
CS343
Artificial Intelligence

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin

Good Morning, Colleagues

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step
− Know current state

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step
− Know current state

• Next: MDPs —

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step
− Know current state

• Next: MDPs — towards reinforcement learning

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step
− Know current state

• Next: MDPs — towards reinforcement learning
− Still know transition and reward function

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step
− Know current state

• Next: MDPs — towards reinforcement learning
− Still know transition and reward function
− Looking for a policy — optimal action from every state

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step
− Know current state

• Next: MDPs — towards reinforcement learning
− Still know transition and reward function
− Looking for a policy — optimal action from every state

• Action learning: Reinforcement learning

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step
− Know current state

• Next: MDPs — towards reinforcement learning
− Still know transition and reward function
− Looking for a policy — optimal action from every state

• Action learning: Reinforcement learning
− Policy without knowing transition or reward functions

Peter Stone

Some Context

• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Know transition and cost (reward) functions
− Either execute complete solution (deterministic) or

search again at every step
− Know current state

• Next: MDPs — towards reinforcement learning
− Still know transition and reward function
− Looking for a policy — optimal action from every state

• Action learning: Reinforcement learning
− Policy without knowing transition or reward functions
− Still know state

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known
− Week 4: Utilities

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known
− Week 4: Utilities
− Week 7: Conditional independence and inference

(exact and approximate)

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known
− Week 4: Utilities
− Week 7: Conditional independence and inference

(exact and approximate)
− Week 9: State estimation over time

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known
− Week 4: Utilities
− Week 7: Conditional independence and inference

(exact and approximate)
− Week 9: State estimation over time
− Week 9: Utility-based decisions

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known
− Week 4: Utilities
− Week 7: Conditional independence and inference

(exact and approximate)
− Week 9: State estimation over time
− Week 9: Utility-based decisions

• Week 10: What if they’re not known?

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known
− Week 4: Utilities
− Week 7: Conditional independence and inference

(exact and approximate)
− Week 9: State estimation over time
− Week 9: Utility-based decisions

• Week 10: What if they’re not known?
− Also Bayesian networks for classification

Peter Stone

Some Context (cont.)

• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known
− Week 4: Utilities
− Week 7: Conditional independence and inference

(exact and approximate)
− Week 9: State estimation over time
− Week 9: Utility-based decisions

• Week 10: What if they’re not known?
− Also Bayesian networks for classification
− A type of machine learning

Peter Stone

Some Context (cont.)

• After that: More machine learning

− Week 11: Neural nets and Deep Learning
− Week 12: SVMs, Kernels, and Clustering

• Week 13: Classical planning

− Reasoning with first order representations

Peter Stone

Some Context (cont.)

• After that: More machine learning

− Week 11: Neural nets and Deep Learning
− Week 12: SVMs, Kernels, and Clustering

• Week 13: Classical planning

− Reasoning with first order representations
− So far we’ve dealt with propositions

Peter Stone

Some Context (cont.)

• After that: More machine learning

− Week 11: Neural nets and Deep Learning
− Week 12: SVMs, Kernels, and Clustering

• Week 13: Classical planning

− Reasoning with first order representations
− So far we’ve dealt with propositions
− Back to known transitions, known state, etc.

Peter Stone

Some Context (cont.)

• After that: More machine learning

− Week 11: Neural nets and Deep Learning
− Week 12: SVMs, Kernels, and Clustering

• Week 13: Classical planning

− Reasoning with first order representations
− So far we’ve dealt with propositions
− Back to known transitions, known state, etc.

• Week 14: Philosophical foundations and ethics

Peter Stone

Some Context (cont.)

• After that: More machine learning

− Week 11: Neural nets and Deep Learning
− Week 12: SVMs, Kernels, and Clustering

• Week 13: Classical planning

− Reasoning with first order representations
− So far we’ve dealt with propositions
− Back to known transitions, known state, etc.

• Week 14: Philosophical foundations and ethics

It’s all about building agents

Sense, decide, act

Peter Stone

Some Context (cont.)

• After that: More machine learning

− Week 11: Neural nets and Deep Learning
− Week 12: SVMs, Kernels, and Clustering

• Week 13: Classical planning

− Reasoning with first order representations
− So far we’ve dealt with propositions
− Back to known transitions, known state, etc.

• Week 14: Philosophical foundations and ethics

It’s all about building agents

Sense, decide, act Maximize expected utility

Peter Stone

Topics not covered

• Knowledge representation and reasoning
. (Chapters 7-9, 11, 12)

• Game theory and auctions (Sections 17.5, 17.6)

• Aspects of learning (Chapters 18, 19)

• Natural language (Chapters 22, 23)

• Vision (Chapter 24)

• Robotics (Chapter 25)

Peter Stone

Planning
• Back to deciding what to do (actions)

Peter Stone

Planning
• Back to deciding what to do (actions)

• Back to deterministic and static

Peter Stone

Planning
• Back to deciding what to do (actions)

• Back to deterministic and static

− But scales up

Peter Stone

Planning
• Back to deciding what to do (actions)

• Back to deterministic and static

− But scales up
− It’s used (don’t be fooled by just 1 week in class)

Peter Stone

Planning Applications
• Mobile robots
− An initial motivator, and still being developed

Peter Stone

Planning Applications
• Mobile robots
− An initial motivator, and still being developed

• Simulated environments
− Goal-directed agents for training or games

Peter Stone

Planning Applications
• Mobile robots
− An initial motivator, and still being developed

• Simulated environments
− Goal-directed agents for training or games

• Web and grid environments
− Composing queries or services
− Workflows on a computational grid

Peter Stone

Planning Applications
• Mobile robots
− An initial motivator, and still being developed

• Simulated environments
− Goal-directed agents for training or games

• Web and grid environments
− Composing queries or services
− Workflows on a computational grid

• Managing crisis situations
− Oil-spill, forest fires, urban evacuation, in factories

Peter Stone

Planning Applications
• Mobile robots
− An initial motivator, and still being developed

• Simulated environments
− Goal-directed agents for training or games

• Web and grid environments
− Composing queries or services
− Workflows on a computational grid

• Managing crisis situations
− Oil-spill, forest fires, urban evacuation, in factories

• And many more
− Factory automation, flying autonomous spacecraft,

playing bridge, military planning,. . .

Peter Stone

Questions

• What are some real-world applications?

Peter Stone

Questions

• What are some real-world applications?

• Why not typically covered in intro AI?

Peter Stone

Questions

• What are some real-world applications?

• Why not typically covered in intro AI?

• What’s the relationship with...

− CSPs?

Peter Stone

Questions

• What are some real-world applications?

• Why not typically covered in intro AI?

• What’s the relationship with...

− CSPs?
− heuristic search?

Peter Stone

Questions

• What are some real-world applications?

• Why not typically covered in intro AI?

• What’s the relationship with...

− CSPs?
− heuristic search?
− reinforcement learning?

Peter Stone

Questions

• What are some real-world applications?

• Why not typically covered in intro AI?

• What’s the relationship with...

− CSPs?
− heuristic search?
− reinforcement learning?

• Are there other types of planning?

Peter Stone

Questions

• What are some real-world applications?

• Why not typically covered in intro AI?

• What’s the relationship with...

− CSPs?
− heuristic search?
− reinforcement learning?

• Are there other types of planning?

• What does it mean to be ground and functionless?

Peter Stone

This Week

• Today: Planning problem representation

• Today: Solution types

• Today: Forward/backward search

Peter Stone

This Week

• Today: Planning problem representation

• Today: Solution types

• Today: Forward/backward search

• Thursday: Heuristics

• Thursday: Graphplan

Peter Stone

Good Morning, Colleagues

Peter Stone

Questions

• Does classical planning have any applications for
non-deterministic and continuous state/action spaces?
(Conrad Li)

Peter Stone

Questions

• Does classical planning have any applications for
non-deterministic and continuous state/action spaces?
(Conrad Li)

• Is it possible that along the path to a certain goal an
action negates one of the literals in the eventual goal
state (and then unnegates it in a later step)? And would
this cause an issue for backward searching? (Lilia Li)

Peter Stone

Questions

• What is a relaxed problem and how does it differ from a
regular one? (Yash Kakodkar)

• Since some of the heuristics in 10.2 are not admissible,
when would they ever be used? (Kelsey Zhan)

Peter Stone

Questions

• How are heuristics from planning graphs always admissible?
(Kelsey Zhan)

• How is the serial planning graph for heuristics better than
using a normal planning graph?

• Why use planning graphs for heuristics when you can
just extract a solution from them using the Graphplan
algorithm? (Austin Aurelio)

Peter Stone

Questions

• How are heuristics from planning graphs always admissible?
(Kelsey Zhan)

• How is the serial planning graph for heuristics better than
using a normal planning graph?

• Why use planning graphs for heuristics when you can
just extract a solution from them using the Graphplan
algorithm? (Austin Aurelio)

Peter Stone

Planning

Chapter 11

Chapter 11 1

Outline

♦ Search vs. planning

♦ STRIPS operators

♦ Partial-order planning

Chapter 11 2

Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

After-the-fact heuristic/goal test inadequate

Chapter 11 3

Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning

States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions

Chapter 11 4

STRIPS operators

Tidily arranged actions descriptions, restricted language

Action: Buy(x)

Have(x)

At(p) Sells(p,x)

Buy(x)

Precondition: At(p), Sells(p, x)
Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language ⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

Chapter 11 5

Partially ordered plans

Partially ordered collection of steps with
Start step has the initial state description as its effect
Finish step has the goal description as its precondition
causal links from outcome of one step to precondition of another
temporal ordering between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it

Chapter 11 6

Example

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

Chapter 11 7

Example

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

Chapter 11 8

Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

Chapter 11 9

Planning process

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable

Chapter 11 10

POP algorithm sketch

function POP(initial, goal, operators) returns plan

plan←Make-Minimal-Plan(initial, goal)

loop do

if Solution?(plan) then return plan

Sneed, c←Select-Subgoal(plan)

Choose-Operator(plan, operators,Sneed, c)

Resolve-Threats(plan)

end

function Select-Subgoal(plan) returns Sneed, c

pick a plan step Sneed from Steps(plan)

with a precondition c that has not been achieved

return Sneed, c

Chapter 11 11

POP algorithm contd.

procedure Choose-Operator(plan, operators,Sneed, c)

choose a step Sadd from operators or Steps(plan) that has c as an effect

if there is no such step then fail

add the causal link Sadd
c
−→ Sneed to Links(plan)

add the ordering constraint Sadd ≺ Sneed to Orderings(plan)

if Sadd is a newly added step from operators then

add Sadd to Steps(plan)

add Start ≺ Sadd ≺ Finish to Orderings(plan)

procedure Resolve-Threats(plan)

for each Sthreat that threatens a link Si
c
−→ Sj in Links(plan) do

choose either

Demotion: Add Sthreat≺ Si to Orderings(plan)

Promotion: Add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan) then fail

end

Chapter 11 12

Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)

Chapter 11 13

Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:
– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer
– selection of Sneed is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals

Chapter 11 14

Example: Blocks world

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

Chapter 11 15

Example contd.

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

Chapter 11 16

Example contd.

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)

Chapter 11 17

Example contd.

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

Chapter 11 18

Example contd.

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

Chapter 11 19

