Planning Problems

Want a sequence of actions to turn a start state into a goal

State
C ifa] = I

_ o e

Unlike generic search, states and actions have internal
structure, which allows better search methods

This slide deck courtesy of Dan Klein at UC Berkeley

State Space

On(C, A)

On(A, Table)
On(B, Table)

Clear(C)

Clear(B)

Representation
States described by propositions or ground predicates

Sparse encoding (database semantics): all unstated
literals are false

Unigue names: each object has its own single symbol

Actions

On(C, A)
On(A, Table)
On(B, Table)

Clear(C)
Clear(B)

ACTION: Move(b,X,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y)
POSTCONDITIONS: On(b,y), Clear(x)
—0n(b,x), —Clear(y)

ACTION: Move(C,A, Table)
PRECONDITIONS: On(C,A), Clear(C), Clear(Table)
POSTCONDITIONS: On(C,Table), Clear(A)
—0On(C,A), —Clear(Table)

Actions

On(C, A)
On(A, Table)
On(B, Table)

Clear(C)
Clear(B)

ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y),
Block(b), Block(y), (b#x), (bzy), (xzy)
POSTCONDITIONS: On(b,y), Clear(x)
—0n(b,x), —Clear(y)

ACTION: MoveToTable(b,x)
PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (b#x)
POSTCONDITIONS: On(b,Table), Clear(x)
—|On(b,x)

Start and Goal States

k-

Start State Goal State

Oon(C, A) on(B, C)

On(A, Table) On(A, B)

On(B, Table)

Clear(C) :
Important: goal

Clear(B) .

Block(A) satlsfled_by any
state which
entails goal list

[MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]

Planning Problems

On(C, A) Sparse encoding,
On(A, Table) |+ Pl
On(B, Table)
Clear(C) C
Clear(B) (——

Goal

Set of goal states,

only requirements | On(B, C)

Action schema, specified (think | On(A, B)

instantiates to give unary constraints)
specific ground actions

Which goal first?

ACTION: MoveToTable(b,x)
PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (b#x)
POSTCONDITIONS: On(b,Table), Clear(x)
—|On(b,x)

Practice

Problem 10.2: “Applicable’
Problem 10.3a,b: Representation
Where do they come from?

Could they be learned?

Kinds of Plans

Sequential Plan
MoveToTable(C,A) > Move(B,Table,C) > Move(A,Table,B)

Start State

On(C, A)

On(A, Table) |
On(B, Table) Partial-Order Plan

Clear(C) MoveToTable(C,A)
Clear(B) > Move(A, Table,B)]
Block(A) Move(B,Table,C)

Forward Search

Start State

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)

Applicable actions

OoACA)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)

+Clear(A)
+0On(C, Table)

Backward Search

ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y),
Block(b), Block(y), (b=#x), (b=y),
(x=y)
POSTCONDITIONS: On(b,y), Clear(x)
—0n(b,x), —Clear(y)

MoveToBIock(A, Table,B) C
MoveToBlock(A,x’,B) ‘ ——
Goal State
On(B, C) on(B, C)
On{AB) . On(A, B)
+On(A, Table) Relevant actions
+Clear(A)
+Clear(B)
+...

g = (g — ADD(a)) U Precond(a)

Heuristics: Ignore Preconditions

Relax problem by ignoring preconditions
Can drop all or just some preconditions
Can solve in closed form or with set-cover methods

71 2 |f 4 L |f] 2

5 6 304 | 5

s3] 6 ||| 7 (] s
Start State Goal State

Action(Slide(t, sy, S2),
PRECOND: On(t.sy) A Tile(t) A Blank(so) A Adjacent(sy, s2)
EFFECT: On(t.s2) A Blank(s1) A —On(t.si) A = Blank(sz))

Heuristics: No-Delete

Relax problem by not deleting falsified literals
Can’t undo progress, so solve with hill-climbing (non-admissible)

On(C, A)
On(A, Table) C
Clear(C)
Clear(B)

ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y),
Block(b), Block(y), (b#x), (bzy), (x2y)
POSTCONDITIONS: On(b,y), Clear(x)
—0n(b,x), —Clear(y)

Heuristics: Independent Goals

Independent subgoals?
Partition goal literals
Find plans for each subset
cost(all) < cost(any)? c
cost(all) < sum-cost(each)? Goal State
On(B, C)

/ On(A, B)

On(A, B) On(B, C)

Planning “Tree”

Start: HaveCake

Goal: AteCake, HaveCake

Action:

Action:

Eat

Pre: HaveCake
Add: AteCake
Del: HaveCake

Bake
Pre: —HaveCake
Add: HaveCake

{EW

Have=T,
Ate=F

Have=F,
Ate=T

Have=T,
Ate=F

{Bake/\ 0

(Eat /\{}

Have=T,
Ate=T

Have=F,
Ate=T

Have=F,
Ate=T

Have=T,
Ate=F

Reachable State Sets

Have=T,
Ate=F

{Eat}

Have=F,
Ate=T

{Bake}

{Eat}

Have=T,
Ate=T

Have=F,
Ate=T

Have=T,
Ate=F

{}

Have=T,
Ate=F

Have=F,
Ate=T

Have=T,
Ate=F

Have=F,
Ate=T

Have=T,
Ate=T Ate=T

Have=T,

Have=F,

Have=T,
Ate=F

Approximate Reachable Sets

Have=T,
Ate=F

Have=F,
Ate=T

Have=T,
Ate=F

Have={T},
Ate={F}

Have={T,F},

Ate={T,F}

Have=T,
Ate=T

Have=F,
Ate=T

Have=T,
Ate=F

Have={T,F},

Ate={T,F}

(Have, Ate) not (T,T)
(Have, Ate) not (F,F)

(Have,Ate) not (F,F)

Planning Graphs

Start: HaveCake

Goal: AteCake, HaveCake

Action: Eat
Pre: HaveCake
Add: AteCake
Del: HaveCake

Action: Bake
Pre: —HaveCake
Add: HaveCake

HaveCake

— AteCake

S,

Eat

HaveCake

— HaveCake

AteCake

— AteCake

Sl

Mutual Exclusion (Mutex)

NEGATION

Literals and HaveCake HaveCake
their negations I

can’t be true at Eat — HaveCake
the same time

AteCake
I

, — AteCake — AteCake

S, Aq S,

Mutual Exclusion (Mutex)

INCONSISTENT
EFFECTS

An effect of one
negates the
effect of the other

/

©Q OO0 000

\

HaveCake

— AteCake

S,

Eat

HaveCake
I

— HaveCake

AteCake
I

— AteCake

Sl

Mutual Exclusion (Mutex)

INCONSISTENT
SUPPORT
All pairs of actions

that achieve two HaveCake Have|Cake
literals are mutex Eat IR
O\ O
O AteCake
I
0 © — AteCake — AteCake
O O
—0 S, A, S,

\

Planning Graph

HaveCake |

Eat

— AteCake

S, Aq

Bake
HaveCake
Vﬂ — Hav:aCake Eat
AteCake
— AteICake
S, A,

HaveCake

— HaveCake

AteCake

— AteCake

SZ

Mutual Exclusion (Mutex)

COMPETITION
Preconditions are

mutex; cannot
both hold

OOOOO/O
S
OOOO/CLO

\

Bake
HaveCake g HaveCake
I
— HaveCake Eat (— HaveCake
C
AteCake AteCake
' (
— AteCake — AteCake
Sl Al SZ
INCONSISTENT EFFECTS

An effect of one negates the
effect of the other

Mutual Exclusion (Mutex)

INTERFERENCE
One deletes a
precondition of
the other

o O

00000

\

HaveCake
I

— HaveCake

AteCake
I

— AteCake

Sl

Sell
Bake
HaveCake
Eat — HaveCake
AteCake
— AteCake
A, S,

Planning Graph

Bake
HaveCake | (HaveCake g HaveCake \\
I I \
Eat {— HaveCake Eat — HaveCake 1
/ C !
/
AteCake AteCake 7
I (I

— AteCake — AteCake — AteCake

S0 A0 Sl Al SZ

ml

/

Observation 1

p p
\ \
— A |— A
— q q
"q>< "q><
B B
o — \r/
mlf

Propositions monotonically increase
(always carried forward by no-ops)

ml

/

Observation 2

\
— g q
—|q>< —|q
/

/
~NO\UXY

Actions monotonically increase
(if they applied before, they still do)

Observation 3

QO 0O

{

Proposition mutex relationships monotonically decrease

Observation 4

Nehehel
SN N Ne—

e

Action mutex relationships monotonically decrease

Observation 5

Claim: planning graph “levels off”
After some time k all levels are identical

Because it’s a finite space, the set of literals cannot increase
indefinitely, nor can the mutexes decrease indefinitely

Claim: if goal literal never appears, or goal literals never
become non-mutex, no plan exists

If a plan existed, it would eventually achieve all goal literals (and
remove goal mutexes — less obvious)

Converse not true: goal literals all appearing non-mutex does not
imply a plan exists

Heuristics: Level Costs

Planning graphs enable powerful heuristics
Level cost of a literal is the smallest S in which it appears
Max-level: goal cannot be realized before largest goal conjunct

level cost (admissible)

Sum-level: if subgoals are independent, goal cannot be realized
faster than the sum of goal conjunct level costs (not admissible)

Set-level: goal cannot be realized before all conjuncts are non-

mutex (admissible)

HaveCake

HaveCake I
1

{_— HaveCake

\\ AteCake

1
— AteCake

— AteCake

S, Ao S,

Bake
E HaveCake
1
Eat — HaveCake
AteCake
(.
— AteCake

A S,

Graphplan

Graphplan directly extracts plans from a planning graph

Graphplan searches for layered plans (often called parallel plans)

More general than totally-ordered plans, less general than partially-
ordered plans

A layered plan is a sequence of sets of actions
actions in the same set must be compatible
all sequential orderings of compatible actions gives same result

"

Layered Plan: (a two layer plan)

move(A,B,TABLE) | . | move(B,TABLE,A)
move(C,D,TABLE)| ' | move(D,TABLE,C)

Solution Extraction: Backward Search

(o] O o
Search problem: \ °

Start state: goal set at last level o
Actions: conflict-free ways of

achieving the current goal set

Terminal test: at S, with goal set
entailed by initial planning state

o] o]

Note: may need to start much £

. . O O

deeper than the leveling-off point! o ?ﬁ
\o

or O 4

Caching, good ordering is ~pg—o

important

Scheduling

In real planning problems, actions
take time, resources

Actions have a duration (time to
completion, e.g. building)

Actions can consume (or produce)
resources (or both)

Resources generally limited (e.g.
minerals, SCVs)

Simple case: known (partial) plan,
just need to schedule

Even simpler: no resources, just
ordering and duration

JOBS
[AddEnginel < AddWheelsl < Inspectl]
[AddEngine2 < AddWheels2 < Inspect?2]

RESOURCES
EngineHoists (1)
WheelStations (1)

Inspectors (2)

ACTIONS
AddEnginel: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1)
AddWheelsl1l: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)
Inspectl: DUR=10, USE=Inspectors(1)
Inspect2: DUR=10, USE=Inspectors(1)

Resource-Free Scheduling

JOBS
[AddEnginel < AddWheelsl < Inspectl]
[AddEngine2 < AddWheels2 < Inspect?2]

RESOURCES
EngineHoists (1)
WheelStations (1)

Inspectors (2)

ACTIONS
AddEnginel: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1)
AddWheelsl: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)
Inspectl: DUR=10, USE=Inspectors(1)
Inspect2: DUR=10, USE=Inspectors(1)

How to minimize total time?

Easy: schedule an action as soon as
its parents are completed

ES(START) =0

ES(a) = max ES(b) + DUR(b)

b:b<a
Result:
Enginel | || Wheell Inspl
30 30 10
Start
Engine2 Wheel2 Insp2
60 15 10

End

Resource-Free Scheduling

o8BS Note there is always a critical path
[AddEnginel < AddWheels1 < Inspecti] All other actions have slack
[AddEngine2 < AddWheels2 < Inspect?2] :
Can compute slack by computing
RESOURCES latest start times
EngineHoists (1)
WheelStations (1) LS(END) — ES(END)
Inspectors (2)
LS(a) = min LS(b) — DUR(a)
ACTIONS b:a<b
AddEnginel: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1) Result:
AddWheelsl: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1) 0 30 60
Inspectl: DUR=10, USE=Inspectors(1) :
Inspect2 DUR=10, USE=Inspectors(1) 0 Englcr;el > Wr;%ell > Infgl 85
Start End
Engine2 Wheel2 | Insp2
60 15 10

0 60 75

Adding Resources

For now: consider only released (non-consumed) resources
View start times as variables in a CSP
Before: conjunctive linear constraints

Vb:b<a ES(a)> ES(b) + DUR(®D)

Now: disjunctive constraints (competition)
if competing(a,b)
ES(a) > ES(b) + DUR(b) V
ES(b) > ES(a)+ DUR(a)

In general, no efficient method for solving optimally

AddEngine1 N AddEngine2

EngineHoists(1)

AddWheels2

WheelStations(1)

Inspectors(2)

Adding Resources

One greedy approach: min slack algorithm
Compute ES, LS windows for all actions
Consider actions which have all preconditions scheduled
Pick the one with least slack
Schedule it as early as possible

Update ES, LS windows (recurrences now must avoid
reservations)

[0,15] [30.45] [60,75]
AddEngine1 *1 AddWheels1 ™1 Inspecti
30 30 10
[0,0] [85.85]
Start Finish
[0,0] [60,60] [75.,75]

AddEngine2 [l Add\Wheels? [mesi-| Inspect2
60 15 10

Resource Management

Complications:

Some actions need to happen at certain times
Consumption and production of resources
Planning and scheduling generally interact

Prodigy

e A classical STRIPS-style planner

- Domain Representation: objects, operators
- Problem Representation: initial state, goal state

e Operators have preconditions and effects

Departnient of Compauter Sciences
e
;-F The University of Texas at Austin Peter Stone

Example

(On A B)
(On B Table)
(On C Table)
(Clear A)
(Clear C)
(Clear Table)
(Arm—empty)

Operators:

- Blocksworld
Initial Goal (OnCA)
State B | State (OnB C)
A C
[+ whatever]
B C A
(Pickup x) (Putdown x y)
preconds: (Clear x) preconds:(Holding x)

(Arm—-empty)
adds: (Holding x)
If (On xy), (Cleary)
dels: (Arm—empty)
If (Onxy), (Onxy)

(Cleary)

adds:(On x y)
(Arm—empty)
dels:(Holding x)
If (y I=Table), (Cleary

ent of Computer Sciences

" b Departn:
:EF_w_

The University of Texas at Austin

Peter Stone

Prodigy/Blocksworld (cont.)

Putdown C A
(Holding C)
(Clear A)
C
A
B
A C
B| |C A
(On CA)
(On B C)

| Departnient of Compauter Sciences
\ The University of Texas at Austin Peter Stone

Prodigy/Blocksworld (cont.)

A

C

B

C

B

C

Pickup A

Pickup B

(Clear C)
(Holding B)

@)

Departnient of Compauter Sciences

The University of Texas at Austin

Peter Stone

Prodigy/Blocksworld (cont.)

C

B

C

B

@]

Pickup A

Pickup B
(Arm-empty)

A

C

B

Putdown A Table

Departnient of Compauter Sciences

The University of Texas at Austin

Peter Stone

Prodigy/Blocksworld (cont.)

@]

A

C

B

Putdown A Table

Departnient of Compauter Sciences

The University of Texas at Austin

Peter Stone

Prodigy/Blocksworld (cont.)

C
A

A B

A C

B| |C B||C BI[C|A 5 A
C

| Departnient of Compauter Sciences
: i The University of Texas at Austin Peter Stone

Prodigy/Blocksworld (cont.)

A

C

@)

Departnient of Compauter Sciences

The University of Texas at Austin

Peter Stone

Issues in Planning

e Representations

e Algorithms

e Conditional effects

e Dynamic worlds

e Mixing planning and execution
e Learning

e Large-scale applications

Fairly mature field

| Departnient of Compauter Sciences
\ The University of Texas at Austin Peter Stone

Example

(On A B)
(On B Table)
(On C Table)
(Clear A)
(Clear C)
(Clear Table)
(Arm—empty)

Operators:

- Blocksworld
Initial Goal (OnCA)
State B | State (OnB C)
A C
[+ whatever]
B C A
(Pickup x) (Putdown x y)
preconds: (Clear x) preconds:(Holding x)

(Arm—-empty)
adds: (Holding x)
If (On xy), (Cleary)
dels: (Arm—empty)
If (Onxy), (Onxy)

(Cleary)

adds:(On x y)
(Arm—empty)
dels:(Holding x)
If (y I=Table), (Cleary

ent of Computer Sciences

" b Departn:
:EF_w_

The University of Texas at Austin

Peter Stone

