)(Clear y)adds:(Holding x)adds:(On x y)if(On x y)(Clear y)dels:(Arm-empty)(Arm-empty)if(On x y)(Iholding x)if(On x y)(Iholding x)if(On x y)(Iholding x)if(On x y)(Iholding x)if(Y)

Issues in Planning

- Representations
- Algorithms
- Conditional effects
- Dynamic worlds
- Mixing planning and execution
- Learning
- Large-scale applications

Fairly mature field

Example – Blocksworld

(Arm–empty)

Operators:(Pickup x)(Putdown x y)preconds:(Clear x)preconds:(Holding x)(Arm-empty)(Clear y)(Clear y)adds:(Holding x)adds:(On x y)if(On x y)(Clear y)dels:(Arm-empty)(Arm-empty)if(On x y)(Arm-empty)if(On x y)(Iholding x)if(On x y)(Iholding x)if(On x y)(Iholding x)if(Y = Table)(Clear y)