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• Prior, net structure, and CPT’s known
− Week 4: Utilities
− Week 7: Conditional independence and inference

(exact and approximate)
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• After that: More machine learning

− Week 11: Neural nets and Deep Learning
− Week 12: SVMs, Kernels, and Clustering

• Week 13: Classical planning

− Reasoning with first order representations
− So far we’ve dealt with propositions
− Back to known transitions, known state, etc.

• Week 14: Philosophical foundations and ethics

It’s all about building agents

Sense, decide, act Maximize expected utility

Peter Stone



Topics not covered

• Knowledge representation and reasoning
. (Chapters 7-9, 11, 12)

• Game theory and auctions (Sections 17.5, 17.6)

• Aspects of learning (Chapters 18, 19)

• Natural language (Chapters 22, 23)

• Vision (Chapter 24)

• Robotics (Chapter 25)

Peter Stone



Planning
• Back to deciding what to do (actions)

Peter Stone



Planning
• Back to deciding what to do (actions)

• Back to deterministic and static

Peter Stone



Planning
• Back to deciding what to do (actions)

• Back to deterministic and static

− But scales up

Peter Stone



Planning
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• Back to deterministic and static

− But scales up
− It’s used (don’t be fooled by just 1 week in class)
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Planning Applications
• Mobile robots
− An initial motivator, and still being developed

• Simulated environments
− Goal-directed agents for training or games

• Web and grid environments
− Composing queries or services
− Workflows on a computational grid

• Managing crisis situations
− Oil-spill, forest fires, urban evacuation, in factories

• And many more
− Factory automation, flying autonomous spacecraft,

playing bridge, military planning,. . .
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Questions

• What are some real-world applications?

• Why not typically covered in intro AI?

• What’s the relationship with...

− CSPs?
− heuristic search?
− reinforcement learning?

• Are there other types of planning?

• What does it mean to be ground and functionless?

Peter Stone
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Questions

• Does classical planning have any applications for
non-deterministic and continuous state/action spaces?
(Conrad Li)

• Is it possible that along the path to a certain goal an
action negates one of the literals in the eventual goal
state (and then unnegates it in a later step)? And would
this cause an issue for backward searching? (Lilia Li)
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Questions
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when would they ever be used? (Kelsey Zhan)
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Planning

Chapter 11
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Outline

♦ Search vs. planning

♦ STRIPS operators

♦ Partial-order planning

Chapter 11 2



Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

After-the-fact heuristic/goal test inadequate

Chapter 11 3



Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning

States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions

Chapter 11 4



STRIPS operators

Tidily arranged actions descriptions, restricted language

Action: Buy(x)

Have(x)

At(p)  Sells(p,x)

Buy(x)

Precondition: At(p), Sells(p, x)
Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language ⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

Chapter 11 5



Partially ordered plans

Partially ordered collection of steps with
Start step has the initial state description as its effect
Finish step has the goal description as its precondition
causal links from outcome of one step to precondition of another
temporal ordering between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it

Chapter 11 6



Example

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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Example

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

Chapter 11 9



Planning process

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable

Chapter 11 10



POP algorithm sketch

function POP(initial, goal, operators) returns plan

plan←Make-Minimal-Plan(initial, goal)

loop do

if Solution?(plan) then return plan

Sneed, c←Select-Subgoal(plan)

Choose-Operator(plan, operators,Sneed, c)

Resolve-Threats(plan)

end

function Select-Subgoal(plan) returns Sneed, c

pick a plan step Sneed from Steps(plan)

with a precondition c that has not been achieved

return Sneed, c

Chapter 11 11



POP algorithm contd.

procedure Choose-Operator(plan, operators,Sneed, c)

choose a step Sadd from operators or Steps(plan) that has c as an effect

if there is no such step then fail

add the causal link Sadd
c
−→ Sneed to Links(plan)

add the ordering constraint Sadd ≺ Sneed to Orderings(plan)

if Sadd is a newly added step from operators then

add Sadd to Steps(plan)

add Start ≺ Sadd ≺ Finish to Orderings(plan)

procedure Resolve-Threats(plan)

for each Sthreat that threatens a link Si
c
−→ Sj in Links(plan) do

choose either

Demotion: Add Sthreat≺ Si to Orderings(plan)

Promotion: Add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan) then fail

end

Chapter 11 12



Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)

Chapter 11 13



Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:
– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer
– selection of Sneed is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals

Chapter 11 14



Example: Blocks world

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y) 
   Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

Chapter 11 15



Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)
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Example contd.

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)
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Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)
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Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

Chapter 11 19


